跳到主要內容

臺灣博碩士論文加值系統

(54.172.135.8) 您好!臺灣時間:2022/01/18 16:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王毅賢
研究生(外文):Yi-Shian Wang
論文名稱:厭氧/好氧併同處理四氯乙烯之研究
指導教授:盧至人
學位類別:碩士
校院名稱:國立中興大學
系所名稱:環境工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:146
中文關鍵詞:四氯乙烯上流式厭氧污泥床法氧化還原電位
相關次數:
  • 被引用被引用:8
  • 點閱點閱:876
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:4
四氯乙烯在好氧環境中不易被微生物利用或降解,但是卻可以在厭氧的環境下,被當做電子接受者,來進行還原性脫氯的降解反應。而顆粒性污泥由於其特殊的顆粒化形態,因此當水中氧化還原電位升高時,顆粒性污泥外層會長出好氧微生物,消耗外在環境中的溶氧,造成內層仍能維持一完全厭氧的環境,而同時進行厭氧及好氧的反應來進行四氯乙烯及其中間代謝產物的降解。本研究之主要目的在於將上流式厭氧污泥床法(UASB)操作在不同氧化還原電位下,探討對顆粒性污泥降解四氯乙烯的影響,並以批次實驗探討電子接受者(硫酸根與硝酸根)與電子供給者(醋酸、乳酸及蔗糖)所造成的影響。
批次反應瓶添加241 nmol四氯乙烯,顆粒污泥對四氯乙烯之轉化率介於1.94 - 2.24 nmol PCE/g-VS.d,但是當批次瓶中硝酸鹽濃度達到1000 mg/L時,甲烷化明顯的受氧化還原電位改變的影響而受到抑制,而四氯乙烯的轉化亦受到抑制。硫酸鹽的添加並不會影響甲烷化,因此對微生物降解四氯乙烯並沒有明顯的影響。不同電子供給者實驗中,四氯乙烯的降解及三氯乙烯的生成以醋酸的效果最佳,乳酸次之,蔗糖的添加對四氯乙烯降解效果最差,這三種電子供給者影響四氯乙烯的降解及三氯乙烯的生成,但是對於乙烯的生成卻沒有明顯的影響。
連續流實驗利用過氧化氫的添加將UASB操作在不同的氧化還原電位,厭氧的操作條件下,四氯乙烯的降解效果最佳(7675 nmol/L.day),隨著氧化還原電位的提升,四氯乙烯的去除效率隨之降低,生成物方面,厭氧操作下,只測到三氯乙烯的累積,但是若是操作在好氧的階段,則有大量的氯乙烯生成(869 nmol/ L.day),可見外在的好氧環境對於將四氯乙烯或其中間產物降解至氯乙烯之菌種有助益。就四氯乙烯的去除而言,以厭氧操作最佳,但是若是以四氯乙烯的完全脫氯而言,將UASB操作在微好氧反而能得到較佳的結果。

Tetrachloroethylene (PCE) is recalcitrantly used or degradated by microorganisms in the aerobic environment, but can be used as the electron acceptor to proceed reductive dechlorination. Because of the special granular property of the granular sludge, aerobic microorganisms would grow in the outside of granular sludge and consume the dissolved oxygen in the outer environment at the high oxidative reductive potential (ORP) conditions. Therefore if can keep an entire anaerobic environment inside to conduct the reductive degradation of PCE and keep the aerobic reaction outside. The objective of this study is to discuss the effect of PCE degradation by operating the upflow anaerobic sludge bed reactor (UASB) and the batch reactor in the different ORP conditions, different electron acceptors (nitrate and sulfate), and the different electron donors (acetate, lactate, and sucrose).
PCE (241 nmol/bottle) was degraded at the rate 1.94-2.24 nmole PCE/g-VS.d at reductive conditions. When the nitrate concentration reach to 1000 mg/L, methanogensis was inhibited by the change of the ORP, and then to inhibit the PCE degradation. Sulfate addition did not affect the methanogensis, so there is no obvious effect on the PCE biodegradation. In the study of the different electron donors, it was found the addition of significantly acetate enhanced the PCE biodegradation. Lactate was the next, following by sucrose. The removal of PCE also resulted in the TCE production.
In the continuous flow column study, the UASB was operated at different ORP conditions by addition of hydrogen peroxide (H2O2). However, the best degradation (7675 nmol/L.d) was observed in the anaerobic condition. With the ORP increased, the PCE degradation rate and the removal efficiency decreased. For the intermediates production, TCE was the only product in the entire anaerobic condition. However, a significant quantity of vinyl chloride (VC) was accumulated in the aerobic condition (869 nmol/L.d). For the complete dechlorination of PCE, operating UASB in the slightly aerobic condition could result in the removal of PCE.

