跳到主要內容

臺灣博碩士論文加值系統

(54.80.249.22) 您好!臺灣時間:2022/01/20 08:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪坤鈺
研究生(外文):Kwone Weuy Hong
論文名稱:配水管網水質模式動力參數之研究
指導教授:盧重興盧重興引用關係
指導教授(外文):Chungsying Lu
學位類別:碩士
校院名稱:國立中興大學
系所名稱:環境工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:112
中文關鍵詞:配水管網水質模式動力參數最大比基質利用率半飽和常數抑制係數阻抗係數生物可利用性有機碳
外文關鍵詞:maximum specific rate of substrate utilizationhalf-saturation coefficientassimilable organic carbon
相關次數:
  • 被引用被引用:6
  • 點閱點閱:776
  • 評分評分:
  • 下載下載:162
  • 收藏至我的研究室書目清單書目收藏:2
隨著科技的進步,依目前的淨水處理技術而言,水源經過淨水廠處理後的出流水,大都能夠符合自來水法規標準,然而在民眾的反應上,對於自來水水質滿意度方面,卻不甚理想。造成此現象主要是因為自來水經常在輸送的過程中,受到二次污染所致。而生物性污染一直被認為是配水管線二次污染最主要的問題,其中更以生物膜累積的問題最嚴重且難以解決。
本實驗室長期研究配水管網水質二次污染問題,基於實驗與理論並重的精神,對於相關水質模式的研究也不遺餘力,而且利用自來水配水管網模式來模擬在配水系統中的自來水水質狀況是未來發展的趨勢。然而要建立一套完整的模式必須與許多基礎的條件及實驗相輔相成,才能有效地作為預估水質變化的工具。
本研究主要目的在設計批次實驗求取最大比基質利用率(Vm)、半飽和常數(kaff)、自由餘氯及一氯胺對懸浮性微生物的抑制係數(kinact)及附著性微生物對自由餘氯及一氯胺抑制作用的阻抗係數(kr2),代入水質模式模擬管線內生物膜消長的情形,作為未來自來水廠控制微生物污染的參考依據。
由於缺乏本土性配水管網的微生物菌種背景資料,參考國內外文獻後,選擇荷蘭配水管線中常見兩株菌Spirillum species strain NOX與Pseudomonas flourescens strain P17以醋酸為基質,求取最大比基質利用率與半飽和常數。
批次實驗所求得之參數結果,NOX與P17混合菌對醋酸利用的轉化率在90~100%之間,以醋酸為基質的最大比基質利用率與半飽和常數分別為4.04*10^-12 h-1與7.44*10^-3 mg/L。
次氯酸(自由餘氯)對懸浮性微生物的抑制係數(kinact)為2.27*10^2 L/mg/h,一氯胺(結合餘氯)對懸浮性微生物抑制係數(kinact)的範圍為3.22*10^-1~4.25*10^-1 L/mg/h,平均值為3.67*10^-1 L/mg/h。
不鏽鋼採樣片生物膜對次氯酸抑制作用的阻抗係數(kr2s)為88.9,不鏽鋼採樣片生物膜對一氯胺抑制作用的阻抗係數(kr2s) 的範圍為7.04*10^-1~9.62*10^-1,平均值為8.83*10^-1。
PVC採樣片生物膜對次氯酸抑制作用的阻抗係數(kr2p)為28.7,PVC採樣片生物膜對一氯胺抑制作用的阻抗係數(kr2p)範圍為 8.05*10^-1~9.91*10^-1,平均值為9.35*10^-1。
不同消毒劑抑制效果的比較上,次氯酸對懸浮性微生物的抑制效果比一氯胺好,一氯胺對生物膜的抑制效果優於次氯酸。
比較三種試程的實驗與模擬結果發現,模式模擬生物膜的生長情況在不加氯試程有高估現象,在加氯的試程中,模式模擬的結果大致符合實驗結果;在生長穩定時間方面,模擬值中生物膜生長達到穩定的時間比實驗結果快。
摘 要 I
目 錄 III
表目錄 IX
圖目錄 XI
符號說明 XIV
第一章 前言 1
第二章 文獻回顧 3
2-1 微生物生長動力參數之求取 3
2-2 配水系統中的生物膜 4
2-2-1 生物膜之構造 4
2-2-2 生物膜的形成步驟 6
2-2-3 生物膜形成的循環反應 9
2-2-4 國內配水管網的菌種分布 11
2-3 影響配水系統中餘氯抑制微生物的因素 11
2-3-1 化學性因子 11
2-3-2 物理性因子 14
2-3-3 生物性因子 15
2-4 配水系統中生物膜之採樣及分析 18
2-5 水質模式相關研究 20
2-5-1 單管的細菌消長模式 20
