跳到主要內容

臺灣博碩士論文加值系統

(54.224.117.125) 您好!臺灣時間:2022/01/23 19:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林瑤玓
研究生(外文):Lin Yao Ti
論文名稱:紫色不含硫光合作用細菌於連續流產氫之研究
論文名稱(外文):Continuous photobiohydrogen production by purple nonsulfur bacterium
指導教授:李季眉李季眉引用關係洪俊雄洪俊雄引用關係
指導教授(外文):Chi-Mei LeeChun-Hsiung Hung
學位類別:碩士
校院名稱:國立中興大學
系所名稱:環境工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:110
中文關鍵詞:紫色不含硫光合作用菌連續流迴流試程連續流無迴流試程產氫率
外文關鍵詞:purple nonsulfur bacteriumCSTR reactor with recycleCSTR reactor without recyclehydrogen production rate
相關次數:
  • 被引用被引用:12
  • 點閱點閱:372
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究的目的為利用不同之連續流操作條件以試驗出厭氧之光合作用細菌於連續流產氫之最佳操作條件。以前三年研究所篩選之菌株編號為WP3-5,具產氫能力之紫色不含硫光合作用細菌,植種於連續流之光合反應槽中,添加麩胺酸作為氮源,並以厭氧產氫程序放流水中主要之有機物成份作為模擬進流基質,分別進行無迴流式及迴流式之連續流光合產氫的試驗,最後並測試以實際經鹼篩處理之厭氧產氫程序放流水作為光合產氫可行性的研究。
開始連續流試程之前,先利用批次的方法分別研究以麩胺酸或氨氮為氮源時、光合菌所需之最佳產氫之基質條件,並針對乙醇及磷酸鹽等影響光合菌產氫之因子來進行測試。利用批次所得之最佳產氫之基質條件來進入連續流的試驗。
由批次研究的結果顯示,以麩胺酸為氮源時,由單一基質丁酸之產氫測試中獲得最佳產氫之碳氮比為6.7,而最佳產氫之丁酸濃在3000 mg/L。而於混合酸之測試結果為,複合基質條件於乙酸280mg/L,丙酸99 mg/L及丁酸1200 mg/L添加麩胺酸500 mg/L 時,其產氫效果最佳,培養60小時後約有75.6 mmole/L之產氫量。
在以氨氮為氮源配製合成廢水之批次研究中,額外添加麩胺酸及乙醇對產氫的影響均為負面。雖大部份的紫色不含硫光合細菌能夠利用乙醇作為碳源及電子供給者,但即使於最低乙醇濃度178 mg/L之條件下仍有抑制產氫的情形。於實驗中並發現,在有機酸濃度控制較低的條件下,乙酸140 mg/L,丙酸45 mg/L,及丁酸120 mg/L,氯化銨添加100 mg/L時,70小時後之氨氮剩餘濃度為20mg-NH4+/L,細胞濃度約在0.58 g/L,其氨氮利用速率較高產氫量也較大。
於連續流之無迴流試程中有三個試程,分別是水力停留時間15,20,及56.8小時。水力停留時間控制於15小時無法使反應槽中光合菌的細胞濃度維持衡定,而在水力停留間20小時的進流條件下有最佳的產氫量,平衡時有0.504 mmole/hr 的產氫率,主要是利用丙酸來產氫。
在水力停留時間控制為56.8小時,其產氫率為0.345 mmole/hr,MLSS為1.3 g/L,雖系統所能維持的MLSS雖較高,但由於光能利用率降低,以及所累積的氨氮濃度較高而使得產氫量沒有提升。而將試程之進流基質濃度降為原來的50 % 後,系統平衡時的產氫率為0.28 mmole/hr,細胞濃度約在0.6 g/L,並沒有較高的產氫率。此外,若系統中的氨氮濃度累積至25 mg-NH4+/L,氫氣濃度會降低至8 % 以下,且由有機酸的監測結果可知,光合菌能同時利用乙酸丙酸及丁酸作為電子供給者。
由迴流式連續流試程的測試結果顯示,迴流試程中所控制之細胞停留時間較無迴流試程要高,因此系統之產氫率均較無迴流試程要高。於水力停留時間30小時迴流比50 %的進流條件下,原來以丙酸、丁酸產氫時,其產氫率為0.710 mmole/hr,而在80小時後系統明顯改以乙酸產氫,其平衡時的產氫率即降為0.648 mmole/hr,其MLSS為0.96 g/L,SRT為2.25天。
而改變進流條件為40小時,100 %的迴流比時,系統產氫率提高為0.967 mmole/hr,MLSS控制在0.94 g/L,平均污泥停留時間有7.5天。於此操作條件下,因有較高的細胞停留時間,且MLSS控制較低,其光能利用率較高,加以系統中平均氨氮濃度較低,因此連續的氫氣生成量最佳。另外,於此試程的後續研究中,藉由提高系統控制之麩胺酸濃度250 mg/L,以改變系統操作之碳氮比,約50小時後再降回原系統所控制之碳氮比後,系統轉而只大量地利用丁酸為其電子供給者,由此可知,不同碳氮比的控制能轉換細胞能量代謝的途徑。
在實際以鹼篩處理之厭氧產氫程序放流水作為光合產氫基質之測試中,由於氨氮濃度太高,因此只能以間歇進流的方式獲得少量氫氣,系統操作中並沒有偵測到甲烷氣。
由本研究的試驗結果,光合菌能同時利用乙酸丙酸及丁酸作為電子供給者,將進流條件控制為40小時迴流比100 %的條件下有最佳的產氫率,為0.967 mmole/hr。在反應槽的控制方面,藉由改善污泥迴流效率以及適度增加迴流比以控制反應槽中的MLSS能得到更好的產氫結果。
Abstract
For the study of continuous flow hydrogen photobioproduction, CSTR reactors w/o recycle were operated with seeded purple nonsulfur bacterium. Artificial substrate with glutamate as the nitrogen source was prepared to simulate the main organic composition in the effluent of anaerobic hydrogen production process.
