跳到主要內容

臺灣博碩士論文加值系統

(54.91.62.236) 您好!臺灣時間:2022/01/18 00:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭育仁
論文名稱:厭氧生物處理四氯乙烯代謝方式之探討
指導教授:盧至人
學位類別:碩士
校院名稱:國立中興大學
系所名稱:環境工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:四氯乙烯熱篩法硫酸鹽還原菌產氫菌鹵化呼吸菌
相關次數:
  • 被引用被引用:19
  • 點閱點閱:1870
  • 評分評分:
  • 下載下載:312
  • 收藏至我的研究室書目清單書目收藏:1
本實驗研究的目的,乃利用熱篩法或甲烷菌抑制劑(BES)的添加,將甲烷菌篩除,探討混合族群中非甲烷菌在四氯乙烯厭氧脫氯的過程中所扮演的角色。結果發現,當BES濃度由0 mM增加至200 mM,四氯乙烯的代謝不但沒有被抑制,反而具有促進的效果,顯示混合族群中的非甲烷族群,具有較佳的脫氯效果。當硫酸鹽濃度由5mM增加至20 mM時,熱篩組與未熱篩組都顯示出硫酸鹽對於脫氯的現象並無助益,而當硫酸鹽濃度由50 mM增加至200 mM時,熱篩組與未熱篩組都顯示出硫酸鹽對於脫氯的具有抑制的現象。硫酸鹽還原菌計數試驗中也並未觀察到硫酸鹽還原菌的菌落,顯示混合族群中並無硫酸鹽還原菌的存在。添加200 mM BES後,加入不同濃度的乳酸量(0∼20 mM)的實驗中,可以發現隨著乳酸量的提高,四氯乙烯的初始代謝率及總代謝量大幅增加,顯示在無甲烷菌及硫酸鹽還原菌的狀態下,產氫菌及利用氫氣行鹵化呼吸作用(halorespiration)的脫氯菌可能為混合族群中,代謝四氯乙烯的主要菌種。藉由100 mM BES的添加後,加入乳酸及相等於乳酸量的醋酸鈉及氫氣做比較,以釐清產氫菌及鹵化呼吸菌,何者為混合族群中代謝四氯乙烯的主要菌種,結果顯示本族群在無甲烷菌及硫酸鹽還原菌的狀態下,四氯乙烯以產氫菌的代謝約佔5%,以鹵化呼吸菌的脫氯約佔95%。
In this study, the heat pretreatment and the addition of inhibitor (BES) were used to sieve methanogenic cells and then to confirm the anaerobic dechlorination of tetrachloroethylene (PCE) by non-methanogenic cells. With the addition of BES from 0 to 200 (mM), it was found that BES did not inhibit the dechlorination of tetrachloroethylene. On the contrary, the addition of BES was helpful to enhance the dechlorination of PCE. The experimental results showed the dechlorination of PCE by non-methanogenics was superior to methanogenics. For both of the heat pretreatment and non-heat pretreatment of cells, the dechlorination of PCE did not increase with the increase of SO42- from 5 to 20 (mM). However, when the concentrations of sulfate increased from 50 to 200 (mM), the dechlorination of PCE was inhibited. In the experiment of sulfate-reducing bacteria count, sulfate-reducing bacteria were not found in this mixed culture. After the addition of 200 (mM) BES, the PCE removal rate increased significantly as the concentrations of lactate increased from 0 to 20 (mM). The experimental results indicated that hydrogen-producing bacteria and halorespiring bacteria played the major role in the dechlorination of PCE, but not methanogenic or sulfate-reducing bacteria. In order to understand the cells responsible for the dechlorination of PCE, lactate or both acetate and hydrogen were used as the substrate. The experimental results indicated that the dechlorination of PCE resulted from both hydrogen-producing bacteria and halorespiring bacteria. However, halorespiring bacteria played the most significant role for the dechlorination of PCE. More than 95% of PCE dechlorination resulted from halorespiring bacteria.