2-5-2 管網的生物消長模式 24
第三章 理論推導與模式建立 27
3-1 理論基礎 27
3-1-1 基本架構考量 27
3-1-2 基本假設 28
3-2 模式建立 30
3-2-1 統御方程式 30
3-2-2 初始條件與邊界條件 34
3-3 數值方法與模式求解 34
第四章 實驗設備與方法 39
4-1 混合菌生長速率之測定 39
4-1-1 菌種準備 39
4-1-2 確定所貯備菌液之菌數 39
4-1-3 細胞乾重對菌液吸光度檢量線 39
4-1-4 水樣滅菌及植菌 40
4-1-5 生長曲線觀測 40
4-1-6 以醋酸為基質之產率測定 40
4-2 連續式配水管線試驗設備 40
4-2-1 管線主體 41
4-2-2 生物膜培養採樣片 41
4-2-3 培養裝置 41
4-2-4 其他周邊設備 42
a. 水樣取樣口 42
b. 原水攪拌槽 42
c. 恆溫水槽 42
d. 酸鹼控制裝置 43
e. 混合槽 43
f. 儀表板 43
g. 供水幫浦 43
h. 浮子流量計 43
4-3 水質分析方法 47
4-3-1 自由餘氯、總餘氯 47
4-3-2 生物可利用有機碳的分析方法 47
4-4 操作條件 49
4-4-1 水源資料 49
4-4-2 流速控制 49
4-5 生物膜之培養 49
4-6 微生物抑制實驗 51
4-6-1 次氯酸鈉溶液的置備 51
4-6-2 一氯氨溶液的置備 51
4-6-3 懸浮性微生物抑制實驗 52
4-6-4 附著性微生物抑制實驗 52
4-7生物膜之採樣及分析 52
第五章 結果與討論 54
5-1 混合菌利用醋酸的最大比基質利用率與半飽和常數 54
5-1-1 細胞乾重對菌液吸光度檢量線 54
5-1-2 醋酸轉化率 55
5-1-3 生長曲線 56
5-1-4 比生長率 58
5-1-5 生長係數 59
5-1-6 最大比基質利用率與半飽和常數 59
5-2 超音波震盪處理之生物膜收集效率試驗 61
5-3 次氯酸對懸浮性微生物的抑制係數 62
5-4 附著性微生物對次氯酸抑制作用的阻抗係數 65
5-4-1 不鏽鋼採樣片生物膜對次氯酸抑制作用的阻抗係數 65
5-4-2 PVC採樣片生物膜對次氯酸抑制作用的阻抗係數 67
5-5 一氯胺對懸浮性微生物的抑制係數 69
5-6 附著性微生物對一氯胺抑制作用的阻抗係數 73
5-6-1 不鏽鋼採樣片生物膜對一氯胺抑制作用的阻抗係數 73
5-6-2 PVC採樣片生物膜對一氯胺抑制作用的阻抗係數 76
5-7 次氯酸與一氯胺對懸浮性微生物的抑制效果比較 79
5-8次氯酸與一氯胺對附著性微生物的抑制效果比較 80
5-9 模式模擬 81
5-9-1參數使用 81
5-9-1-1 餘氯消耗系統參數 81
5-9-1-2 生物性參數 83
5-9-2 模擬70天不加氯試程生物膜生長情形 84
5-9-3 模擬70天低加氯試程生物膜生長情形 83
5-9-4 模擬70天高加氯試程生物膜生長情形 88
第六章 結論與建議 91
6-1 結論 91
6-1-1 參數實驗結果 91
6-1-2 不同消毒劑的抑制結果 92
6-1-3 模式結果 92
6-2 建議 93
參考文獻 94
附錄一 電腦程式 104
1. 李連堯、盧重興,“自來水配水系統水質二次污染的研究:(二) 微生物的再生長現象”,自來水會刊雜誌第十七卷第三期,19-48頁,民國87年8月。
2. 李連堯、張鴻耀、盧重興,“管網模式應用於預估自來水配水系統餘氯濃度之研究”,第十七屆自來水研究發表會,第301~319頁,民國89年11月。
3. 李舒寧,“自來水配水系統中餘氯消耗速率之研究”,國立中興大學環境工程學系碩士論文,民國90年8月。
4. 張鴻耀,“自來水配水管網餘氯與細菌消長模式之研究”,國立中興大學環境工程學系碩士論文,民國88年8月。
5. 蔡長憲,“加氯量對自來水不鏽鋼管線生物膜消長影響之研究”,國立中興大學環境工程研究所碩士論文,民國89年6月。
6. 胡苔莉、陳明鈺、郭奐儀,“輸水管線中微生物之探討”,第二十四屆廢水處理技術研討會論文集,中華民國環境工程學會,第 963-966,民國88年12月。
7. 環檢所,水中總菌落數檢測方法-塗抹法,NIEA E203.52B,環署檢字第46418 號公告,民國88年。
8. Allen M. J., Taylor R. H. and Geldreich E. E. (1980) “ The Occurrence of Microorganisms in Water M ain Encrustations”, J. AWWA. Vol. 72, No. 11, pp. 614.