Before the experiment of continuous flow, batch tests was performed for finding the optimum substrate concentrations for hydrogen production. Factors concerning hydrogen photobioproduction, such as alcohol and phosphate, was included in the batch tests. Optimum conditions obtained from batch study was then put in use for the continuous flow study.
The results from single substrate of batch tests indicated that the best C/N ratio was around 6.7 while butyrate was used as the only electron donor, glutamate as the nitrogen source. Highest hydrogen production was obtained when butyrate concentration was around 3000 mg/L. When applying complex substrate, acetate 280 mg/L, propionate 99 mg/L, butyrate 1200 mg/L and glutamate 500mg/L were resulted highest hydrogen production. The hydrogen production achieved 75.6 mmole/L after 60 hours cultivation under these conditions.
When ammonia was used as the nitrogen source, hydrogen productions were limited regardless the additions of glutamate or alcohol.
Under continuous flow experimentation, the results showed that CSTR reactor without recycle had a maximum hydrogen production rate of 0.504 mmole/hr when operated with a 20 hours hydraulic retention time (HRT). Propionate was identified to be the major electron donor. While operated under a 56.8 hours hydraulic retention time, acetate, propionate, and butyrate were found to serve as electron donor at the same time and the hydrogen production rate was around 0.35 mmole/hr.
The highest hydrogen production rate for operating under CSTR with recycle (HRT = 40hr, 100% recycle, MLSS=0.94 g/L and SRT = 7.5 days) was 0.967 mmole/hr. Hydrogen production rate went down to 0.648 mmole/hr when operated under HRT=30 hr, 50% recycle, MLSS 0.96 g/L and SRT=2.25 days. In the later condition, the system turned into using acetate as electron donor and the hydrogen concentration in the collected gas was down from 50% to 28%.
Sludge recycle improved hydrogen production in the continuos flow experiment.When feeding real effluent solution from anaerobic hydrogen production process as the influent for the same CSTR reactor used in this study, the resulted hydrogen production was unsatisfied. Methane gas was not detected in the collected gas. It was concluded that this hydrogen production was inhibited by the high ammonia concentration.
Maximum hydrogen production rate was 0.967 mmole/hr(HRT=40 hr, 100% recycle, MLSS=0.94 g/L, and SRT=7.5 days). In the biohydrogen production of applying real wastewaters, the manipulation of ammonia concentration could still be the limitation.