摘 要 1
Abstract 2
目錄 4
圖目錄 6
表目錄 11
第一章 前言 12
1-1研究緣起 13
1-2 研究目的 14
第二章 文獻回顧 15
2-1地下水的重要性 15
2-2含氯碳氫化合物對地下水之污染 17
2-3四氯乙烯之物化特性 19
2-4四氯乙烯的毒性及其代謝途徑 21
2-5地下水污染整治技術 27
2-5-1地下水抽取處理系統 ( pump-and-treat system ) 27
2-5-2地下水生物復育 28
2-5-3植物復育法 ( Phytoremediation ) 29
2-5-4天然衰減法 29
2-6厭氧生物處理之基本機制 30
2-7基質產氫效應 32
2-8硫酸鹽還原菌作用機制 33
2-9甲烷菌作用機制 35
2-10四氯乙烯在環境中之轉換 36
2-10-1四氯乙烯厭氧生物代謝機制 38
2-10-2四氯乙烯厭氧生物代謝形式 39
2-10-3各菌種脫氯能力的比較 46
2-11菌種在厭氧脫氯上之研究 48
第三章 實驗設備與方法 55
3-1實驗用藥品 55
3-1-1實驗用水 55
3-1-2主要基質 55
3-1-3氫氣(H2) 56
3-1-4含氯碳氫化合物 56
3-1-5 無機營養鹽 57
3-1-6硫酸 58
3-1-7 HPLC沖提液 58
3-1-8 IC沖提液 59
3-1-9 丙酮 59
3-1-10 甲烷抑制劑 60
3-1-11 硫酸鹽還原菌計數試驗之營養物 60
3-2 菌種 60
3-2-1 菌種來源 60
3-2-2 菌種培養及馴化 60
3-3 分析設備與分析方法 61
3-3-1 四氯乙烯與三氯乙烯之分析 61
3-3-2 二氯乙烯與氯乙烯之分析 65
3-3-3 甲烷及乙烯之分析 66
3-3-4氫氣之分析 66
3-3-5 醋酸鈉與乳酸之分析 68
3-3-6 硫酸根之分析 68
3-3-7 pH之測定 69
3-4 實驗方法與步驟 69
3-4-1 檢量線的建立 69
3-4-2 MLVSS測定方法 71
3-4-3 批次實驗流程及準備事項 72
3-4-4硫酸鹽還原菌計數試驗(李,1992) 77
第四章 結果與討論 79
4-1 背景實驗 79
4-1-1 四氯乙烯之非生物性轉換 79
4-1-2 氫氣之非生物性轉換 79
4-2 抑制劑濃度效應 80
4-2-1抑制劑濃度對甲烷混合族群之影響 83
4-3 死菌效應 95
4-3-1 不添加任何基質之批次試驗 96
4-3-2 添加不同濃度死菌液之試驗 96
4-4熱篩法對四氯乙烯厭氧分解之效應 106
4-4-1 最佳熱篩溫度選擇試驗 107
4-2-2 等量熱篩試驗 107
4-4 硫酸鹽還原菌試驗 116
4-4-1 硫酸鹽添加試驗 117
4-4-2 硫酸鹽還原菌計數 141
4-5 產氫菌及鹵化呼吸菌試驗 144
4-5-1 乳酸添加試驗 145
4-5-2 等量添加試驗 152
第五章 結論及建議 157
5-1結論 157
5-2 建議 159
第六章 參考文獻 161
工研院能資所,「有害物質滲漏地下水層污染調查研究」,(1990)。
白明德,「厭氧生物產氫機制與程序操作策略之研究」,國立成功大學環境工程研究所碩士論文,台南,(1999)。
江晃榮,「生物技術在污染復育上之應用」,生物技術醫學產業報導,第三期,第15-21頁,(1994)。
阮國棟、張金豐、郭荔安,”天然衰減法”整治土壤及地下水污染之政策立場及實務準則,工業污染防治,第68期,第24-37頁,(1998)。
李俊德,「含氯碳氫化合物污染地下水之暴露社區居民死因勝算比」,碩士論文,國立台灣大學流行病學研究所,台北,(1998)。