摘要 I
目錄 IV
圖目錄 VIII
表目錄 XI
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 1
第二章 文獻回顧 3
2.1 地下水體中含氯碳氫化合物的污染 3
2.2 四氯乙烯 5
2.2.1 四氯乙烯的物理化學特性 5
2.2.2 四氯乙烯的毒理特性及其代謝途徑 7
2.2.3 四氯乙烯現行管制標準 10
2.3 地下水含氯碳氫化合物污染之處理方法 11
2.3.1 物理化學處理法 11
2.3.2 地下水生物復育 15
2.3.3 植物復育法 15
2.3.4 天然衰減法 16
2.4 氯化乙烯污染物的降解原理 17
2.4.1 好氧微生物的降解 17
2.4.2 厭氧微生物的降解 19
2.4.3 厭氧/好氧微生物的降解 22
2.5 四氯乙烯生物性降解的影響因子 26
2.5.1 電子供給者 26
2.5.2 電子接受者 27
2.5.3 厭氧脫氯反應中的菌種 29
2.6 上流式厭氧污泥床 31
2.6.1 UASB的發展 31
2.6.2 顆粒性污泥 31
2.6.3 UASB基本操作原理 33
2.6.4 UASB的優點 37
2.6.5 UASB處理四氯乙烯的研究 37
第三章 實驗設備與方法 40
3.1 實驗藥品 40
3.1.1 主要基質 40
3.1.2 無機營養鹽 40
3.1.3 實驗用水 41
3.1.4 含氯碳氫化合物 41
3.1.5 過氧化氫 44
3.1.6 HPLC流洗液 44
3.1.7 IC流洗液 44
3.1.8 TOC標準液 45
3.1.9 容器清洗液 45
3.1.10 丙酮 45
3.2 分析設備與方法 45
3.2.1 四氯乙烯與三氯乙烯之分析 46
3.2.2 二氯乙烯之分析 46
3.2.3 氯乙烯、乙烯之分析 47
3.2.4 醋酸鈉之分析 47
3.2.5 硫酸根、硝酸根之分析 48
3.2.6 總溶解性有機碳之分析 48
3.2.7 pH之測定 48
3.2.8 氧化還原電位(ORP)之量測 48
3.3 實驗方法與步驟 49
3.3.1 VS(揮發性固體量)測定方法 50
3.3.2 檢量線建立 52
3.3.2.1 四氯乙烯、三氯乙烯及順-二氯乙烯檢量線 52
3.3.2.2 氯乙烯及乙烯檢量線製作 52
3.3.2.3 醋酸鈉的檢量線 53
3.3.2.4 溶解性總有機碳的檢量線 53
3.3.3 批次試驗 53
3.3.3.1 採樣分析 53
3.3.4 連續流試驗 56
3.3.4.1 反應槽啟動 56
3.3.4.2 上流式厭氧污泥床 56
3.3.4.3 連續流實驗流程 59
3.3.4.4 採樣分析 59
3.4 顆粒性污泥 59
3.4.1 污泥來源 59
3.4.2 污泥保存 61
第四章 結果與討論 62
4.1 背景實驗 62
4.1.1 顆粒性污泥醋酸利用試驗 62
4.1.2 非生物性轉換試驗 65
4.1.3 主要基質效應 68
4.1.3.1 不同醋酸鈉濃度對四氯乙烯降解的影響 68
4.2 電子接受者效應 71
4.2.1 硝酸根濃度效應 71
4.2.1.1 水體中不同硝酸鹽濃度對四氯乙烯降解的影響 71
4.2.1.2 水體中不同硝酸鹽濃度對三氯乙烯降解的影響 78
4.2.1.3 水體中不同硝酸鹽濃度對二氯乙烯降解的影響 81
4.2.1.4 水體中不同硝酸鹽濃度對氯乙烯降解的影響 83
4.2.1.5 不同濃度之硝酸鹽對氯化乙烯代謝速率之比較 86
4.2.2 硫酸根濃度效應 88
4.2.2.1 水體中不同硫酸鹽濃度對四氯乙烯降解的影響 88
4.2.2.2 水體中不同硫酸鹽濃度對三氯乙烯降解的影響 94
4.2.2.3 水體中不同硫酸鹽濃度對二氯乙烯及氯乙烯降解的影響 97
4.2.2.4 不同濃度之硫酸鹽對氯化乙烯代謝速率之比較 101
4.3 電子供給者效應 103
4.4 連續流試驗 110
4.4.1 反應器啟動 110
4.4.2 空白試驗 111
4.4.3 不同氧化還原電位對四氯乙烯降解的影響 114
4.4.3.1 UASB操作情形 115
4.4.3.2 四氯乙烯於UASB中的降解 117
4.4.3.2 四氯乙烯的厭氧中間產物生成情形 121
第五章 結論與建議 126
5.1 結論 126
5-2 建議 127
參考文獻 132

工研院能資所,「有害物質滲漏地下水層污染調查研究」,(1990)。
勞工安全衛生研究所,物質安全資料表,(2002)。
江美幸,「甲烷分解菌及苯環類分解菌共代謝三氯乙烯之比較」,碩士論文,國立中興大學環境工程研究所,台中,(1995)。
