跳到主要內容

臺灣博碩士論文加值系統

(54.224.133.198) 您好!臺灣時間:2022/01/29 22:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:彭誌強
論文名稱:以FISH(FluorescenceinsituHybridization)研究污泥同時好氧消化及金屬溶出程序之菌相變化
指導教授:洪俊雄洪俊雄引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:環境工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:146
中文關鍵詞:同時好氧消化及金屬溶出程序螢光原位雜交硫氧化菌
外文關鍵詞:simultaneous sludge digestion and metal leachingFluorescence in situ HybridizationThiobacillus
相關次數:
  • 被引用被引用:5
  • 點閱點閱:344
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究運用分子生物科技中的螢光原位雜交技術(Fluorescence in situ Hybridization;簡稱FISH)方法,針對同時污泥好氧消化與重金屬溶出程序(simultaneous sludge digestion and metal leaching;SSDML)系統中的異營菌及硫氧化菌以現有的寡核苷酸探針作螢光原位雜交,並針對Thiobacillus thioparus設計具有專一性的寡核苷酸探針,對所設計的探針進行專一性與最佳雜交嚴格度測試,並運用於監測SSDML中微生物族群菌相、數量及菌群間之相互關係,評估所設計的探針用於環境樣品之可行性。
用(RDP II)網站的 Probe Match program(Small Subunit)模擬所設計的探針,除對T. thioparus 16S rRNA 序列有互補外並未發現有任何菌種的序列互補,顯示此設計之探針(THIOPA 511)確實有其專一性。在以探針對純菌株作FISH專一性測試方面,測得之訊號值偏低,推測可能是目標菌種的細胞膜滲透性不良,導致探針無法有效的進行原位雜交反應。在探針最佳雜交嚴格度測試中所測得的Formamide以20 %為最佳雜交條件。
實驗過程中發現馴養槽中約有50∼60 % 菌無法被本實驗所使用探針雜交,以Lysozyme、Urea、HCl及SDS(sodium dodecyl sulfate)四種前處理在本研究中皆無法有效增強雜交反應。將一般常用的固定劑 4 % Paraformaldehyde(PFA)改變成沉澱固定劑(100 % EtOH)配合雜交時改變SDS濃度為0.1 % ,雜交時間1.5 hours時,所得目標訊號強度和背景值便可明顯辨識。
在添加硫粉的污泥馴養實驗的操作初期雖然系統中之pH值變化極大,但整體而言總菌數並未有相對的變化發生,且以DAPI(4’,6 - diamidino - 2 - phenylindole)染色測得之總菌數變化與傳統微生物有機體含量(VSS)測定值間大致相符。以FISH監測菌群變化,過程中T. thiooxidans 和 T. ferrooxidans由複雜的菌群結構中逐漸被篩選出,且在特定pH範圍下形成優勢菌種。
在不同之固體物濃度條件下進行 SSDML試驗,以固體物含量為0.5 %時,T. thiooxidans 和 T. ferrooxidans 有較佳的生長狀況,有較佳的重金屬溶出效率,但pH值下降速率太快使得此條件下無明顯污泥消化作用。在不同元素硫添加量條件下進行同時污泥好氧消化與重金屬溶出程序(SSDML)試驗,T. thiooxidans 和 T. ferrooxidans增長隨著元素硫添加量增加而增加。元素硫添加量為0.1 % 時,由於硫添加量不足使得pH值下降緩慢,直到第10天pH值才下降至5.0以下,異營菌對有機物的分解有足夠時間進行而達到污泥好氧消化目的;元素硫添加量為0.5 % 時,有較佳的重金屬溶出效率。
The objective of this study is to understand the bacterial community of SSDML(simultaneous sludge digestion and metal leaching)by applying Fluorescence in situ Hybridization (FISH) technique. Existing Oligonucleotide probes for monitoring heterotrophic bacteria and a new probe Thiopa511 specially designed for Thiobacillus were used. The specificity and chemical stringency for Thiop511 were tested before its experiments on monitoring the SSDML bacterial community、number of bacteria、and the future application on testing various environmental samples.
