跳到主要內容

臺灣博碩士論文加值系統

(54.172.135.8) 您好!臺灣時間:2022/01/18 14:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林君翰
研究生(外文):LIN C. H.
論文名稱:外加碳源對EDTA生物分解之影響
論文名稱(外文):The effect of additional carbon sources on the microbial degradation of EDTA
指導教授:李季眉李季眉引用關係
指導教授(外文):Lee C. M.
學位類別:碩士
校院名稱:國立中興大學
系所名稱:環境工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:122
中文關鍵詞:醋酸鈉乙二胺共代謝
外文關鍵詞:EDTANADH
相關次數:
  • 被引用被引用:17
  • 點閱點閱:1595
  • 評分評分:
  • 下載下載:363
  • 收藏至我的研究室書目清單書目收藏:0
EDTA為一種人工合成的螯合劑,能與金屬離子形成穩定的化合物。由於其化合物具有高穩定性,因此EDTA被廣泛應用於各種行業,諸如纖維染整業、清潔劑製造業、金屬工業…化妝品業等等。雖然EDTA在環境中不具毒性,但它的難分解特性使得無法以傳統的生物處理及物化處理方法去除。此外,EDTA的存在會使土壤及河川底泥中的重金屬再度溶解於水中,而直接影響人體健康或經由植物的累積再由食物鏈傳輸到人體中。因此如何有效且妥善處理含有EDTA之廢水成為刻不容緩之事。本研究的目的即在探討不同的環境因子以及外加碳源對Pseudomonas aeruginosa分解EDTA之影響,盼能提昇EDTA之去除率。此外,以不同的醋酸利用菌進行實驗,並探討NADH對於EDTA分解之影響。
本研究利用16S rRNA序列菌種鑑定的方法進行鑑定,確定菌株An1之菌名為Pseudomonas aeruginosa。由實驗結果顯示,P. aeruginosa之最佳生長溫度為30℃,在此溫度下之比生長速率為0.0744hr-1。P. aeruginosa 所能忍受的pH範圍相當廣泛,在不同起始的pH下皆能生長良好,其中在pH 5時EDTA去除率最差(44.3%),而在pH 9時EDTA去除率最佳(58.1%),顯示EDTA在鹼性條件下的去除效果較好。P. aeruginosa 於含鈣離子之磷酸鹽緩衝溶液與不含鈣離子之磷酸鹽緩衝溶液中,對FeEDTA的去除率沒有太大的差別。換句話說,影響EDTA分解之酵素不需要鈣離子作為輔助因子。P. aeruginosa 在有添加氯化銨的磷酸鹽緩衝溶液中,對於FeEDTA的去除率是沒有添加氯化銨的一倍以上。顯示P. aeruginosa無法以EDTA為唯一氮源,須額外添加易分解氮源以利菌株生長,而EDTA的去除率才有明顯增加的現象。
在外加碳源方面,添加醋酸鈉及乙二胺皆可促進EDTA的去除,而添加NTA及乳酸鈉對於EDTA之去除則沒有幫助。菌株在以EDTA為唯一碳源的條件下無法將其分解,必需額外添加碳源才能代謝EDTA,故EDTA的分解應該是共代謝的現象。此外,在植種不同之醋酸利用菌且添加醋酸鈉的情況下,菌株皆可共代謝EDTA,但無法將其完全礦化,其中以菌株MDC-3的EDTA去除率最佳(56.1%),而菌株TDM-3的EDTA去除率最差(33.1%)。
EDTA is a chelating agent from the group of aminopolycarboxylic acids with the ability to form stable, water-soluble complexes with most metal ions. Because of high stability of its complexes, EDTA is employed for various industrial and domestic applications, e.g. cleaners, metal processing etc. EDTA exhibits no environmental toxicity, but it is a recalcitrant organic compound that cannot be removed by conventional biological and physical-chemical methods of wastewater treatment. Moreover, EDTA has some undesirable environmental consequences such as the remobilization of radionuclides and heavy metals from soils and sediments. The mobilized radionuclides and toxic heavy metals can cause direct health problems or can be accumulated by plants and then transferred to human beings through the food chain. Therefore, it becomes a great urgency to treat the wastewaters containing EDTA efficiently. To raise the treatment efficiency, the environmental factors and the additional carbon sources affecting the degradation of EDTA by Pseudomonas aeruginosa were studied. Besides, the degradation of EDTA by different pure cultures that utilize sodium acetate as substrate was tested, and the effect of NADH on EDTA degradation was also investigated.