阮國棟,厭氧生物處理之技術內涵及發展現況,「工業污染防治」,第63期,第61-80頁,(1997)。
阮國棟、張金豐、郭荔安,”天然衰減法”整治土壤及地下水污染之政策立場及實務準則,「工業污染防治」,第68期,第24-37頁,(1998)。
林茂隆,「重金屬對上流式厭氧污泥床法之影響」,碩士論文,逢甲大學土木及水利工程研究所,台中,(1994)。
林培欣,土壤氣體偵測技術在石化污染場址之應用,「第四屆土壤污染防治研討會」,台北,(1992)。
周鴻盛,「氫對四氯乙烯污染生物復育效應之研究」,碩士論文,國立中興大學環境工程研究所,台中,(1999)。
胡慶祥,「上流式污泥床法之快速啟動」,碩士論文,私立中國文化大學生物科技研究所,台北,(1991)。
胡慶祥,「以厭氧顆粒性污泥處理受氯化乙烯污染地下水之研究」,行政院國家科學委員會專題研究計畫申請書,私立弘光技術學院環境工程衛生科,台中,(2001)。
茹志康,「上流式厭氧污泥床處理工業廢水實例研究-台灣經驗」,學士論文,國立中興大學環境工程學系,台中,(1997)。
張峻嘉,「酚分解菌共代謝三氯乙烯之研究」,碩士論文,國立中興大學環境工程研究所,台中,(1999)。
張鎮南,曾四恭,鄭幸雄,趙家珍,謝永旭,「高級廢水處理」,滄海書局,一版,第159-201頁,台北,(1995)。
梁經傑,「受BTEX污染土壤現地生物復育及其分解之基質效應研究」,碩士論文,國立中興大學環境工程研究所,台中,(1997)。
郭育仁,「厭氧生物處理四氯乙烯之代謝方式探討」,碩士論文,國立中興大學環境工程研究所,台中,(2002)。
陳碩修,「氫氣對地下水中四氯乙烯厭氧生物分解之研究」,碩士論文,國立中興大學環境工程研究所,台中,(2000)。
黃士尹,「地下水中四氯乙烯完全生物復育方法之研究」,碩士論文,國立中興大學環境工程研究所,台中,(1996)。
黃金山,由資源永續利用觀點論今後台灣地區地下水資源的資源管理,「地下水調查分析與保育管理研討會論文集」,台北市,第1-17頁(1992)。
黃錦怡,「脫氯菌於四氯乙烯厭氧降解中之機制研究」,碩士論文,國立中興大學環境工程研究所,台中,(2001)。
楊中治,「模擬地下水中四氯乙烯厭氧生物分解復育之研究」,碩士論文,國立中興大學環境工程研究所,台中,(1998)。
葉孟芬,「地下水中四氯乙烯強化生物分解之研究」,碩士論文,國立中興大學環境工程研究所,台中,(1997)。
葉琮裕,美國超級基金場址亞伯丁陸軍基地植物復育,「環保訓練園地」,第50期,http://www.epa.gov.tw/training/50-3-1.htm,2002。
董瑞安,「微量含氯有機物在地下水中生物轉換及傳輸模式之研究」,博士論文,國立台灣大學環境工程研究所,台北,(1992)。
廖志鴻,「受苯環類化合物污染的地下水生物復育可行性之研究」,碩士論文,國立中興大學環境工程研究所,台中,(1993)。
劉煌濱,「厭氧顆粒性污泥處理四氯乙烯之研究」,碩士論文,國立中興大學環境工程研究所,台中,(2001)。
蔡文田,含氯有機物之毒性及新陳代謝機制,工業污染防治,第43期,第175-187頁,(1992)。
盧至人,「地下水的污染整治」,國立編譯館,ISBN 957-00-9607-1,台北市,(1997)。
盧至人,受有機污染物的土壤與地下水的現地生物復育探討,「化工技術」,第四卷,第六期,第220-227頁,(1996)。
賴敏中,UASB技術-高效率的廢水厭氣處理,「環境工程會刊」,第四卷,第一期,第36-45頁,(1993)。
環境保護署環境保護人員訓練所,「甲及毒性化學物質專業技術管理人員訓練教材」,第1-15、1-16、2-27頁,(1996)。
環保署,「土壤及地下水污染整治法」第五條第二項,(2001)。
環保署,物質安全資料表,http://www.epa.gov.tw/j/toxic/msds.data/063.htm,(2002)。
Alphebaar, P. A., R. Sleyster and G. Lettinga (1994). The Effect of Wasterwater Pre-acidfication on UASB Reactors Performance. In Anaerobic Granular Sludge:Characterization, and Factors Affecting its Functioning. Alphebaar, PhD thesis, Wageningen University, Wageningen, Dutch. 91-112.