Using the Probe Match program(Small Subunit)in the RDPⅡ(Ribosomal Database project Ⅱ)to stimulate the probe specificity of Thiopa511, this probe was found to be specific for Thiobacillus thioparus. In the FISH probe specific using pure culture, the fluorescence signal were found to be weak. It was concluded that the cell membrane of these target bacteria could have poor permeability thus lead to ineffectiveness during the hybridization process. In addition, 20 % Formamide concentration was found to achieve optimal Thiopa511 hybridization results.
Only 50 to 60 % of the total bacteria in the reactor could be hybridized using the probes selected in the preliminary study. Four sample fixation methods (Lysozyme、Urea、HCl and Sodium dodecyl sulfate) were performed in attempt to achieve better hybridization result. The results were not satisfied. Finally, precipitate fixative of 100 % EtOH was selected to replace the common fixative of 4 % Paraformaldehyde. The final established procedure included 1.5 hours hybridization and 0.1 % SDS concentration which produced fluorescence signal strong enough to distinguish target cells from background fluorescence.
In the sulfur power addition experiment, pH values in the reactor decreased significantly. However, the total number of bacteria stayed constant using the traditional VSS measurement and DAPI staining method. Microbial community in the reactor changed from a complex composition to being dominant by T. thiooxidans and T. ferrooxidans in a particular pH range.
In different initial total solid concentration experiment, T. thiooxidans and T. ferrooxidans were found to have best growth rate at 0.5 % total solid concentration. In this condition, better heavy metal dissolution rate was achieved with fast decreasing of pH but with no noticeable sludge digestion. Growth rate of T. thiooxidans and T. ferrooxidans increased following higher sulfur addition concentration. Better heavy metal dissolution was achieved when increasing sulfur concentration form 0.1% to 0.5%。
中文摘要………………………………………………….……………………….…Ⅰ
英文摘要………………………………………………….……………………….…Ⅲ
目錄……………………………………………………….………….………………Ⅴ
表目錄………….………………………………………...….……….……...……..…X
圖目錄………………………………………………….………………………….... XI
第一章 前言…………………………………………………………………………..1
1-1 研究緣起…………………………………………………………………….1
1-2 研究目的 ………………………………………………..……….………….4
第二章 文獻回顧………………..……………………………………...…………….6
2-1 同時污泥好氧消化與重金屬溶出程序…………………………………….6
2-1-1 同時污泥好氧消化與重金屬溶出程序的發展 ……...…………….6
2-1-2 同時污泥好氧消化與重金屬溶出程序的原理 ………...………….8
2-1-3 重金屬溶出機制 ………………………………….……..……..….10
2-1-4 同時污泥好氧消化與重金屬溶出程序中微生物之種類及生理特性……………..……………………………………………..….......12
2-1-5 影響同時污泥好氧消化與重金屬溶出程序之因子….…..…..…..16
2-2 螢光原位雜交技術(FISH)………………………………….……....….19
2-2-1 螢光原位雜交法原理………………………………………..…….20
2-2-2 16S rRNA…………………………………………………..……….21
2-2-3 螢光原位雜交優點………………………………………..……….23
2-2-4 螢光原位雜交的步驟…………………………..………………….25
2-2-4-1 固定(Fixation)……………………….….…………………….26
2-2-4-2 雜交(Hybridization)………………….……………………….27
2-2-4-3 清洗……………………….……………..……………………….28