The strain An1 was identified as Pseudomonas aeruginosa by the method of 16S rRNA sequencing. The temperature and pH optima for EDTA oxidation were 30℃ and 9, respectively. The addition of CaCl2 to the phosphate buffer was no help of the removal of EDTA, suggesting that the enzyme does not require calcium for its activity. The removal ability of EDTA by Pseudomonas aeruginosa grown with NH4Cl and EDTA as the nitrogen sources was about one-fold higher than with EDTA as the sole nitrogen source. It indicated that Pseudomonas aeruginosa could not be grown with EDTA as the sole nitrogen source and the degradation of EDTA was stimulated by the addition of NH4Cl.
In the aspect of carbon source addition, the degradation of EDTA was stimulated by the addition of either sodium acetate or ethylenediamine. However, additional nitrilotriacetic acid and sodium lactate did not influence EDTA degradation. Since the strain grown with EDTA as the sole carbon source could not degrade EDTA and could only metabolize EDTA by adding biodegradable carbon sources, the mechanism of EDTA degradation must be co-metabolism. In addition, EDTA could be cometabolized by all the sodium acetate-utilizing microorganisms in the presence of sodium acetate, but could not be completely mineralized. The removal ability of EDTA by strain MDC-3 was the best (56.1%) and that by strain TDM-3 was the worst (33.1%).
中文摘要 I
英文摘要 III
目錄 V
表目錄 X
圖目錄 XI
第一章 前言 1
第二章 文獻回顧 3
2-1 錯合反應概述 3
2-2 螯合劑之種類及作用 4
2-2-1 腐植酸 4
2-2-2 NTA及EDTA 5
2-2-3 聚磷酸鹽 5
2-2-4 其他螯合劑 6
2-3 水體中螯合劑之出現與重要性 6
2-4 錯合物之穩定性及穩定常數 7
2-4-1 穩定性 7
2-4-2 穩定常數 8
2-5 EDTA的物化特性 9
2-5-1 EDTA的酸鹼性 9
2-5-2 EDTA和金屬離子的錯合物 9
2-5-3 EDTA錯合物的溶解度 11
2-5-4 EDTA錯合物的穩定常數 13
2-6 EDTA於各種產業中之應用 15
2-6-1 EDTA在印染上的應用 16
2-6-2 EDTA在電鍍及印刷電路板的應用 16
2-6-3 EDTA在醫療上的應用 17
2-6-4 EDTA在土壤復育上的應用 18
2-6-5 EDTA在食品工程上的應用 18
2-7 EDTA之製造方法與危害 19
2-8 EDTA之物化處理 20
2-8-1 光解法 20
2-8-2 過氧化氫/紫外光程序法 22
2-8-3 電化學法 22
2-8-4 臭氧氧化法 23
2-9 EDTA之生物處理 24
2-9-1 EDTA之分解菌 25
2-9-2 中間代謝產物之研究 26
2-9-3 可能之代謝途徑 28
2-9-4 參與EDTA分解之酵素 31
2-9-5 影響EDTA分解之基因 33
2-10 影響EDTA分解之因子 33
2-10-1 金屬離子及穩定常數 33
2-10-2 輔助因子 36
2-10-3 pH值 37
2-10-4 維他命 37
2-10-5 磷酸鹽緩衝液 38
2-10-6 其它 39