Ascón, M. A. and J. M. Lebeault (1999). High Efficiency of a Coupled Aerobic-Anaerobic Recycling Biofilm Reactor System in the Degradation of Recalcitrant Chloroaromatic Xenobiotic Compounds. Appl. Microbiol Biotechnol., 52, 592-599.
Bagley, D. and J. M. Gossett (1990). Tetrachloroethene Transformation to Tri-chloroethene and cis-1,2-Dichloroethene by Sulfate-Reducing Enrichment Cultures. Appl. Environ. Microbiol., 56, 2511-2516.
Baker, K. H. and D. S. Herson (1994). Introduction and Overview of Bioremediation. In Bioremediation, McGraw-Hill, 1-7.
Ballapragada, B. S., H. D. Stensel, J. A. Pugakka, and F. F. John (1997). Effect of Hydrogen on Reductive Dechlorination of Chlorinated Ethenes. Environ. Sci. Technol., 31, 1728-1734.
Ball, B. R. and M. D. Edwards (1992). Air Stripping VOCs from Groundwater: Process Design Considerations. Environ. Prog., 11, 39-48.
Bellamy, W. D., G. T. Hickman, P. A. Mueller, and N. Ziemba (1991), Treatment of VOC-Contaminated Groudwater by Hydrogen Peroxide and Ozene Oxidation. Res. J. Water. Pollut. Control Fed., 63, 120-128.
Bouwer, E. J. and P. L. McCarty (1984). Modeling of Trace Organics Biotransformation in the Subsurface. Groundwater, 22, 433-440.
Bradley, P. M. and F. H. Chapelle (1998). Microbial Mineralization of VC and DCE Under Different Terminal Electron Accepting Conditions. Anaerobe., 4, 81-87.
Bradley, P. M. and F. H. Chapelle (2000). Aerobic Microbial Mineralization of Dichloroethene as Sole Carbon Substrate. Environ. Sci. Technol., 34, 221-223.
Cabirol, N., F. Jacob, J. Perries, and B. Fouillet (1998). Complete degradation of high Tetrachloroethylene by a Methanogenic Consortium in a Fixed-Bed Reactor. J. Biotechnol. 62, 133-141.
Cabirol, N., J. Perrier, F. Jacob, B. Fouillet, and P. Chambon (1996). Role of Methanogenic and Sulfate-Reducing Bacteria in the Reductive Dechlorination of Tetrachloroethylene in Mixed Culture. Bull. Environ. Contam. Toxicol., 56, 817-824.
Chang, B. V., Chung-jen Su, and Shaw-ying Yuan. (1997). Microbial Hexachlorobenzene Dechlorination under Three Reducing Conditions. Chemospere, 36 (13), 2721-2730.
Chang, Y. C., M. Hatsu, K. Jung, Y. S. Yoo, and K. Takamizawa (2000). Isolation and Characterization of a Tetrachloroethylene Dechlorinating Bacterium, Clostridium bifermentans DPH-1. J.l Biosci. Bioeng., 89 (5), 489-491.
Christiansen, N., S. R. Christensen, and E. Arvin (1997). Tracsformation of Tetrachloroethene in an Upflow Anaerobic Sludgeblanket Reactor. Appl. Microbiol. Biotechnol., 47, 91-94.
Chu, K. H. and W. J. Jewell (1994). Treatment of Tetrachloroethylene with Anaerobic Attached Film Process. J. Environ. Eng., ASCE, 120, 58-71.
Cobb, G. D. and E. J. Bouwer (1990). Effect of Electron Acceptors of Halogenated Organic Compound Biotransformations in a Biofilm Column. Environ. Sci. Technol., 25, 1068-1074.
De Bruin, W. P., M. J. J. Kotterman, M. A. Posthumus , G. Schraa, and A. J. B. Zehnder (1992). Complete Biological Reductive Transformation of Tetra-chloroethane to Ethane. Appl. Environ. Mirobiol., 58, 1996-2000.