2-2-4-4 顯像(Visualization)……………………..……………………….31
2-2-5 FISH與DAPI染色………………...…..….……….……..……….32
2-2-6 螢光原位雜交法限制因子……………….……………………..…32
2-2-7 螢光原位雜交法於環境工程之應用….………….……………….35
2-3 寡核苷酸探針的選擇與設計……………….……………………………. 37
2-3-1 寡核苷酸探針的選擇……………………..……………………….37
2-3-2 寡核苷酸探針的設計與合成………………..…………………….38
2-3-3 寡核苷酸探針專一性與嚴格度測試………..…………………….40
2-3-3-1 寡核苷酸探針專一性測試………………………...…………….40
2-3-3-2 寡核苷酸探針最佳雜交嚴格度測試…...……………………….41
第三章 實驗方法與設備………………………………...………………………….42
3-1 實驗用藥品………………………………………..……………………….42
3-1-1 實驗用水………………..………………………………………….42
3-1-2 固定劑………………………………...…...……………………….42
3-1-3 PBS(Phosphate Buffered Saline)……...………..……………….43
3-1-4 Hybridization Buffer……………...……………..………………….43
3-1-5 Washing Buffer…………………………………..………………….43
3-1-6 DAPI染劑………………………………………………………….44
3-2 實驗架構 ………………………………….……………………………….44
3-2-1 污泥來源………………………..………………………………….45
3-2-2 污泥前處理…………………………..…………………………….46
3-2-3 樣品的保存………………………………..……………………….46
3-2-3 污泥馴養(樣品由交通大學林志高教授研究室提供) ……………46
3-2-4 污泥固體物含量(樣品由交通大學林志高教授研究室提供) ……47
3-2-5 元素硫添加量(樣品由交通大學林志高教授研究室提供) ……....48
3-3 寡核苷酸探針的選擇、設計與合成……………………………………….49
3-3-1 寡核苷酸探針的選擇………………………………..…………….49
3-3-2 寡核苷酸探針的設計……………………………..……………….51
3-3-3 親緣樹分析(polygenetic tree analysis)…………………..…….53
3-3-4 寡核苷酸探針的合成與標定…………………………..………….53
3-3-5 寡核苷酸探針專一性測試……………………..………………….54
3-3-6 寡核苷酸探針最佳雜交嚴格度測試………..……..……..……….54
3-4 實驗步驟與方法 ……………………………………………..……….…..56
3-4-1 改變細胞膜滲透性…………………………..…………………….56
3-4-2 固定劑的選擇………………………………..…………………….57
3-5 分析設備與方法……………………………………….………………….58
3-5-1 分析設備………………………………..………………………….58
3-5-2 分析方法…………………………..……………………………….58
3-5-2-1 螢光原位雜交法………………...……………………………….58
3-5-2-1-1 固定(Fixation)……………………………………………….59
3-5-2-1-2 雜交(Hybridization)……………….……………………….59
3-5-2-1-3 清洗(Washing)……..……….…………………..…………. 60
3-5-2-1-4 FISH與DAPI染色……..…………………………………….60
3-5-2-1-5 觀察…………………………………………………………….61
3-5-2-2 總菌數測定………………………………………...…………….62
第四章 結果與討論………………………………………...……………………….64
4-1寡核苷酸探針的設計……………………………………...……………….64
4-2 探針專一性與最佳雜交嚴格度測試………………………..…………….70
4-2-1 探針專一性測試………………………….…….………………….70
4-2-2 探針最佳雜交嚴格度測試…………….………………….……….71
4-3 改變細胞膜滲透性……………………………..………………………….73
4-4 固定劑的選擇………………………………….….……………………….74
4-5 馴養槽污泥菌群結構分析……………………..……….………...……….77
4-5-1 總菌數分析…………………………….…………….…………….77
4-5-2 自體螢光的影響……………………….……….………………….79
4-5-3 菌群結構分析……………………….……….…………………….80
4-6 不同污泥固體物含量菌群結構分析………………..…………………….89
4-6-1 總菌數分析………………………..……………………………….90
4-6-2 污泥好氧消化…………………….….…………………………….91
4-6-3 菌群結構分析……………………………….…….……………….92
4-7 不同元素硫添加量菌群結構分析……………………………………….105
4-7-1 總菌數分析……………………………………………………….106
4-7-2 污泥好氧消化…………………………………………………….107
4-7-3 菌群結構分析…………………………………………………….109
第五章 結論與建議…………………………………………….………………….121
5-1 結論……………………………………………………………………….122
5-2 建議……………………………………………………………………….124
參考文獻………………………………………...………………………………….126
附錄一………………………………………………………………………………141
田蔚城 編(2000)「生物技術的發展與應用」,九州圖書。
江康鈺,林鶴年,游世達,嚴浩哲,黃俊傑,林莞慧,王鯤生 (1999) 利用堆肥資源化技術處理下水污泥之可行性研究,第九屆下水道研討會論文集,pp. 277-290。
李佳音, 陳清農 (1995) 以毛地黃素標識菌落雜交法檢測食品中之腸炎弧菌,中國農業化學雜誌,Vol. 33,No. 2,pp. 210-221.