9. Angles M. L., Chandy J. P., Kastl G., Jegatheesan V., Cox P. and Fisher I. (1999) “ Biofilm in drinking water: Influence of organic carbon and distinfection”, Water. Vol. 26, No. 4, pp. 30-33.
10. Bois F.Y., Fahmy T., Block J.C. and Gatel D. (1997) “ Dynamic modeling of bacteria in a pilot drinking-water distribution system”, Wat. Res. Vol. 3, No. 12, pp. 3146-3156.
11. Brodtmann N. V. and Russo P. J. (1979) “ The Use of Chloramines for reduction of THMs and Disinfection of Drinking Water”, J. AWWA. Vol. 71, No. 3, pp. 179-183.
12. Chandy J. P. and Angles M. L. (2001) “ Determination of nutrients limiting biofilm formation and the subsequent impact on disinfectant decay”, Wat. Res. Vol. 35, No. 11, pp. 2677-2682.
13. Chang M. K., Voive T. C. and Criddle C. S. (1993) “ Kinetic of competitive inhibition and cometabolism in the biodegradation of benzene ,toluene and p-xylene by two Pseudomonas isolates”, Biotechnol. Bioeng. Vol. 41, pp. 1057-1065.
14. Characklis W. G. and Marshall K. C. (1990) Biofilms. John Wiley and Sons, New York, pp. 796.
15. Driedger A. M., Rennecker J. L. and Marinas B. J. (2001) “ Inactivation of Cryptosporidium Parvum oocysts with ozone and monochloramine at low temperature”, Wat. Res. Vol. 35, No. 1, pp. 41-48.
16. Dukan S., Levi Y., Piriou P., Guyon F. and Villon P. (1996) “ Dynamic modeling of bacterial growth in drinking water networks”, Wat. Res. Vol. 30, No. 9, pp. 1991-2002.
17. FWR. (1991) Progress report on the measurement and significance of assimilable organic carbon. Report No. FR0249. Prepared by J. Easton and P. H. Jago FWR, Bucks, UK.
18. Gagnon G. A. and Slawson R. M. (1999) “ An efficient biofilm removal method for bacterial cells exposed to drinking water”, J. Microbiol. Methods Vol. 34, pp. 203-214.
19. Geldreich E. E., Nash H. D., Reasoner D. J., and Taylor R. H. (1972) “ The Necessity of Controlling Bacterial Populations in Potable Waters:Community Water Supply”, J. AWWA. Vol. 64, No. 9, pp. 596.
20. Geldreich E. E., Nash H. D. and Spino D. (1977) “ Characterizing Bacterial Populations in Treated Water Supplies: A Progreaa Report”, Proc. American Water Works Association Water Quality Technology Conf., Kansas City, MO., December.
21. Geldreith E. E. (1990) “ Microbiological Quality Control in Distribution Systems”, AWWA Water Quality and Treatment, 4th Edition, McGraw-Hill Inc., New York.
22. Gordon A. M. (1990) “ Dinking Water Microbiology, 1nd Ed., Springer-Verlag, New York, pp. 249-268.
23. Hoff J. C. (1986) “ Inactivation of Microbial Agents by Chemical Disinfectants”, U.S. Environmental Protection Agency, Water Engineering Research Laboratory, Rep. 600/52-86/067, Cincinnati, Ohio.