DiStefano, T. D., J. M. Gossett, and S. H. Zinder (1991). Reductive Decglorination of High Concentrations of Teetrachloroethene to Ethene by an Anaerobic Enrichment Culture on the Absence of Methanogenesis. Appl. Environ. Microbiol., 57, 2287-2292.
DiStefano, T. D., J. M. Gossett, and S. H. Zinder (1992). Hydrogen as an Electron Donor for Dechlorination of Tetrachlorothene by an Anaerobic Mixed Culture. Appl. Environ. Microbial., 58, 3622-3629.
Edwards, E. A. and E. E. Cox (1997). Field and Laboratory Studies of Sequential Anaerobic-Aerobic Chlorinated Solvent Biodegradation. In in-Situ and on-Site Bioremediation, B. C. Alleman and A. Lesson (Eds.), Battelle Press, 3, 261-266.
Egli, C., R. Tschan, A. M. Cook, and T. Leisinger (1987). Anaerobic Dechlorination of Tetrachloromethane and 1,2-Dichloroethane to Degradable Products by Pure Cultures of Desulfobacterium sp. and Methanobacterium sp.. FEMS Microbiol. Lett., 43, 57-61.
Esaac, E. G., and F. Matsumura (1980). Metabolism of Insecticides by Reductive Systems. Pharmac. Ther., 9, 1-26.
Fan, S. and K. M. Scow (1993). Biodegradation of Trichloroethylene and Toluene by Indigeous Microbial Population in Soil. Appl. Environ. Microbiol., 53, 2671-2674.
Fathepure, B. Z. and S. A. Boyd (1988a). Dependence of Tetrachlorothyene Dechlorination on Methangenic Substrate Consumption by Methanoarcina sp. Strain DCM. Appl. Environ. Microbiol., 54, 2976-2980.
Fathepure, B. Z., and S. A. Boyd (1988b). Reductive Dechlorination of Perchloroethlene and Role of Methanogens. FEMS Microbiol. Lett., 49, 2149-2156.
Fathepure, B. Z., G. A. Youngers, D. L. Richter, and C. E. Downs (1995). In-Situ Bioremediation of Chlorinated Hydrocarbons under Field Aerobic/Anaerobic Environments. In Bioremediation of Chlorinated Solvents, R. E. Hinchee, A. Lesson, and L. Semprini (Eds.), Battelle Press, Columbus, OH., 169-186.
Fathepure, B. Z., J. M. Tiedje, and S. A. Boyd (1988). Reductive Dechlorination of Hexachlorobenzene to Tri- and Dichlorobenzenes in Anaerobic Sewage Sludge. Appl. Environ. Microbiol., 54, 327-330.
Fathepure, B. Z., J. P. Nengu, and S. A. Boyd (1987). Anaerobic Bacteria that Dechlorinate Perchloroethene. Appl. Environ. Microbiol., 53, 2671-2673.
Federl .T .W., D .C. Dobbin, J .R .Thornton-manning and D. D. Jone (1986). Microbial Biomass, Activity, and Community Structure Soil. Ground Water, 24 (2), 365-374.
Fennell, D. E., S. H. Zinder, and J. M. Gossett (1997). Comparative Studies of Hydrogen Donors for Stimulation of Tetrachloroethene Dechlorination. In In Situ and On-Site Bioremediation, B. C. Allenman and A. Leeson (Eds), 3, Battelle Press, Columbus, Ohio, 11.
Fox, B. G., J. G. Borneman, L. P. Wackett and J. D. Lipscomb (1990). Haloalkene Oxidation by the Soluble Methane Monoxygenase from Methylosinus trichosporum OB3b:Mechanistic and Environmental Implications. Biochemistry, 29, 6419-6427.
Freedman, D. L. and J. M. Gossett (1989). Biological Reductive Dechlorination of Tetrachloroethylene and Trichloroethylene to Ethylene under Methanogenic Conditions. Appl. Environ. Microbiol., 55, 2144-2151.
Freedman, D. L. and J. M. Gossett (1989). Biological Reductive Dechlorination of Tetrachloroethylene and Trichloroethylene to Ethylene under Methanogenic Conditions. Appl. Environ. Microbiol., 55, 2144-2151.
Galli, R. and P. L. McCarty (1989). Biotransformation of 1,1,1-Trichloroethane, Trichloroethane, and Tetrachloromethane by a Clostrium sp.. Appl. Environ. Microbiol., 55, 837-844.
Gerritse, J., G. Kloetstra, A. Borger, G. Dalstra, A. Alphenaar, and J. C. Gottschal (1997). Complete Degradation of Tetrachloroethylene in Coupled Anoxic and Oxic Chenostats. Appl. Microbiol. Biotechnol., 48, 553-562.