李季眉,「環境微生物實驗」,國立中興大學環工系,台中,(1992)。
物質安全資料表,(2000)。
林明正,「CSTR厭氧產氫反應槽之啟動及操作」,逢甲大學土木及水利工程研究所,台中,(2000)。
孫連鴻,「主要基質醋酸鈉濃度對1,1,1-三氯乙烷生物分解之研究」,碩士論文,國立中興大學環境工程研究所,台中,(1998)。
徐銘威,「無機硫化合物及氨對上流式厭氧污泥床法酸生成相之影響」,逢甲大學化學工程研究所碩士學位論文(1994)。
郭家倫,曾迪華,黃雪莉,「好氧共代謝生物分解含氯脂肪族化合物脂回顧與評析」,國立中央大學環境工程學刊,第五期,第23-38頁,(1998)。
陳淑華,「四氯化碳在模擬地下水中的生物與非生物性轉換」,碩士論文,國立台灣大學環境工程研究所,台北,(1993)。
曹以松,「地下水」,中國土木工程會,台北(1998)。
葉琮裕,「土壤地下水污染整治技術-表面活性劑洗條法」,環保訓練園地,第49期,(2002a)。
葉琮裕,「美國土壤及地下水污染整治技術」,環保訓練園地,第50期,(2002b)。
經濟部水資源統一規劃委員會編,「台灣水文年報」(1994)。
董瑞安,「微量含氯有機物在地下水中生物轉換及傳輸模式之研究」,博士論文,國立台灣大學環境工程研究所,台北,(1992)。
蔡欣怡,「三氯乙烯與四氯乙烯對人類肺癌細胞之毒性研究」,國立中央大學生命科學研究所碩士論文,(1999)。
蔡文田,含氯有機物之毒性及新陳代謝機制,工業污染防治,第43期,第175-187頁,(1992)。
盧至人,地下水的污染整治,國立編譯館,ISBN 957-00-9607-1,台北市,(1997)。
環保署,「地下水及土壤污染防治法」,(2001)。
黃士尹,「地下水中四氯乙烯完全生物復育方法之研究」,碩士論文,國立中興大學環境工程研究所,台中,(1996)。
黃錦怡,「脫氯菌於四氯乙烯厭氧降解中之機制研究」,碩士論文,國立中興大學環境工程研究所,台中,(2001)。
葉孟芬,「地下水中四氯乙烯強化生物分解之研究」,碩士論文,國立中興大學環境工程研究所,台中,(1997)。
楊中治,「模擬地下水中四氯乙烯厭氧生物分解復育之研究」,碩士論文,國立中興大學環境工程研究所,台中,(1998)。
周鴻盛,「氫對四氯乙烯污染生物復育效應之研究」,碩士論文,國立中興大學環境工程研究所,台中,(1999)。
陳碩修,「氫氣對地下水中四氯乙烯厭氧生物分解之研究」,碩士論文,國立中興大學環境工程研究所,台中,(2000)。
Baek, N. H. and P. R. Jaffe (1989). The Degradation of Trichloroethylene in Mixed Methanogenic Cultures. J. Environ. Qual., 18, 515-518.
Baker, K. H. and D. S. Herson (1994). Introduction, and Overview of Bioremediation. in Bioremediation, K. H. Baker and D.S. Herson (eds.), McGraw-Hill, pp. 1-7
Ballapragada, B. S., Stensel, H. D. Puhakka, and F. F. John (1997). Effect of Hydrogen on Reductive Dechlorination of Chlorinated Ethenes. Environ. Sci. Technol., 31, 1728-1734.