李敏華 譯 (1992) 「水質化學」,漢復出版社,pp. 321-430
高正忠,林志高 (1994) 水體底泥污染特性及處理可行性研究,國立交通大學環境工程研究所。
胡苔莉,簡正一,廖秀娟(2001) 台灣地區環境綜合指標之生物科技應用、影響與管理計畫,行政院環境保護署,「EPA-90-U1E1-02-122」
張鎮南,曾四恭,鄭幸雄,趙家珍,謝永旭,(1995)「高級廢水處理」,滄海圖書,一版,台北,pp.159-201。
陳政澤等,(2001) 國內有害污泥現況分析與可行處理方式評估,第16屆廢棄物處理技術研討會論文集,pp.3-46。
陳靜生 (1992) 水環境化學,曉園出版社。
潘時正,曾迪華,李釗 (1998) 下水污泥灰渣特性及再利用於水泥材料之評估,國立中央大學環境工程學刊,第5期,pp. 115-129。
劉文佐(2000)氣膠微生物族群之分子生物技術建立,國立中央大學環境工程學刊第六期。
蘇遠志(2000) ”生物技術產業國內外市場發展趨勢”
Alm E. W., Oerther D. B., Larsen N., Stahl D. A., and Raskin L. (1996) The Oligonucleotide Probe Database. Appl. Environ. Microbiol. 62:3557-3559
Amann, R. I. (1995)“ In Situ Hybridization of Micro-organisms by Whole Cell Hybridization with rRNA-targeted Nucleic Acid probes.”Molecular Microbial Ecology Manual, A. D. C. Akkerman, J. D. v. Elsas, and F.J.d. Bruijn, eds. Kluwer Academic Publishers, Dordrecht, The Netherlands. 1-15
Amann R. I., Binder B. J., Olson R. J., Chishkm S. W., Devereux R. and Stahl D. A. (1990a) Combination of 16S rRNA-Targated Oligonucleotide Probes with Flow Cytometry for Analyzing Mixed Microbial Populations, Appl. Environ. Microbiol. 56:1919-1925
Amann R. I., Binder B. J., Olson R. J., Chishkm S. W., Devereux R. and Stahl D. A., (1990b) Fluorescence Oligonucleotide Probing of Whole Cells for Determinative, Phylogenetic, and Environmental Studies in Microbiology. Journal of Bacterioligy. 172:762-770
Amann R. I., Ludwig W. and Schleifer K. (1995) Phylogenetic Identification and In Situ Detection of Individual Microbial Cells without cultivation. Microbiological Reviews. 59:143-169
Amann R. I., Snaidr J., Wagner M., Ludwig W., and Schleifer K.-H. (1996). In Situ Visualization of High Genetic Diversity in a Natural Microbial Community. Journal of Bacterioligy. 178:3496-3500
Angenent L. T., Zheng D., Sung S. and Raskin L. (2000) Methanosaeta Fibers in Anaerobic Migrating Blanket Reactors. Water Science and Technology. 41:35-39
Arredondo R., Garcia A. and Jerez C. A. (1994) Partial Removal of Lipopolysaccharide from Thiobacillus ferrooxidans Affects Its Adhesion to Solids. Appl. Environ. Microbiol. 60:2814-2851
Bhavaraju S. S. R., Modak J. M., Kumar R. and Gandhi K. S. (1992) Dissolution of sulphur particles by Thiobacillus ferrooxidans: Substrate for Unattached Cells. Biotechnology and Bioengineering. 41:612-616
Blais J. F., Auclair J. C. and Tyagi R. D. (1992a) Cooperation Between Two Thiobacillus Strains for Heavy Metal Removal from Municipal Sludge. Canadian Journal of Microbiology. 38:181-187
Blais J. F., Tyagi R. D. and Auclair J. C. (1992b) Bioleaching of Metals from Sewage Sludge by Sulfur-oxidizing Bacteria. Journal of Environmental Engineering. 118:690-707