第三章 材料與方法 41
3-1 16S rRNA序列菌種鑑定 41
3-2 不同環境因子對菌株An1分解EDTA之影響 47
3-2-1 菌種來源 47
3-2-2 菌種保存及預培養方法 47
3-2-3 批次實驗 49
3-2-3-1 溫度梯度實驗 49
3-2-3-2 pH值對菌株An1分解EDTA之影響 49
3-2-3-3 金屬離子對菌株An1分解EDTA之影響 51
3-2-3-4 氯化銨對菌株An1分解EDTA之影響 51
3-3 外加碳源對EDTA去除之研究 53
3-3-1 菌種來源 53
3-3-2 菌種保存及預培養方法 53
3-3-3 批次實驗 53
3-3-3-1 添加三乙酸基胺(NTA)對菌株An1分解EDTA之影響 53
3-3-3-2 添加乙二胺(ED)對菌株An1分解EDTA之影響 54
3-3-3-3 添加醋酸鈉對菌株An1分解EDTA之影響 54
3-3-3-4 添加乳酸鈉對菌株An1分解EDTA之影響 54
3-4 醋酸利用菌對EDTA去除之研究 55
3-4-1 菌種來源 55
3-4-2 菌種保存及預培養方法 55
3-4-3 批次實驗 55
3-5 NADH對EDTA分解之影響 56
3-6 分析方法 56
3-6-1 酸鹼度(pH值) 56
3-6-2 菌株生長情況(O.D.600) 56
3-6-3 化學需氧量(COD) 57
3-6-4 乙二胺四乙酸(EDTA)濃度 57
3-6-5 醋酸鈉(sodium acetate) 58
3-7 化學藥品、鹼洗液及實驗用水 59
3-7-1 化學藥品 59
3-7-2 鹼洗液 60
3-7-3 實驗用水 60
第四章 結果與討論 61
4-1 16S rRNA序列菌種鑑定 61
4-2 不同環境因子對Pseudomonas aeruginosa分解EDTA之影響 63
4-2-1 菌株於不同溫度下之生長速率 63
4-2-2 pH值對Pseudomonas aeruginosa分解EDTA之影響 63
4-2-3 金屬離子對Pseudomonas aeruginosa分解EDTA之影響 70
4-2-4 氯化銨對Pseudomonas aeruginosa分解EDTA之影響 72
4-3 外加碳源對EDTA去除之研究 75
4-3-1 添加NTA對Pseudomonas aeruginosa分解EDTA之影響 75
4-3-2 添加ED對Pseudomonas aeruginosa分解EDTA之影響 76
4-3-3 添加醋酸鈉對Pseudomonas aeruginosa分解EDTA之影響 80
4-3-4 添加乳酸鈉對Pseudomonas aeruginosa分解EDTA之影響 93
4-3-5 綜合討論 94
4-4 醋酸利用菌對EDTA去除之研究 96
4-5 NADH對EDTA分解之影響 105
4-5-1 添加NADH對於EDTA分解之影響 105
4-5-2 添加FMN對於EDTA分解之影響 105
4-5-3 添加抑制劑對於EDTA分解之影響 107
4-5-4 綜合討論 107
第五章 結論與建議 113
5-1 結論 113
5-2 建議 115
參考文獻 117
Alder, A. C., Siegrist, H., Gujer, W., Giger, W., 1990. Behaviour of NTA and EDTA in biological wastewater treatment. Water Research (Oxford). 24(6): 733-742. 36 ref.
Baek, N. H., Clesceri, N. L., 1986. NTA biodegradation and removal in subsurface sandy soil. Water Research. 20(3): 345-349. 10 ref.
Bally, M., Wilberg, E., Kuehni, M., Egli, T., 1994. Growth and regulation of enzyme synthesis in the nitrilotriacetic acid (NTA)-degrading bacterium Chelatobacter heintzii ATCC 29600. Microbiology. 140(8): 1927-1936.
Belly, R. T., Lauff, J. J., Goodhue, C. T., 1975. Degradation of ethylenediaminetetraacetic acid by microbial populations from an aerated lagoon. Appl. Microbiol. 29(6), 787-794.
Bergers, P. J. M., Groot, A. C., 1994. The analysis of EDTA in water by HPLC. Water Research. 28(3): 639-642.