Beurskens, J. E. M., M. Toussaint, J. De Wolf, J. M. D. Van der Steen, P. C. Slot, L. C. M. Commandeur, and J. R. Parsons (1995). Dehalogenation of Chlorinated Dioxins by an Anaerobic Microbial from Sediment. Environ. Toxicol. Chem., 14, 939—943.
Bouwer, E. J. and P. L. McCarty (1983). Transfromations of 1- and 2-Carbon Halogenated Aliphatic Organic Compounds under Methanogenic Conditions. Appl. Environ. Microbiol., 45, 1286-1294.
Cabirol, N., J. Perrier, F. Jacob, and B. Fouillet, P. Chambon (1996). Role of Methanogenic and Sulfate-Reducing Bacteria in the Reductive Dechlorination of Tetrachloroethylene in Mixed Culture. Bull. Environ. Contam. Toxicol., 56, 817-824.
Chang, Y. C., M. Hatsu, K. Jung, Y. S. Yoo, and K. Takamizawa (2000). Isolation and characterization of a tetrachloroethlene dechlorinating bacterium, Clostridium bifermentans DPH-1. J. Biosci. Bioeng., 89, 489-491
Chiu, P.C. and M. Lee (2001). 2-Bromoethanesulfonate Affects Bacteria in a Trichloroethene-Dechlorinating Culture. Apply. Environ. Microbiol. 67, 2371-2374
Cobb, G. D. and E. J. Bouwer (1990). Effect of Electron Acceptors of Halogenated Organic Compound Bio- transfromations in a Biofilm Column. Environ. Sci. Technol., 25, 1068-1074.
DiStefano, T. D., J. M. Gossett, and S. H. Zinder (1991). Reductive Decglorination of High Concentrations of Tetrachloroethene to Ethene by an Anaerobic Enrichment Culture on the Absence of Methanogensis. Appl. Environ. Microbiol., 57, 2287-2292.
DiStefano, T. D., J. M. Gossett, and S. H. Zinder (1992). Hydrogen as an Electron Donor for Dechlorination of Tetrachlorothene by an Anaerobic Mixed Culture. Appl. Environ. Microbial., 58, 3622-3629.
De Bruin, W. P., M. J. J. Kotterman, M. A. Posthumus, G. Schraa, and A. J. B. Zehnder (1992). Complete Biological Reductive Transfromation of Tetrachloroethane to Ethane. Appl. Environ. Mirobiol., 58, 1996-2000.
Egli, C., R. Tschan, A. M. Cook, and T. Leisinger (1987). Anaerobic Dechlorination of Tetrachloromethane and 1,2-Dichloroethane to Degradable Products by Pure Cultures of Desulfobacterium sp. and Methanobacterium sp. FEMS Microbiol. Lett., 43, 57-61.
Egli, C., R. Tschan, R. Scholtz, A. M. Cook, and T. Leisinger (1988). Transfromation of Tetrachloromethane to Dichloro-methane and Carbon Dioxide by Acetobacterium woodii. Appl. Environ. Microbiol., 54, 2819-2824.
Esaac, E. G. and F. Matsumura (1980). Metabolism of Insecticides by Reductive Systems. Pharmac. Ther., 9, 1-26
Fathepure, B. Z., J. P. Nengu, and S. A. Boyd(1987). Anaerobic Dacteria that Dechlorinate Perchloroethene. Appl. Environ. Microbiol., 53, 2671-2673.
Fathepure, B. Z., J. M. Tiedje, and S. A. Boyd (1988). Reductive Dechlorination of Hexachlorobenzene to Tri- and Dichlorobenzenes in Anaerobic Sewage Sluge. Appl. Environ. Microbiol., 54, 327-330.