Blais J. F., Tyagi R. D. and Auclair J. C. (1993) Bioleaching of Metals from Sewage Sludge: Microorganisms and Growth Kinetics. Water Research. 27:101-110
Bosecker K. (1986) Bacterial Metal Recovery and Detoxification of Industrial Waste. Biotechnlolgy and Bioengineering symposium. 16:105-120
Brierley C. L. (1982) Microbiological Mining. Science American. 247:42-51
Brown-Howland E.B., Danielsen S.A., and Nierzwicki-Bauer S.A. (1992) Development of a Rapid Method for Detecting Bacterial Cells In Situ Using 16S-Targeted Probes. BioTechniques. 13:928-933
Chao W., Tien C. and Chao C., (1997) Investigation of the Effect of Different Kinds of Fertilizers on the Compositions of a Soil Microbial Community Using the Molecular Biology Technique. J. Chine. Agric. Chem. Soc. 35:252-262
Chen S. Y. and Lin J. G. (2000) Influence of Solid Content on Bioleaching of Heavy Metals from Contaminated Sediment by Thiobacillus spp. Journal of Chemical Technology and Biotechnology. 75:649-656
Chen S. Y. and Lin J. G. (2001a) Bioleaching of heavy metals from sediment: significance of pH. Chemosphere. 44:1093-1102
Chen S.Y. and Lin J. G. (2001b) Effect of Substrate Concentration on Bioleaching of Metal-Contaminated Sediment. Journal of Hazardous Materials. 82:77-89
Couillard D., Chartier M. and Mercier G. (1994) Major Factors Influencing Bacterial Leaching of Heavy Metals (Cu and Zn) form Anaerobic Sludge. Environmental Pollution. 85:175-184
Cututchet G., Tedesco P. and Donati E. (1996) Combined Degradation of Covellite by Thiobacillus thiooxidans and Thiobacillus ferrooxidans. Biotechnology Letters. 18:1471-1476
Donati E., Curutchet G., Pogliani C. and Tedesco P. (1996) Bioleaching of Covellite Pure and Mixed Cultures of Thiobacillus ferrooxidans and Thiobacillus thiooxidans. Process Biochemistry. 31:129-134
Eilers H., Pernthaler J., Glöckner O. F. and Amann R. (2000) Culturability and In Situ Abundance of Pelagic Bacteria from the North Sea. Appl. Environ. Microbiol. 66:3044-3051
Feliciano D. V. (1982) Sludge on Land-Where We Are, But Where Are We Going? Journal of Water Pollution Control Federation. 54:1259-1261
Ferris M. J. and Ward D. M. (1997) Seasonal Distributions of Dominant 16S rRNA-Defined Populations in a Hot Spring Microbial Mat Examined by Denaturing Gradient Gel Electrophoresis. Appl. Environ. Microbiol. 63:1375-1381
Friedrich U. L., Naismith M., Altendorf K. and Lipski A. (1999) Community Analysis of Biofilters Using Fluorescence In Situ Hybridization Including a New Probe for the Xanthomonas Branch of the Class Proteobacteria. Appl. Environ. Microbiol. 66:3044-3051.