Bernd Nörtemann, 1992. Total degradation of EDTA by mixed cultures and a bacterial isolate. Applied & Environmental Microbiology. 58(2): pp. 671-676.
Bohuslavek, J., Payne, J. W., Liu, Y., Bolton, H. J., Xun, L., 2001. Cloning sequencing, and characterization of a gene cluster involved in EDTA degradation from the bacterium BNC1. Applied and Environmental Microbiology. 67(2), 688-695.
Bolton, H., Girvin, D. C., Playmale, A. E., Harvey, S. D., Workman, D. J., 1996. Degradation of metal-nitrilotriacetate complexes by Chelatobacter heintzii. Environmental Sciences Technology. 30, 931-938.
Bolton, H., Jr. Girvin, D. C., 1996. Effect of adsorption on the biodegradation of nitrilotriacetate by Chelatobacter heintzii. Environmental Science & Technology. 30(6): 2057-2065. 49 ref.
Bolton, H., Jr. Li, S. W., Workman, D. J., Girvin, D. C., 1993. Biodegradation of synthetic chelates in subsurface sediments from the southeast coastal plain. Journal of Environmental Quality. 22(1): 125-132.
Bunch, R. L., Ettinger, M. B., 1967. Biodegradability of potential organic substitutes for phosphate. 393-396. Purdue Univ. Eng. Bull., Ext. Ser. No. 129 Part 1. Purdue University, Lafayette, Ind.
Egli, T., Bally, M., Uetz, T., 1990. Microbial degradation of chelating agents used in detergents with special reference to nitrilotriacetic acid (NTA). Biodegradation. 1(2-3): 121-132. 65 ref.
Egli, T., Weilenmann, H. U., 1986. Biodegradation of nitrilotriacetic acid (NTA) in the absence of oxygen. Experientia. 42(9): 1061-1062. 11 ref.
Egli, T., Weilenmann, H. U., 1989. Isolation, characterization and physiology of bacteria able to degrade nitrilotriacetate. Toxicity Assessment. 4(1): 23-34. 24 ref.
Firestone, M. F., Tiedje, J. M., 1978. Pathway of degradation of nitrilotriacetate by a Pseudomonas species. Applied and Environmental Microbiology. 35, 955-961.
Firestone, M. K., Tiedje, J. M., 1975. Biodegradation of metal-nitrilotriacetate complexes by a Pseudomonas species: mechanism of reaction. Applied Microbiology. 29(6): 758-764.
Francis, A. J., Dodge, C. J., Gilow, J. B., 1992. Biodegradation of metal citrate complexes and implications for toxic-metal mobility. Nature. 356, 140-142.
Franz, G. K., Sabine, H., Silvio, C., 年代. Determination of the reaction quantum yield for the photochemical degradation of Fe(Ⅲ)-EDTA: Implications for the environmental fate of EDTA in surface waters. Environmental Science & Technology. 29: 1008-1017.
Franz, G. K., Walter, G., 1996. Speciation and fate of ethylenediaminetetraacetate (EDTA) in municipal wastewater treatment. Water Research. 30(1): 122-134.
Ganzle, M. G., Weber, S., Hammes, W. P., 1999. Effect of ecological factors on the inhibitory spectrum and activity of bacteriocins. International Journal of Food Microbiology. 46: 207-217.
Gardiner, J., 1975. Complexation of trace metals by ethylenediaminetetraaacetic acid (EDTA) in natural waters. Water Research. 10: 507-514.
Gilbert, E., Hoffmann Glewe, S., 1990. Ozonation of ethylenediaminetetraacetic acid (EDTA) in aqueous solution, influence of pH value and metal ions. Water Research. 24(1), 39-44.
Gorby, Y. A., Caccavo, F., Bolton, H., January 1998. Microbial reduction of cobalt super(III)EDTA super(-) in the presence and absence of manganese (IV) oxide. Environmental Science & Technology. 32(2): pp. 244-250.
Greenberg, A. E., Trussell, R. R., Clesceri, L. S., 1985. Standard methods for the examination of water and wastewater, 16th edition, pp.537. American public health association, Washington.