Gerritse, J., T. M. P. Gomes, and P. A. Lawson (1996). Desulfitobacterium sp. Strain-PCE1, an Anaerobic Bacterium that can Grow by Reductive Dechlorination of Tetrachloroethene or Ortho-chlorinated Phenol. Arch. Microbiol., 165, 132-140.
Gerritse, J., V. Renard, J. Visser, and J. C. Gottschal (1995). Complete Degradation of Tetrachloroethene by Combining Anaerobic Dechlorinating and Aerobic Methanotrophic Enrichment Cultueres. Appl. Microbiol. Biotechonol., 43, 920-928.
Gibson S. A. and G. W. Sewell (1992). Stimulation of Reductive Dechlorination of Tetrachloroethene in Anaerobic Aquifer Microcosms by Addition of Short-Chain Organic or Alcohols. Appl. Environ. Microbiol., 58, 1392-1393.
Gibson, S. A., and G. W. Sewell (1992). Stimulation of Reductive Dechlorination of Tetrachloroethene in Anaerobic Aquifer Microcosms by Addition of Short-Chain Organic or Alcohols. Appl. Environ. Microbiol., 58, 1392-1393.
Glaze, W. H., F. Kenneke, and L. Ferry (1992). Chlorinated Byproducts from the TiO2-Medeated Photodegradation of Trichloroethylene and Tetrachloroethylene in Water. Environ. Sci. Technol., 27, 177-184.
Gossett, J. M., and S. H. Zinder (1996). Microbiological Aspects Relevant to Natural Attenuation of Chloinated Ethenes. In Proceedings from the Symposium on Natural Attenuation of Chlorinated Organics in Ground Water, EPA/540/R-96/509. Dallas, TX.
Guiot, S. R., X. Kuang, C. Beaulieu, A. Corriveau, and J. Hawari (1995). Anaerobic and Aerobic/Anaerobic Treatment for Tetrachloroethylene (PCE). In Proceedings of the Third International In Situ and On-Site Bioreclamation Symposium, 4-Bioremedation of Chlorinated Solvents, San Diego, 297-305.
Holliger, C. (1995). The Anaerobic Microbiology and Biotreatment of Chlorinated Ethenes. Biotechnology, 6, 347-351.
Holliger, C., G. Schraa, A. J. M. Stams, and A. J. B. Zehnder (1993). A Highly Purified Enrichment Culture Couples the Reductive Dechlorination of Tetrachloroethene to Growth. Appl. Environ. Microbiology., 59(9), 2991-2997.
Hörber, C., N. Christiansen, E. Arvin, and B. K. Ahring (1998). Improved Dechlorinating Performance of Upflow Anaerobic Sludge Blanket Reactors by Incorporation of Dehalospirillum multivorans into Granular Sludge. Appl. Environ. Microbio., 1860-1863.
Hughes, J. B., C. J. Newell, and R. T. Fisher (1996). Process for In-Situ Biodegradation of Chlorinated Aliphatic Hydricaubons by Subsurface Hydrogen. Inuection U.S. Patent 5602296.
Hulshoff Pol, L. W. (1989). The Phenomenon of Granulation of Anaerobic Sludge. Ph.D. Thesis, Agricultural Univerisity Wageningen, The Netherlands.
Johnson, W. P. and W. W. John (1999). PCE Solubilization and Mobilization by Commercial Humic Acid. Journal of Contaminant Hydrology, 35, 343-362.
Kastner, M. (1991). Reductive Dechlorination of Tri- and Tetrachloroethylenes Depends on Transition from Aerobic to Anaerobic Conditions. Appl. Environ. Microbiol., 57 (7), 2039-5046.
Kato, M. T., J. A. Field, and G. Lettinga (1993). High Tolerance of Methanogens in Granular Sludge to Oxygen. Biotechnol. Bioeng., 42, 1360-1366.
Little, C. D., A. V. Palumbo, S. E. Herbes, M. E. Lidstrom, R. L. Tyndall, and P. J. Gilmer (1988). Trichloroethylene Biodegradation by a Methane-Oxidizing Bacterium. Appl. Environ. Microbiol., 54 (4), 951-956.
Lontoh, S., J. A. Zahn, A. A. Dispirito, and J. D. Semrau (2000). Identification of Intermediates of in vivo Trichloroethylene Oxidation by the Membrane-Associated Methane Monooxygenase. FEMS Microbiol. Lett, 186, 109-113.
Mackey, D. M. and J. A. Cherry (1989). Groundwater Contamination: Pump and TreatRemediation. Environ. Sci. Technol., 23 (6), 630-635.
Malachowsky, K. J., T. J. Phelps, A. B. Teboli, D. E. Minnikin, and D. C. White (1994). Aerobic Mineralization of Trichloroethylene, Vinyl Chloride, and Aromatic Compounds by Rhodococcus Species. Appl. Environ. Microbiol., 60(2), 542-548.