Fennell, D. E., S. H. Zinder, and J. M. Gossett (1997). Comparative Studies of Hydrogen Donors for Stimulation of Tetrachloroethene Dechlorination. In Situ and On-Site Bioremediation, B. C. Alleman and A. Leeson (Eds), Volum 3, Battelle Press, Columbus, Ohio, pp.11.
Fogel, S., M. Findly, A. Moore, and M. Leahy (1987). Biodegradation of Chlorinated Chemicals in Groundwater by Methane Oxidizing Bacteria. Proceedings of Petroleum Hydrocarbons and Organic Chemicals in Ground Water: Prevention, Detection and Restoration., November 17-19, Houston, TX.
Freedman, D. L. and J. M. Gossett (1989). Biological Reductive Dechlorination of Tetrachloroethylene and Trichloroethylene to Ethylene under Methanogenic Conditions. Appl. Environ. Microbiol., 55, 2144-2151.
Galli, R. and P. L. McCarty (1989). Biotransfromation of 1,1,1-Trichloroethane, Trichloroethane and Tetra- chloromethane by a Clostridum sp. Appl. Environ. Microbiol., 55, 837-844
Gantzer, C. J. and L. P. Wackett (1991). Reductive Dechlorination Catalyzed by Bacterial Transition-Metal Coenzymes. Environ. Sci. Technol., 25, 715-722.
Gaudy, A. F. J. and L. P. Wackett (1991). Reductive Dechlorination Catalyzed by Bacteria Transition-Metal Coenzymes. Environ. Sci. & Technol., 25, 715-722.
Gerritse, J., G. Kloetstra, L. Wiersum, P. A. Lawson, M. D. Collins, A. Alphenaar, and J. C. Gottschal (1996a). Reductive Dechlorination of Chloroethenes or Chlorophenols by Two Novel Desulfitobacterium sp. Grown in Batch and Chemostat Cultures. In Biodegradation of organic pollutants, J. Lalucat and K. N. Timmis (Eds.)., UIB-GBF-CSI-TUB Symposium, pp:171, Palma de Mallorca, Spain.
Gerritse, J., T. M. P. Gomes, and P. A. Lawson (1996b). Desulfitobacterium sp. Strain PCE1, an Anaerobic Bacterium that can Grow by Reductuve Dechlorination of Tetra- chloroethene or Ortho-chlorinated Phenol. Arch. Microbiol., 165, 132-140
Gerritse, J., G. Kloeststra, A. Broger, G. Dalstra, A. Alphenaar, and J. C. Gottschal (1997). Complete degradation of tetrachloroethene in coupled anoxic and oxic chemostats. Appl. Microbiol. Biotechnol., 48, 553-562
Holliger, C., G. Schraa, A. J. M. Stams, and A. J. B Zehnder (1993). A Highly Purified Enrichment Culture Couples the Reductive Dechlorination of Tetrachloroethene to Growth. Appl. Environ. Microbio., 59, 2991-2997.
Hamada, T. and H. Tanaka (1995). Transfer of Methyl Chlorofrom, Trichloroethylene and Tetrachloroethlene to Milk, Tissues and Expired Air Following Intrauminal or Oral Administration in Lactating Goats and Milk-fed Kids. Environmental Pollution., 87, 313-318.
Holliger, C., G. Wohlgstyh, and G. Diekert (1999). Reductive Dechlorination in the Energy Metabolism of Anaerobic Bacteria. FEMS Microbiol. Rev., 22, 383-398.
Jafvert, C. T. and N. L. Wolfe (1987). Degradation of Selected Halogenated Ethane in Anoxic Sediment-Water System. Environ. Toxicol. Chem., 6, 827-837.
Kaster, M. (1991). Reductive Dechlorination of Tri- and Tetrachloroethylenes Depends on Transition from Aerobic to Anaerobic Conditions. Appl. Environ. Mirobiol., 57, 2039 -2046 .