Hales, S. G., Ernst, W., 1991. Biodegradation of nitrilotriacetic acid (NTA) in Weser estuarine water. TENSIDE SURFACTANTS DETERGENTS. 28(1): pp. 15-21.
Heimbach, J., Rieth, S., Mohamedshah, F., Slesinskp, R., Samuel-Fernando, P., Sheehan, T., Dickmann, R., Borzelleca, J., 2000. Safety assessment of iron EDTA [sodium iron (Fe3+) ethyle nediaminetetraacetic acid]: summary of toxicological, fortification and exposure data. Food and Chemical Toxicology. 38, 99-111.
Henneken, L., Nörtemann, B., Hempel, D. C.*, 1995. Influence of physiological conditions on EDTA degradation. Applied Microbiology & Biotechnology. 44(1-2): pp. 190-197.
Hinck, M. L., Ferguson, J., Puhaakka, J., 1997. Resistance of EDTA and DTPA to aerobic biodegradaton. Wat. Sci. Tech. 35(2-3): pp. 25-31.
Hunter, M., Stephenson, T., Lester, J. N., Perry, R., 1985. Removal of low concentrations of nitrilotriacetic acid in the activated sludge process. Chemosphere. 14( 3-4): 301-312. 45 ref.
Jenal-Wanner, U., Egli, T.*, 1993. Anaerobic degradation of nitrilotriacetate (NTA) in a denitrifying bacterium: Purification and characterization of the NTA dehydrogenase-nitrate reductase enzyme complex. Applied & Environmental Microbiology. 59(10): pp. 3350-3359.
Kaluza, U., Klingelhofer, P., Taeger, K., 1998. Microbio degradation of EDTA in an industrial wastewater treatment plant. Water Research. 32(9): 2843-2843.
Kari, F. G., Giger, W., 1995. Modelling the photochemical degradation of ethylene diaminetetraacetate in River Glatt. Environ. Sci. Technol. 29, 2814-2827.
Kari, F. G., Hilger, S., Canonica, S., 1995. Determination of the reaction quantum yield for the photochemical degradation of Fe(Ⅲ)-EDTA: implication for the environmental fate of EDTA in surface waters. Environ. Sci. Technol. 29, 1008-1017.
Klüner, T., Hempel, D. C., Nörtemann, B., 1998. Metabolism of EDTA and its metal chelates by whole cells and cell-free extracts of strain BNC1. Applied Microbiology and Biotechnology. 49, 194-201.
Kusakaba, K., Nishida, H., Morooka, S., Kato, Y., 1986. Simultaneous electrochemical removal of copper and chemical oxygen demand using a packed-bed electrode cell. J. appl. Electrochem. 16, 121.
Larson, R. J. Ventullo, R. M. 1986. Kinetics of biodegradation of nitrilotriacetic acid (NTA) in an estuarine environment. Ecotoxicology & Environmental Safety. 12(2): 166-179. 68 ref.
Lauff, J. J., Steele, D. B., Coogan, L. A., Breitfeller, J. M., 1990. Degradation of the ferric chelate of EDTA by a pure culture of an Agrobacterium sp. Applied and Environmental Microbiology. 56(11), 3346-3353.
Liu, Y., Louie, T. M., Payne, J., Bohuslavek, J., Bolton, H., Xun, L., 2001. Identification, purification, and characterization of iminodiacetate oxidase from the EDTA-degrading bacterium BNC1. Applied and Environmental Microbiology. 67(2), 696-701.
Lockhart, H. B., Blakeley, R. V., 1975. Aerobic photodegradation of Fe(Ⅲ)-(ethylenedinitrilo)tetraacetate (ferric EDTA). Environ. Sci. Technol. 9, 1035-1038.
Ma, Q. Y., Lindsay, W. L., 1995. Estimation of Cd2+ and Ni2+ activities in soils by chelation. Geoderma. 68: 123-133.
Madson, E. L., Alexander, M., 1985. Effects of chemical speciation on the mineralization of organic compounds by microorganisms. Applied and Environmental Microbiology. 50, 342-349.