Martin, S. T., A. T. Lee, and M. R. Hoffmann (1995). Chemical Mechanism of Inorganic Oxidatants in the TiO2/UV Process:Inceased Rates of Degradation of Chlorinated Hydrocarbons. Environ. Sci. Technol., 29, 2567-2573.
Maymo-Gatell, X., Tandoi, V., Gosset, J. M., Zinder, S. H. (1995). Characterization of an H2-utilizing Enrichment Culture that Reductively Dechlorinates Tetrachloroethene to Vinyl Chloride and Ethene in the Absence of Methanogenesis and Acetogenesis. Appl. Environ. Microbiol., 61, 3928-3933.
Middeldrop, P. J. M., M. L. G. C. Luijten, B. A. van de Pas, M. H. A. van Eekert, S. W. M. Kengen, G. Schraa, and A. J. M. Stams (1999). Anerobic Microbial Reductive Dehalogenation of Chlorinated Ethenes. Biorem. J., 3(3), 151-169.
Miller, E., G. Wohlfarth, and G. Diekert (1997). Comparative studies on tetrachloroethene reductive dechlorination mediated by Desulfitobacteriaum sp. strain PCE-S. Arch Microbiol, 168, 513-519.
Morel, F. M. M. (1983). Principles of Aquatic Chemistry, John Wiley and Sons Inc., N. Y..
Namkung, E., and B. E. Rittmann (1987). Estimating Volatile Organic Compound Emissions from Publicly Owned Treatment Works. J. Water Pollut.Contro, 59 (7), 670-678.
Nelson, M. J. K., S. O. Montgomery, E. J. O’Nell, and P. H. Pritchard (1986). Aerobic Metabolism of Trichloroethylene by a Bacterial Isolate. Appl. Environ. Microbiol, 52, 383-384.
Nyer, E. K. (1985). Groundwater Treatment Technology. Van Nostrand Reinhold, New York.
Oldenhuis, R., R. L. J. M. Vink, D. B. Janssen, and B. Witholt (1989). Degradation of Chlorinated Aliphatic Hydracarbons by Methylosinus Trichosporium OB3b Experssing Soluble Methane Monooxygenase. Appl. Environ. Microbiol., 55, 2819-2826.
Parsons, F. and G. B. Lage (1985). Chlorinated Organics in Stimulated Groudwater Environments. J. Am. Water Works Assoc., 76, 52-59.
Parsons, F., P. R. Wood, and J. DeMarco (1984). Transformations of Tetrachloroethene and Trichloroethene in Microcosms and Groundwater Environments. J. Am. Water Works Assoc., 76, 56-59.
Piotrowski, M. R. (1993). Bioremediation Milestones. Wat. Environ. Technol., 5, 49-53.
Prakash, S. M. and S. K. Gupta. (1999). Biodegration of Tetrachloroethylene in Upflow Anaerobic Sludge Blanket Reactor. Bioresource Technology, 72, 47-57.
Roudríguez, N. and J. L. Sanz (1998). Response of an Anaerobic Granular Sludge to Chlorinated Aliphatic Hydrocarbons in Different Conditions. J. Ferment. Biotechnol., 86(2), 226-232.
Ryoo, D., H. Shim, K. Canada, P. Barbieri, and T. K. Wood (2000). Aerobic Degradation of Toluene-o-xylene Monooxygenase of Pseudomonas stutzeri OX1. Natural Biotechnology, 18, 775-778.
Sam-Soon, P. A. L. N. S., R. E. Loewenthal, P. L. Dold, and G. V. R. Marais (1986). Proc. Anaerobic Digestion Symposium, South Africa.
Scholz-Muramatsu, H., Aneumann, M. Messmer, E. Moore, and G.Diekert (1995). Isolation and characterization of Dehalospirillum Multivorans gen .nov., sp. nov., a Aetrachloroethene-utilizing, Strictly Anaerbic Bacterium. Arch.Microbiol., 163, 48-56.
Sharma, P. K. and P. L. McCarty (1996). Isolation and Characterization of a Facultatively Aerobic Bacterium that Reductively Dehalogenates Tetrachloroethene to cis-1,2-Dichloroethene. Appl. Environ. Microbiol., 62, 761-765.
Shen, C. F. and S. R. Guiot (1996). Long-Term Impact of Dissolved O2 on the Activity Anaerobic Granules. Biotechnology and Bioengineering, 49, 611-620.
Shield, M. S., S. O. Montgomery, P. J. Chapman, S. M. Cuskey, and P. H. Pritchard (1989). Novel Pathway of Toluene Catabolism in the Tri-chloroethylene-Degrading Bacterium G4. Appl. Environ. Microbiol, 55, 1624-1629.