Lash, L. H., W. Qian, D. A. Putt, K. Desai, A. A. Elfarra, A. R. Sicuri, and J. C. Parker (1998). Glutathione Conjugation of Perchloroethylene in Rats and Mice in Vitro: Sex-, Species-, and Tissue-Dependent Differences. Toxicol. Appl. Pharmacol., 150, 49-57.
Lee, T. H., M. Yoshimi, M. Ike and M. Fujita (1997). Characterization of an Anaerobic Soil Enrichment Capable of Dechlorinating High Concentrations of Tetrachloroethylene. Wat. Sci. Tech., 36, 117-124.
Long, J. L. , H. D. Stensel, and J. F. Ferguson (1993). Anaerobic and Aerobic Treatment of Chlorinated Aliphatic Compounds. J. Environ. Eng., 119, 300-319.
Löffler, E. L., K. M. Ritalahti, and J. M. Tiedje (1997). Dechlorination of Chloroethenes is Inhibited by 2-Bromo- ethanesulfonate in the Absence of Methanogens. Appl. Environ. Microbiol., 63, 4982-4985.
MaymÓ-Gatell, X., V. Tandoi, J. M. Gosset, and S. H. Zinder (1995). Characterization of an H2-utilizing Enrichment Culture that Reductively Dechlorinates Tetrachloroethene to Vinyl Chloride and Ethene in the Absence of Methanogenesis and Acetogenesis. Appl. Environ. Microbiol., 61, 3928-3933.
MaymÓ-Gatell, X., Y. Chien, J. M. Gossett, and S. H. Zinder (1997). Isolation of a Bacterium that Reductively Dechlorinates Tetrachloroethene to ethane. Science., 276, 1568-1571
Middeldorp, P. J. M., J. De Wolf, A. J. B. Zehnder, and G. Schraa (1997). Enrichment and Properties of a 1,2,4-Trichloro- benzene Dechlorinating Methanogenic Microbial Consorium. Appl.Environ.Microbiol., 63, 1225-1229.
Middeldorp, P. J. M., M. L. G. C. Luijten, B. A. V. D. Pas, M. H. A. V. Eekert, S. W. M. Kengen, G. Schraa and A. J. M. Stams (1999). Anaerobic Microbial Reductive Dehalongenation of Chlorinated Ethenes. Bioremediation Journal., 3, 151-169.
Mohn, W. W. and J. M. Tiedje (1992). Microbial Reductive Dehalogenation. Microbiol. Rev., 56, 482-507.
Miller, E., G. Wohlfarth, and G. Diekert (1996). Studies on tetrachloroethene respiration in Dehalospirillum multivorans. Arch. Microbiol., 166, 379-387.
Miller, E., G. Wohlfarth, and G. Diekert (1998). Comparative Studies on Tetrachloroethene Reductive Dechlorination Mediated by Desulfitobacterium sp. strain PCE-S. Arch. Microbiol., 168, 513-519
Nyer, E. K. (1985). Groundwater Treatment Technology, Van Nostrand Reinhold, New York.
Oldenhuis , R., R. L. J. M. Vink, D. B. Janssen, and B. Witholt (1989). Degradation of Chlorinated Aliphatic Hydracarbons by Methylosinus Trichosporium OB3b Experssing Soluble Methane Monooxygenase. Appl. Environ. Microbiol., 55, 2819-2826.
Parsons, F., P. R. Wood, and J. DeMarco (1984). Trans- fromations of Tetrachloroethene and Trichloroethene in Microcosms and Groundwater Environments. J. Am. Water Works Assoc., 76, 56-59.
Piotrowski, M. R. (1993). Bioremediation Milestones. Wat. Environ. Technol., 5, 49-53.
Quensen, J. F., J. M. Tiedje and, S. A. Boyd (1988). Reductive Dechlorination of Polychlorinated Biphenyls by Anaerobic Microorganisms from Sediments. Science., 242, 752-754
Scholz-Muramatsu, H., Aneumann, M. Messmer, E. Moore and G. Diekert (1995). Isolation and characterization of Dehalospirillum Multivorans gen .nov., sp.nov., a Tetra- chloroethene-utilizing, Strictly Anaerbic Bacterium. Arch. Microbiol., 163, 48-56.