目錄
摘要 I
Abstract IV
目錄 VI
表目錄 IX
圖目錄 X
第一章 前言 1
第二章 文獻回顧 3
2-1研究緣起 3
2-1-1能源危機 3
2-1-2 化石能源對環境的衝擊 4
2-1-3 氫能源與化石能源 5
2-1-4 氫能源的應用 6
2-1-5 厭氧生物產氫程序的發展 7
2-2 光合作用細菌概述 11
2-2-1 光合作用細菌獲得能量的型式 11
2-2-2 光合營微生物之種類及其特性 14
2-2-3 無氧光合營微生物 17
2-2-4光合作用細菌在環工上之應用 18
2-3 光合作用細菌的產氫特性 21
2-3-1 紫色不含硫光合作用細菌的產氫特點 21
2-3-2 紫色不含硫光合作用細菌之產氫機制 22
2-3-3 影響光合作用細菌產氫的因子 23
2-3-3-1 酵素的Cofactor 23
2-3-3-2 光照強度 24
2-3-3-3 溫度 25
2-3-4 營養需求對紫色不含硫菌產氫影響 26
2-3-4-1 電子供給者 26
2-3-4-2 氮源 29
2-3-5 其他對紫色不含硫菌產氫之影響因子 32
2-4 已知可產氫之紫色不含硫光合作用細菌菌種 33
2-5可應用紫色不含硫菌產氫之實際廢水種類 34
第三章 材料與方法 35
3-1 最佳產氫碳氮比及其它影響因子之研究 35
3-1-1菌種來源 35
3-1-1-1 固體培養基保存方法 36
3-1-1-2液體培養基保存方法 36
3-1-1-3菌種之預培養 37
3-1-2 批次實驗 38
3-1-2-1單一及混合光合菌對單一基質丁酸之產氫測試 38
3-1-2-2單一及混合光合菌對模擬混合酸之產氫測試 41
3-1-2-3 模擬逢甲厭氧產氫程序之放流水額外添加麩胺酸對光合產氫的影響 42
3-1-2-4 初始磷酸鹽的添加量對於產氫的影響 45
3-2 連續流中的光合產氫 46
3-2-1 無回流式反應槽之光合產氫 46
3-2-2 回流式反應槽之光合產氫 46
3-2-3 以逢甲厭氧產氫程序CSTR反應槽之放流水作為光合產氫連續進流基質之測試 46
3-3 分析方法 50
3-3-1氫氣(H2) 50
3-3-2氨氮(NH4+) 50
3-3-3磷酸鹽 51
3-3-4 pH值 52
3-3-5細胞乾重 52
3-3-6 細胞密度(O.D.) 53
3-3-7 有機酸 53
3-4 實驗藥品與實驗用水 54
第四章 結果與討論 55
4-1 最佳產氫碳氮比及其它影響因子之初步研究 55
4-1-1單一及混合光合菌對單一基質丁酸之產氫測試 55
4-1-1-1 最佳產氫之碳氮比 55
4-1-1-2 於最佳產氫碳氮比條件下之最佳產氫之基質濃度 57
4-1-2 單一及混合光合菌對模擬混合酸之產氫測試 59
4-1-3 模擬逢甲厭氧產氫程序之放流水額外添加麩胺酸對光合產氫的影響 61
4-1-3-1較高氨氮濃度 61
4-1-3-2 較低氨氮濃度 64
4-1-4初始磷酸鹽的添加量對於產氫的影響 68
4-1-4-1 不同混合酸濃度控制於兩種碳氮比下的初步實驗 68
4-1-4-2 以產氫最佳的混合酸稀釋比進行不同時間變化的監測 71
4-2 連續流中的光合產氫 80
4-2-1 無回流式反應槽之光合產氫 80
4-2-2 迴流式反應槽之光合產氫 89
4-2-3 以逢甲厭氧產氫程序CSTR反應槽放流水作為光合產氫連續進流基質之測試 96
第五章 結論與建議 99
5-1結論 99
5-2建議 101
參 考 文 獻 103
參 考 文 獻
吳培堯。1991。以紫色不含硫光合作用菌處理豬糞尿廢水之硫化氫。中興大學環境工程學系學士論文。台中。
呂慶慧。1992。活性污泥法添加及未添加光合作用菌處理屠宰廢水之功能比較。成功大學環境工程研究所碩士論文。台南。
李季眉。1985。以不含硫光合作用細菌處理豬糞尿廢水之基礎研究。第十屆廢水處理技術研討會論文集。第55-64頁。
李季眉。1988。以紫色含硫光合作用細菌Amoebobacter pedioformis strain CML2處理豬糞尿廢水之硫化氫。第十三屆廢水處理技術研討會論文集。第206~215頁。
李季眉。1990。以固定化之紫色含硫光合作用細菌處理豬糞尿廢水之硫化氫。第十五屆廢水處理技術研討會論文集。第313~327頁。
李季眉。1991。以固定化之紫色含硫光合作用細菌處理豬糞尿廢水之硫化氫─連續流程試驗。第十六屆廢水處理技術研討會論文集。第157~168頁。
柳中明等。1996。溫室氣體排放減量策略之整體觀。國立台灣大學全球變遷研究中心、行政院環境保護署、中華民國地球科學學會,EPA 85-1003-09-13,72頁,台北。
施學銘。1996。全球變遷對台灣環境的影響與因應策略之探討。「全球氣候變遷與溫室氣體排放減量」座談會論文集,國立中山大學海洋地質與化學研究所,第26-41頁,高雄。
涂良君。1999。產氫光合作用細菌之分離與篩選。中興大學環境工程學系學士論文。台中。
梁凱莉及高惠娟編譯。1997。普通生物化學,初版。合記圖書出版社,台北。
陳樹功、王西華。1982。利用光合菌處理澱粉廢液─Rhodopseudomonas之分離與應用。第一屆廢水處理技術研討會論文集。第213-223頁。
董昀昌。2001。產氫光合作用細菌利用厭氧產氫程序放流水的產氫能力研究。中興大學環境工程學系學士論文。台中。
楊日昌。1993。全球變遷與台灣。「全球變遷與能源問題」研討會論文摘要,工業技術研究院能源與資源研究所,第3-4頁,台北。
蕭景庭。2000。產氫光合作用細菌之生理特性研究。中興大大學環境工程學系學士論文。台中。
非同步網路教學中心環境與貿易課程。網站名稱:http://course2000.moe.edu.tw/
Australia, EDF News 1999. http://www.planetark.org/