Fushs B. M., Wallner G., Beisker W., Schwippl I., Ludwig W. and Amann R. (1998)Flow Cytometric Analysis of the In Situ Accessibility of Eschericha coli 16S rRNA for Fluorescently Labeled Oligonucleotide Probes. Appl. Environ. Microbiol.64:4973-4982
Gamache M., Blais J. F., Tyagi R. D. and Meunier N. (1998). Simultaneous Sewage Sludge Digestion and Metal Leaching : Caracterization of Heterotrophic Microorganisms. Water Quality International ''98, IAWPRC 19th Biennial Conference & Exposition, Proceedings, Vancouver, Colombie Britanique.
Charpentier J., Florentz M. and David G. 1987. Sequencing Batch Reactor System for Nutrient Removal: ORP and pH profile. Wat. Sci. Tech. 19:645-655
Gu J.(1995)“In Situ PCR — An Overview.”In Situ Polymerase Chain Reaction and Related Technology, J. Gu, ed., Birkhauser Boston. 1-12
Harmsen H. J. M., Prieur D. and Jeanthon C.(1997) Group-Specific 16S rRNA-Targeted Oligonucleotide Probes to Identify Thermophilic Bacteria in Marine Hydrothermal Vents, Appl. Environ. Microbiol. 63:4061-4068
Harmsen H. J. M., Gibson G. R., Elfferich P., Raangs G. C., Wildeboer-Veloo A. C. M., Argaiz A., Roberfroid M. B. and Welling G. W. (1999) Comparison of Viable Cell Counts and Fluorescence In Situ Hybridization Using Specific rRNA-Based Probes for the Quantification of Human Fecal Bacteria. FEMs Microbiology Letters. 183:125-129
Haugland R. P.(1996)Handbook of Fluorescent Probes and Research Chemicals, Molecular probes, Eugene, OR
Hicks R. E., Amann R. I., and Stahl D. A. (1992)Dual Staining of Natural Bacterioplankton with 4’,6-Diamidino-2-Phenylindole and Fluorescent Oligonucleotide Probes Targeting Kingdom-Level 16S rRNA Sequence. Appl. Environ. Microbiol. 58:2158-2163
Ingraham J.L., Maaloe O. and Neidhardt F.C.(1983) Growth of the Bacteria Cell. Sunderland, Massachusetts. Sinauer.12-107
Jureschko S., Timmermann G., Schmid M., Schleifer K.-H., Pommerening-Roser A., Koops H.-P. and Wagner M. (1998) Combined Molecular and Conventional Analyses of Nitrifying Bacterium Diversity in Activated Sludge:Nitosococcus mobilis and Nitrospira-Like Bacteria as Dominant Populations. Appl. Environ. Microbiol. 64:3042-3051
Kawaharasaki M., Kanagawa T., Tanaka H. and Nakamura K., 1998, Development and Application of 16S rRNA-Targeted Oligonucleotide Probe for Detection of the Phosphate-Accumulating Bacterium Microlunatus phosphovorus in an Enhanced Biological Phosphorus Removal Process, Wat. Sci. Tech. 37:481-484
Liu W. T., Marsh T. L., Cheng H. and Forney L. J. (1997) Characterization of Microbial Diversity by Determining Terminal Restriction Fragment Length Polymorphisms of Genes Encoding 16S rRNA. Appl. Environ. Microbiol. 63:4516-4522
Loosdrecht M. C. M., Lyklema J., Norde W. and Zehnder J. B. (1990) Influence of Interfaces on Microbial Activity. Microbiological Reviews. 54:75-87
Lynch, J.M. (1998). Terrestrial biotechnology. Curr. Opin. Biotech. 9:247-251
Maidak B., Cole J., Lilburn T., Parker C. J., Saxman P., Farris R., Garrity G., Olsen G., Schmidt T., Tiedje J.(2001) The RDP-II (Ribosomal Database Project). Nucleic Acids Res. 29:173-174
Mazn W., Amann R., Ludwig W., Wagner M., and Schleifer K.-H. (1992)Phylogenetic Oligodeoxynucleotide Probes for the Major Subclasses of Proteobacteria:Problems and Solutions. Systematic and Applied Microbiology. 15:593-600
Mazn W., Wagner M., Amann R. and Schleifer K. H. (1994). In Situ Characterization of the Microbial Consortia Active in Two Wasterwater Treatment Plants. Water Research. 28:1715-1723