24. Holden B., Greetham M., Croll B. T. and Scutt J. (1995) “ The effect of changing inter process and final disinfection reagents on corrosion and biofilm growth in distribution pipes”, Watre Science Technol., Vol. 32, No. 8, pp. 213-220.
25. Hutchinson M. (1971) “ The Disinfection of New Water Mains”, Chemistry and Industry, Vol. 139-144.
26. IMSL (International Mathematics and Statics and Libraries) (1987). Contents Document, Vol.2, version 1.0, Houston, Texas.
27. Kool J. L., Carpenter J. C. and Fields B. S. (1999) “ Effect of monochloramine disinfection of municipal drinking water on risk of nosocomial Legionnaires'' disease”, The Lancet Vol. 353, pp. 272-277.
28. Kornaros M. and Lyberatos G. (1997) “ Kinetic of aerobic growth of a denitrifying bacterium, Pseudomonas denitrificans, in the presence of nitrates and/or nitrites”, Wat. Res. Vol. 31, No. 3, pp. 479-488.
29. Laurent P., Servais P. and Randon G. (1993) “ Bacterial development in distribution networks-study and modelling”, Water Supply Vol. 11, No. 3/4, pp. 387-398.
30. Laurent P., Servais P., Prevost M., Gatel D. and Clement B. (1997) “ Testing the SANCHO model on distribution systems”, J. AWWA. Vol. 89, pp. 92-103.
31. LeCheveallier M. W., Cawthon C. D. and Lee R. G. (1988b) “Inactivation of biofilm bacteria”, Appl. Environ. Microbiol. Vol. 54, pp. 2492-2499
32. LeCheveallier M. W., Lowry C. D. and Lee R. G. (1990) “ Disinfecting biofilms in a model distribution system”, J. AWWA. Vol. 82, No. 7, pp. 87-99.
33. LeChevallier M. W., CawThon C. D., and Lee R.G. (1994) “ Inactivation of Biofilm Bacteria ”, Appl. Envir. Microbiol. Vol. 60, No. 12, pp. 4339-4348.
34. Logsdon G. S. (1987) “ Comparison of Some Filtration Processes Appropriate for Giardia Cyst Removal”, Proc. Calgary Giardia Conf., February, pp. 422-440.
35. Lu C. S., Biswas P. and Clark R. M. (1995) “ Simultaneous transport of substrates , disinfectants and microorganisms in water pipes”, Wat. Res. Vol. 29, No. 3, pp. 881-894.
36. Mathieu L. (1992) Matiere organique niodegradable et stabilite biologique des eaux au cours de leur distribution. These de l’Universite Nancy l, France.
37. Maul A., Vagost D. and Block J. C. (1991) Microbiological Analysis in Water Distribution Networks: Sampling Strategies, Methods and Computer Program. Ellis Horwood.
38. Means E. G. (1986) “ Effects of Chlorine and Ammonia Application Points on Bactericidal Efficiency”, J. AWWA. Vol. 78, No. 1, pp. 62-75.
39. Momba M. N. B., Cloete T. E., Venter S. N. and Kfir R. (1999) “ Examination of the behaviour of Escherichia coli in biofilms established in laboratory-scale unit receiving chlorinated and chloraminated water” Wat. Res., Vol. 33, No. 13, pp. 2937-2940.
40. Nagy L. A. (1982) “ Biofilm Composition , Formation and Control in the Los Angeles Aqueduct System”, Proc., AWWA WQTC, Nashville, Tenn.
41. Norman T. S., Harms L. L. and Looyenga R. W. (1980) “ The Use of Chloramines to Prevent Trihalomethane Formation”, J. AWWA. Vol. 72, No. 3, pp. 176.
42. Norton C. D. and LeCheveallier M. W. (2000) “ A pilot study of bacteriological population changes through potable water treatment and distribution”, Appl. Environ. Microbiol. Vol. 66, pp. 268-276.
43. Perciva S. L., Knapp J. S., Edyvean R. G. J. and Wales D. S. (1998) “ Biofilms, mains water and stainless steel”, Wat. Res. Vol. 32, No. 7, pp. 2187-2201.
44. Percival S. L. (1998) “ Review of potable water biofilm in engineered systems”, J.British Corrosion, Vol. 33, No. 2, pp. 130-137.