Smatlak, C. R., J. M. Gossett, and S. H. Zinder (1996). Comparative kinetics of Hydrogen Utilization for Reductive Dechlorination of Tetrachloroethene and Methanogenesis in an Anaerobic Enrichment Culture. Environ. Sci. Technol., 30(9), 2850-2858.
Snoeyink, V. L. and D. Jenkins (1982). Water Chemistry, John Wiley and Sons Inc., N. Y..
Song, H. G. and R. Bartha (1990). Effects of Jet Fuel Spills on the Microbial Community of Soil. Appl. Environ. Microbiol., 56 (3), 645-651.
Souza, M. E. (1986). Creteria for the Utilization, Design and Operation of UASB Reactors. Wat. Sci. Tech., 18, 55.
Speece, R. E. (1995). Anaerobic Biotechnology, Archae Press, Tennessee, 143-154.
Sponza, D. T. (2001). Anaerobic granule formation and tetrachloroethylene (TCE) removal in an upflow anaerobic sludge blanket (UASB) reactor. Enzyme and Microbial Technology, 29, 417-427.
Stumn, W. and J. J. Morgan (1981). Aquatic Chemistry-An Introduction Em-phasizing Chemical Equilibria in Natural Waters. John Wileet and Sons Inc., N.Y.
Tartalovsky, B., C. B. Miguez, L. Petti, D. Bourque, D. Groleau, and S. R. Guiot (1998). Tetrachloroethylene Dechlorination Using a Consortium of Coimmobilized Methanogenic and Methanotrophic Bacteria. Enzyme and Microbial Technol., 22, 255-260.
Terzenbach, D. P. and M. Blaut (1994). Transformation of Tetrachoroethylene to Trichloroethylene by Homoacetogenic Bacteria. FEMS Microbiol. Lett., 123, 213-218.
Tsien, H. C., G. A. Brusseau, R. S. Hanson, and L. P. Wackett (1989). Biodegradation of Trichloroethylene by Methylosinus Trichosporium OB3b. Appl. Environ. Microbiol., 55 (12), 3155-3161.
Ukrainczyk, L., M. Chibwe, T. J. Pinnavaia, and S. A. Boyd (1995). Reductive Dechlorination of Carbon Tetrechloride in Water Catalyzed by Mineral-Supported Biominetic Cobalt Macrocyles. Environ. Sci. Technol., 29, 439-445.
US EPA (1999). Solid Waste and Emergency Response (5402G), EPA 542-N-99-004, Issue No.32.
US EPA (1990). Handbook: Groundwater, Volume I: Groundwater and Contamination, EPA/625/6-90/016a..
Van Eekert, M. (1999). Transformation of chlorinated compounds by methanogenic granular sludge. PhD thesis, Wageningen University, Wageningen, The Netherlands.
Van Eekert, M. H. A., T. J. Schröder, A. J. M. Stams, G. Schraa, and J. A. Field (2000). Constitutive Dechlorination of Chlorinated Ethenes by a Methanol Degrading Methanogenic Consortium. Appl. Microbiol Biotechnol., 64 (7), 2350-2356.
Van Eekert, M. H. A., Thomas J. Schröder, Alfons J. M. Stams, Gosse Schraa, and Jim A. Field (1998). Degradation and Fate of Carbon Tetrachloride in Unadapted Methanogenic Granular Sludge. Appl. Microbiol Biotechnol., 64 (7), 2350-2356.
Vogel, T. M. and P. L. McCarty (1985). Biotransformations of Tetrachloroethylene to Trichloroethylene, Dichloroethylene, Vinyl Chloride, and Carbon Dioxide under Methanogenic Condition. Appl. Environ. Microbiol., 49, 1080-1083.
Vogel, T. M., C. S. Criddle, and P. L. McCarty (1987). Transformations of Halogenated Aliphatic Compounds. Environ. Sci. Technol., 21, 722-736.
Wiedeneier, T. H., M. A. Swanson, D. E. Moutoux, J. T. Wilson, D. H. Kampbell, J. E. Hansen and P. Haas (1997). Overview of the Technical Protocol for Natural Attenuation of Chlorinated Aliphatic Hydrocarbon in Ground Water Under Development for the U.S. Air Force Center for Environment Excellence. Proceedings of the Symposium on Natural Attenuation of Chlorinated Organic in Ground Water. USEPA. 37-61.
Wilson, J. T, T. F. MNabb, D. L. Balkwill, and W. C. Chiorse (1983). Enumeration and Characterization of Bacteria Indigenous to a Shallow Water-Table Aquifer. Ground Water, 21 (1), 134-142.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top