Mercier G., Chartier M. and Couillard D. (1996) Strategies to Maximize the Microbial Leaching Lead from Metal-Contaminated Aquatic Sediments. Water Research. 30:2452-2464
Mikhailovich V., Lapa S., Gryadunov D., Sobolev A., Strizhkov B., Chernyh N., Skotnikova O., Irtuganova O., Moroz A., Litvinov V., Vladimirskii M., Perelman M., Chernousova L., Erokhin V., Zasedatelev A. and Mirzabekov A.(2001)Identification of Rifampin-Resistant Mycobacterium tuberculosis Strains by Hybridization, PCR, and Ligase Detection Reaction on Oligonucleotide Microchips. Journal of Clinical Microbiology. 39: 2531—2540
Moter A. and Göbel U. B. (2000) Fluorescence In Situ Hybridization (FISH) for Direct Visualization of Microorganisms. Journal of Microbiological Methods. 41:85-112
Mobarry B. K., Wagner M., Urbain V., Rittmann B. E. and Stahl D. A. (1996)Phylogenetic Probes for Analyzing Abundance and Spatial Organization of Nitrifying Bacteria. Appl. Environ. Microbiol. 62:2156-2162
Peccia J., Marchand E. A., Silverstein J. and Hernandez M. (2000) Development and Application of Small-Subunit rRNA Probes for Assessment of Selected Thiobacillus Species and Members of the Genus Acidiphilium. Appl. Environ. Microbiol. 66:3065-3072
Peddie C. C., Mavanic D. S. and Jenkins C. J. (1990) Use of ORP as Monitoring and Control of Aerobic Sludge Digestion. J. Environmental Engineering 116:461-471
Poulsen L. K., Ballard G. and Stahl D. A. (1993)Use of rRNA Fluorescence In Situ Hybridization for Measuring the Activity of Single Cells in Young and Established Biofilms. Appl. Environ. Microbiol. 59:1354-1360
Pronk J. T. and Johnson D. B. (1992)Oxidation and Reduction of Iron by Acidophilic Bacteria. Geomicrobiol. J. 10:153-171
Reasoner D. J. and Geldreich E. E.(1985)A New Medium for the Enumeration Subculture of Bacteria from Potable Water. Appl. Environ. Microbiol. 49:1-7
Ravishankar B. R., Blais J. F., Benmoussa H. and Tyagi R. D. (1994) Bioleaching of Metals from Sewage Sludge: Elemental Sulfur Recovery. Journal of Environmental Engineering. 118:690-707
Reye, F. L. d. l., Ritter W., and Raskin L. (1997)Group-Specific Small-Subunit rRNA Hybridization Probes to Characterize Filamentous Foaming in Activated Sludge Systems. Appl. Environ. Microbiol. 63:1107-1117
Roller C., Wagner M., Amann R., Ludwig W., Schleifer K.-H. (1994)In Situ Probing of Gram-Positive Bacteria with High DNA G+C Content Using 23S rRNA-Targeted Oligonucleotides. Microbiology. 140:2849-2858
Rulkens W. H., Grotenhuis J. T. C. and Tichy R. (1995) Methods of Cleaning Contaminated Soils and Sediments. In: Heavy Metals, Salomons, W., Förstner, U. and Mader, P., (eds.), Springer, Berlin, 151-191
Sand W., Gerke T., Hsllmsnn R. and Schippers A. (1995) Sulfur Chemistry, Biofilm, and the (in)Direct Attack Mechanism-a Critical Evaluation of Bacterial Leaching. Appl. Environ. Microbiol. 43: 961-966
Schramm A., Beer D., Wagner M. and Amann R.(1998)Identification and Activities In Situ of Nitrosospira and Nitrospira spp. as Dominant Populations in a Nitrifying Fluidized Bed Reactor. Appl. Environ. Microbiol. 64:3480-3485
Somiya I., Tsuno H., and Matsumoto M. (1988) Phosphorus Release-storage Reaction and Organics Substrate Behavior in Biological Phosphorus Removal. Water Research. 22:49-58
Stahl D., and Amann R. I. (1991)Development and Application of Nucleic Acid Probes in Bacterial Systematics. 205-248. In E. Stackebrandt and M. Goodfellow (ed.), Sequencing and Hybridization Techniques in Bacterial Systematics. John Wilry and Sons, Chichester, England.