Margarete, W., Thomas, E., 1998. Purification and characterization of a lyase from the EDTA-degrading bacterial strain DSM 9103 that catalyzes the splitting of [S,S]-ethylenediaminedisuccinate, a structural isomer of EDTA. Biodegradation. 8: 419-428.
Margrete, W., Samuel, N., Thomas, E., 1997. Identification and characterization of the two-enzyme system catalyzing oxidation of EDTA in the EDTA-degrading bacterial strain DSM 9103. Journal of Bacteriology. 179(22): 6937-6943.
McFeters, G. A., Egli, T., Wilberg, E., Alder, A., Schneider, R., Suozzi, M., Giger, W., 1990. Activity and adaptation of nitrilotriacetate (NTA)-degrading bacteria: Field and laboratory studies. Water Research. 24(7): pp. 875-881.
Mochidzuki, K., Takeuchi, Y., 1999. Improvement of biodegradability of ethylenediaminetetraacetic acid in biological activated carbon treatment by chemical preoxidation. Separation and Purification Technology. 17: 125-130.
Morooka, S., Ikemizu, K., Kamano, H., Kato, Y., 1986. Ozonation of water-soluble chelates and related compounds. J. Chem. Engng Jap. 19, 294-299.
Moug, T. E., Rogers, D. T., Furr, J. R., 1985. Antiseptic-Induced changes in the cell surface of a chlorhexidine-sensitive and a chlorhexidine-resistant of Providencia stuaril. J. Antimicrobial Chemotherapy. 16, 685-689.
Nörtemann, B., 1992. Total degradation of EDTA by mixed cultures and a bacterial isolate. Applied and Environmental Microbiology. 58(2), 671-676.
Nörtemann, B., Imberg, B., Hempel, D. C., 1991. Biodegradation of ethylenediaminetetraacetate. In: Verachtert, H., Verstraete, W. Proceedings of the International Symposium on Environmental Biotechnology. pp. 259-262.
Nörtemann, B., June 22, 1999. Biodegradation of EDTA. Applied Microbiology & Biotechnology. 51(6): pp. 751-759.
Palumbo, A. V., Lee, S. Y., Boerman, P., 1994. The effect of media composition on EDTA degradation by Agrobacterium sp. Applied Biochemistry and Biotechnology. 45, 811-822.
Pascale, M. N., Pierre, E. P., Jeanclaude, L., Roger, R., 1998. Method for EDTA speciation determination: application to sewage treatment plant effluents. Water Research. 32(12): 6315-3620.
Payne, J. W., Bolton, H., Campbell, J. A., Xun, L., 1998. Purification and characterization of EDTA monooxygenase from the EDTA- degrading bacterium BNC1. Journal of Bacteriology. 180(15), 3823-3827.
Pettersson, B., Uhlen, M., Johansson, K. E., 1996. Phylogeny of some mycoplasmas from ruminants based on 16S rRNA sequences and definition of a new cluster within the hominis group. International Journal of Systematic Bacteriology. 1093-1098.
Reed, D. T., Vojta, Y., Quinn, J. W., Richmann, M. K., 1999. Radiotoxicity of plutonium in NTA-degrading Chelatobacter heintzii cell suspensions. Biodegradation. 10(4): pp. 251-260.
Reinecke, F., Groth, T., Heise, K. P., Joentgen, W., Muller, N., Steinbuchel, A., 2000. Isolation and characterization of an Achromobacter xylosoxidans strain B3 and other bacteria capable to degrade the synthetic chelating agent iminodisuccinate. 188: 41-46.
Satroutdinov, A. D., Dedyukhina, E. G., Chistyakova, T. I., Witschel, M., Minkevich, I. G., Eroshin, V. K., Egli, T.*, May 1, 2000. Degradation of Metal - EDTA Complexes by Resting Cells of the Bacterial Strain DSM 9103. Environmental Science & Technology. 34(9): pp. 1715-1720.