Scholten, J. C. M., R. Conrad, A. J. M. Stams (2000). Effect of 2-bromo-ethane sulfonate, molybdate and chlorofrom on acetate consumption by methanogenic and sulfate-reducing populations in freshwater sediment. FEMS Microbiology Ecology., 32, 35-42
Tandoi, V., T. D. DiStefano, P. A. Bowser, J. M. Gossett and S. H. Zinder (1994). Reductive Dehalogenation of Chlorinated Ethenesand Halogenated Ethanes by a High-Rate Anaerobic Enrichment Culture . Environ. Sci. Technol., 28, pp.973-979.
Terzenbach, D. P. and M. Blaut (1994). Transfromation of Tetrachloroethylene to Trichloroethylene by Homoacetogenic Bacteria. FEMS Microbiol. Lett., 123, 213-218.
Tsien, H. C., G. A. Brusseau, R. S. Hanson and L. P. Wackett (1989). Biodegradation of Trichloroethylene by Methylosinus Trichosporium OB3b. Appl. Environ. Microbiol., 55, 3155-3161.
US EPA, (1990). Handbook : Groundwater. Volume I: Groundwater and Contamination, EPA/625/6-90/016a Sept.
US EPA, (1999). Solid Waste and Emergency Response (5402G). EPA 542-N-99-004, Issue No.32, June.
Vogel, T. M. and P. L. McCarty (1985). Biotransfromation of Tetrachloroethylene to Trichloroethylene, Dichloroethylene, Vinyl Chloride, and Carbon Dioxide under Methanogenic Condition. Appl. Environ. Microbiol., 49, 1080-1083.
Vogel, T. M., C. S. Criddle, and P. L. McCarty (1987). Transfromations of Halogenaed Aliphaic Compounds. Environ. Sci. Technol., 21, 722-736.
Wild, A., R. Hermann, and T. Leisinger (1996). Isolation of an Anaerobic Bacterium which Reductively Dechlorinates Tetrachloroethene and Trichloroethene. Biodegradation., 7, 507-511
Yang, Y. and P. L. McCarty (2000). Biomass, Oleate, and Other Possible Substrates for Chloroethene Reductive Dehalogenation. Bioremediation Journal., 4(2), 125-133
Ye, D. Y., J. F. Quensen, J. M. Tiedje and S. A. Boyd (1992). Anaerobic Dechlorination of Polychlorobiphenyls (Aroclor 1242) by Pasteurized and Ethanol-treated Microorganisms from Sediments. Appl. Environ. Microbiol., 58, 1100-1114
Ye, D. Y., J. F. Quensen, J. M. Tiedje, and S. A. Boyd (1999). 2-Bromoethanesulfonate, Sulfate, Molybdate, and Ethanesulfonate Inhibit Anaerobic Dechlorination of Polychlorobiphenyls by Pasteurized Microorganisms. Appl. Environ. Microbiol., 65, 327-329
Young, R. G. and J. M. Gossett (1997). Effect of Environmental Parameters and Concentration on De- chlorination of Chloroethenes. In Situ and On-Site Bioremediation, B. C. Alleman and A. Leeson (eds.)., 3, Battelle Press, Clumbus, Ohio, pp.61.
Zhuang, P. and S. G. Pavlostathis (1995). Effect of Temperature , pH and Electron Donor on the Microbiol Reductive Dechlorination of Chloroalkenes. Chemosphere. 31, 3537-3548.
Zhuang, P. and S. G. Pavlostathis (1994). Effect of Chlorinated Alkenes on the Reductive Dechlorination and Methane Production Processes. Wat. Sci. Tech., 30(7), 85-94
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top