Stams, A.J.M. and Oude Elferink, S.J.W.H. (1997). Understanding and advancing wastewater treatment. Curr. Opin. Biotech. 8:328-334
Stothard D. R., Hay J., Jill M., Schroeder-Diedrich,Seal D. V. and Byers T. J. (1999) Fluorescent Oligonucleotide Probes for Clinical and Environmental Detection of Acanthamoeba and the T4 18S rRNA Gene Sequence Type. Journal of Clinical Microbiology. 37:2687-2693
Tyagi R. D., Couillard D. and Tran F. (1988) Heavy Metals Removal from Anaerobically Digested Sludge by Chemical and Microbiological Methods. Environ. Pollut. 50:295-316
Tyagi R. D., Sreekrishnan T. R., Campbell P. G. C. and Blais J. F. (1993) Kinetics of Heavy Metal Bioleaching from Sewage Sludge-II. Mathematical Model. Water Research. 27:1653-1661
Wagner M., Amann R., Lemmer H. and Schleifer K.-H. (1993)Probing Activated Sludge with Oligonucleotides Specific for Proteobacteria:Inadequacy of Culture-Dependent Methods for Describing Microbial Community Structure. Appl. Environ. Microbiol. 59:1520-1525
Wagner M., Amann R., Lemmer H., and Schleifer K.-H. (1994a)Probing Activated Sludge with Fluorescently Labeled rRNA Targeted Oligonucleotides. Water Science and Technology. 29:15-23
Wagner M., Amann R. I., Ludwig W. and Schleifer K-H. (1994b) In situ Probing of Gram-Positive Bacteria with High G+C Content Using 23S rRNA Targeted Oligonucleotides. Microbiology. 140:2849-2858
Wagner M., Rath G., Amann R., Koops H.-P., and Schleifer K.-H.(1995)In Situ Identification of Ammonia-Oxidizing Bacteria. Systematic and Applied Microbiology. 18:251-264
Wagner M., Rath G., Koops H.-P., Flood J. and Amann R. (1996)In Situ Analysis of Nitrifying Bacteria in Sewage Treatment Plants. Water Science and Technology. 34:237-244
Wareham D. G., Hall K. J., and Mavinic D. S. 1993. Real-time Control of Aerobic-anoxic Sludge Digestion Using ORP. J. Environmental Engineering. 119:120-136
William G. M., Maria T. B., Beatriz Q. and Steven E. L. (2001)Biological Sensor for Sucrose Availability: Relative Sensitivities of Various Reporter Genes. Appl. Environ. Microbiol. 67:1308-1317
Wong L. T. K. and Henry J. G. (1988) Bacterial Leaching of Heavy Metals from Anaerobically Digested Sludge. In: Biotreatment Systems. Wise, D. L., (ed.), CRC Press Inc., Boca Raton, FL. 125-169
Wozniak D. J. and Huang J. Y. C. (1982) Variables Affecting Metal Removal from Sludge. J. Water Pollut. Control. 54:1574
Zheng D., Alm W., Stahl D. A. and Raskin L.(1996). Characterization of Universal Small-Subunit rRNA Hybridization Probes for Quantitative Molecular Microbial Ecology Studies. Appl. Environ. Microbiol. 62:4504-4513
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top