Severine, F. F., Bernard, J., Christiane, F., 1995. Transformation of wild type Klebsiella pneumoniae with plasmid DNA by electroporation. Journal of Microbiological Methods. 24:49-54.
Shimp, R. J., Lapsins, E. V., Ventullo, R. M.*, 1994. Chemical fate and transport in a domestic septic system: Biodegradation of linear alkylbenzene sulfonate (LAS) and nitrilotriacetic acid (NTA). Environmental Toxicology & Chemistry. 13(2): pp. 205-212.
Siegrist, H., Alder, A., Gujer, W., Giger, W., 1989. Behaviour and modelling of NTA degradation in activated sludge systems. Water Science & Technology. 21(4-5): pp. 315-324.
Sillanpää, M., Sihvonen, M. L., 1997. Analysis of EDTA and DTPA. Talanta. 44, 1487-1497.
Skoog, D. A., West, D. M., Holler, F. J., 1991. Fundamentals of analytical chemistry, 7th edition, pp.278-300. Saunders college publishing.
Stevens, K. A., Sheldon, B. W., Klapes, N. A., Klaenhamer, T. R., 1992. Effect of treatment condition on Nisin inactivation of Grem-Negative bacter. Journal of food protection. 55(10), 763-766.
Sykora, V., Pitter, P., Bittnerova, I., Lederer, T., 2001. Biodegradability of ethylenediamine-based complexing agents. Water Research. 35(8): 2010-2016.
Thomas, R. A. P. Lawlor, K., Bailey, M., Macaskie, L. E. 1998. Biodegradation of metal-EDTA complexes by an enriched microbial population. Applied and Environmental Microbiology. 64(4): pp. 1319-1322.
Tiedje, J. M., Mason, B. B., 1974. Biodegradation of nitrilotriacetate (NTA) in soils. Soil Science Society of America Proceedings. 38(2): 278-283.
Tiedje, J. M., Mason, B. B., Warren, C. B., Malec, E. J., 1973. Metabolism of nitrilotriacetate by cells of Pseudomonas species. Appl. Microbiol. 25, 811-818.
Tucker, M. D., Barton, L. L., Thomson, B. M., Wagener, B. M., Aragon, A., 1999. Treatment of waste containing EDTA by chemical oxidation. 19: 477-482.
Uetz, T., Egli, T., 1993. Characterization of an inducible, membrane-bound iminodiacetate dehydrogenase from Chelatobacter heintzii ATCC 29600. Biodegradation. 3: 423-434.
Uetz, T., Schneider, R., Snozzi, M., Egli, T., 1992. Purification and characterization of a two-component monooxygenase that hydroxylates nitrilotriacetate from "Chelatobacter" strain ATCC 29600. Journal of Bacteriology. 174(4): 1179-1188. 36 ref.
van Ginkel, C. G., Kester, H., Stroo, C. A., van Haperen, A. M., 1999. Biodegradation of EDTA in pulp and paper mill effluents by activated sludge. Water Science and Technology. 40(11-12), 259-265.
van Ginkel, C. G., Vandenbroucke, K. L., Stroo, C. A., 1997. Biological removal of EDTA in conventional activated-sludge plants operated under alkaline conditions. Bioresource Technology. 59: 151-155.
Wanner, U., Kemmler, J., Weilenmann, H. U., Egli, T. El-Banna, T. Auling, G. 1990. Isolation and growth of a bacterium able to degrade nitrilotriacetic acid under denitrifying conditions. Biodegradation. 1(1): 31-41. 35 ref.
Ward, T. E., 1986. Aerobic and anaerobic biodegradation of nitrilotriacetate in subsurface soils. Ecotoxicology & Environmental Safety. 11(1): 112-125. 48 ref.
Wilberg, E., El-Banna, T., Auling, G., Egli, T.*, 1993. Serological studies on nitrilotriacetic acid (NTA)-utilizing bacteria: Distribution of Chelatobacter heintzii and Chelatococcus asacharovorans in sewage treatment plants and aquatic ecosystems. Systematic & Applied Microbiology. 16(1): pp. 147-152.