45. Pernitsky D. J., Finch G. R. and Hunk P. M. (1995) “ Disinfection kinetics of heterotrophic plate count bacteria in biologically treated potable water”, Wat. Res. Vol. 29, No. 5, pp. 1235-1241.
46. Piriou P., Dukan S. and Kiene L. (1998) ” Modeling Bacteriological Water Quality in Drinking Water Distribution Systems”, Wat. Sci. Tech. Vol. 38, No. 8-9, pp.299-307.
47. Reasoner D. J. and Geldreich E. E. (1985) “ A new medium for the enumeration and subculture of bacteria from potable water”, Appl. Environ. Microbiol. Vol. 49, No. 1, pp. 1-7.
48. Reasoner D. J., Blannon J. C., Geldreich E. E. and Barnick J., (1989) “Nonphotosynthetic pigmented bacteria in a potable water treatment and distributionsystem”, Appl. Environ. Microbiol. Vol. 55, No. 4, pp. 912-921.
49. Ridgway H. F. (1984) “Biofilm Fouling of RO Membranes-Its Nature and Effect on Treatment of Water for Reuse”, J. AWWA. Vol. 77, No. 6, pp. 94.
50. Sawyer C. N., McCarty P. L. and Parkin G. F. (1992) Chemistry for environmental engineering, fourth edition, McGraw-Hill, Inc.
51. Schoenen D. (1986) “ Microbial Growth Due to Materials Used in Drinking Water Systems”, in H. J. Rehm and G. Reed (eds.), Biotechnology Vol. 8, VCH Verlagsgesellschaft, Weinheim.
52. Servias P., Laurent P. and Randon G (1995) “ Comparison of the bacterial dynamics in various French distribution system” Journal Water SRT-Aquq Vol. 44, pp. 10-17.
53. Shotts E. B. (1985) “ Personal communication on the occurrence of various protozoans (Tetrahymena , Acanthamoeba , Bodo , Chlamydomonas , Euglena and Paramicium) in sand filters and distribution system”.
54. Sokol W. (1987) “ Oxidation of an inhibitory substrate by washed cell (oxidation of phenol by Pseudomonas putida)”, Biotech. Bioeng. Vol. 30 pp. 921-927.
55. Szewzyk U., Manz W., Amann R., Sheilfer K. H. and Strenstrőm T. H. (1994) “Growth and in situ detection of a pathogenic Escherichia coli in biofilms of a heterotrophic water-bacterium by use 16S- and 23S-rRNA-directed fluorescent oligonucleotide probes.” FEMS Microbiol. Ecol. 13, 169-176.
56. Templeton L. L. and Grady C. P. L. (1988) “ Effect of culture history on the determination of biodegradation kinetic by batch and fed-batch techniques”, J. Water Pollut. Control Fed. Vol. 60, No. 5, pp. 651-658.
57. Tuovinen O. H., and Hsu J. C. (1982) “ Aerobic and anaerobic microorganisms I tubercles of the Columbus , Ohio, waterdistribution system”, Appl. Environ. Microbiol. Vol. 44, pp. 761-764.
58. Van der Wende E., Characklis W. G. and Smith D. B. (1989) “ Biofilms and bacterial drinking water quality”. Wat. Res., Vol. 23, pp. 1313-1322.
59. Van Der Kooij D., Hijnen W. A. M. and Kruithof J. C. (1989) “ The effects of ozonation biological filtration and distribution on the concentration of easily assimilableorganic carbon (AOC) in drinking water” Oz Sci. Eng. Vol. 11, pp. 297-311.
60. Vidar Lund and Kari Ormerod (1995) “ The Influence of Disinfection Process on Biofilm Formation in Water Distribution Systems”, Wat. Res., Vol. 29, No. 4, pp. 1013-1021.
61. Watson H.E. (1908) “ A note the varation of the rate of disinfection with change in the concentration of the disinfectant”, J. Hyg. Vol. 8, pp. 536.
62. Yang R. D. and Humphrey A. E. (1975) “ Dynamic and stead state studies of phenol biodegradation in pure and cultures”, Biotechnol. Bioeng. Vol. 17, pp. 1211-1235.
63. Zili M., Converti A., Lodi A., M. Del Borghi and G. Ferraiolo (1993) “ Phenol removal from waste gases with a biological filter by Pseudomonas putida”, Biotech, & Bioeng. Vol. 41, No. 7, pp. 693-699.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top