Witschel, M., Nagel, S., Egli, T., 1997. Identification and characterization of the two-enzyme system catalyzing oxidation of EDTA in the EDTA-degrading bacterial strain DSM 9103. Journal of Bacteriology. 179(22), 6937-6943.
Xu, Y., Mortimer, M. W., Fisher, T. S., Kahn, M. L., Brockman, F. J., Xun, L., 1997. Journal of Bacteriology. 179(4): 1112-1116.
Xun LuYing. Reeder, R. B. Plymale, A. E. Girvin, D. C. Bolton, H., Jr. 1996. Degradation of metal-nitrilotriacetate complexes by nitrilotriacetate monooxygenase. Environmental Science & Technology. 30(5): 1752-1755. 21 ref.
Yeh, R. S., Wang, Y. Y., Wan, C. C., 1995. Removal of Cu-EDTA compounds via electrochemical process with coagulation. Water Research. 29(2): 597-599.
方鴻源、陳思霖、陳世卿、溫志超。2000。「EDTA降解微生物之研究」。第二十五屆廢水處理技術研討會論文集。第69-75頁。
王俊欽。2001。「以難分解化合物為基質之脫硝菌的分離及特性研究」。國立中興大學環境工程學系博士論文。
邱偉鈞。2000。「耐冷菌Pseudomonas sp. P90產生之金屬結合性蛋白質分解酶的基因選殖、純化與特性分析」。國立中興大學植物學系碩士論文。
施英隆。2000。環境化學。五南圖書。
孫嘉福、楊英賢、蔡瀛逸、劉明昌、賴文淙等譯。1996。環境化學。高立圖書。
陳思霖。2000。「EDTA生物分解之研究」。國立雲林科技大學環境與安全工程技術研究所碩士論文。
楊俊賢。1984。「香蕉發酵飲料之改善」。國立台灣大學環境工程研究所碩士論文。
鍾淑女。2001。「EDTA螯合物分解菌之生物分解特性研究」。國立中興大學環境工程學系碩士論文。
龐熙華。2001。「利用電聚浮除法處理廢水中Cu-EDTA之研究」。淡江大學水資源及環境工程學系碩士論文。
李惠娟。2000。「生物濾床中甲苯及乙酸乙酯基質抑制效應之研究」。國立中興大學環境工程學系碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 晏涵文、劉潔心、邱詩揚(民81) 我國高職環境教育教材分析研究中環境教育教材分析準則之發展。科學發展月刊,18(11),1615-1630。
2. 洪碧霞(民80) 題目分析及測驗編製時IRT能幫上什麼忙?國教之友,42(4),29-33。
3. 柳中明(民87) 地球發燒大自然失去平衡─溫室效應對環境生態的影響。能源報導,二月號,4-6。
4. 林明瑞(民86c) STS模式之環境教育教學法。科學教育月刊,204,24-30。
5. 林享能(民89) 我國當前生態保育問題與展望。政策月刊,55,2-4。
6. 汪靜明、張春莉(民85) 河川環境教育概念階層建構之研究。師大學報,41,541-572。
7. 李培芬(民89) 當前生態保育問題。政策月刊,56,22-25。
8. 李玲玲(民87) 自然保育與永續發展。主計月報,85(4),65-69。
9. 余民寧(民81) 測驗編製與分析技術在學習診斷上的應用。教育研究,28,44-60。
10. 王佩蓮(民84) 各級學校環境教育的內容與教學法。教育資料集刊,20,113-145。
11. 方炳林(民64) 生態教育課程的發展。國教世紀,11(1),2-8。
12. 張敬宜 熊召弟 陳順其(民83) 國小教師對小學生「生態平衡」概念發展適切性探討之研究。臺北師院學報,7,529-565。
13. 陳建甫(民89) 生態環境與資源保育的研究趨勢。科學月刊,31(11),944-947。
14. 陳溪洲(民90) 當前生態保育之問題與展望。主計月報,541,35-40。
15. 楊冠政(民84) 環境教育發展史。教育資料集刊,20,1-32.