BP Amoco Statistical Review of World Energy 2000.網站名稱: http://www.bp.com/centres/energy/world_stat_rev/index.asp/
Biebl, H. and N. Pfennig. 1981. Isolation of members of the family Rhodospirillaceae. pp.267~273. In:M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, H. G. Schlegel (eds.), The Prokaryotes, Vol. 1. Springer-Verlag, New York.
Bolliger R., Zürrr H., and Bachofen R. Photoproduction of molecular hydrogen from wastewater of a sugar refinery by photosynthetic bacteria. Appl. Microbiol. Biotech. 1985. 23:147-151.
Brock and Madigan. 1991. Microbiology.
Debabrata D. and T. Nejat Veziroglu. 2001. Hydrogen production biological processes: a survey of literature. International J. of hydrogen energy, 26:13-28.
Fascettic, E. and O. Todini. 1995. Rhodobacter sphaeroides RV cultivation and hydrogen production in a one- and two-stage chemostate. Appl. Microbiol. Biotechnol. 44:300~305.
Fascetti, E., E. D’addario, O. Todini, and A. Robertiello. 1998. Photosynthetic hydrogen evolution with volatile organic acids derived from the fermentation of source selected municipal solid wastes. J. Hydrogen Energy. Vol.23: 753~760.
Fißer, J., C. Schirra, G-W. Kohring, and F. Giffhorn. 1994. Hydrogen production from aromatic acids by Phodopseudomonas palustri. Appl. Microbiol Biotechol, 41:395~399.
Fißler J., C. Schirra, G-W Kohring, and F. Giffhorn. 1995. Enhanced hydrogen production from aromatic acid by immobilized cell of Rhodopseudomanas palustris. Appl. Microbiol. Biotechnol. 44:43~46.
Francou, N., and P. M. Vignais. 1984. Hydrogen production by Rhodopseudomonas capsulata cells entrapped in carrageenan beads. Biotehnology Letters 6(10):639~644
Gaudy, A. F. 1980. Microbiology for Environmental Scientists and Engineers. McGraw-Hill. pp. 351 Inc., New York.
Gloe, A., and N. Pfenning. 1986. Selective inhibitors of continuous non-axenic hydrogen production by Rhodobacter capsulatus. J. Appl. Bacterial. 61:547~557.
Gloe, A., N. Pfenning, H. Brockmann, and W. Trowitsh. 1975. Relation between chlorophyll a and the bacterioichlorophylls a, b, c, d, and e. Arch. Microbio. 102:103~109.
Göbel, F. 1978. Direct measurement of pure absorbance spectra of living phototrophic microorganisms. Biochimica et Biophysica Acta. 538:593~602.
Harwood, C., and J. Gibson. 1988. Anaerobic and aerobic metabolism of diverse aromatic compounds by the photosynthetic bacteria Rhodopseudomonas palustris . Appl. Environ. Microbiol. 54(3):712~717.
Hillmer, P., and H. Gest. 1977. H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata─H2 production by growing culture. J. Bacteriol. 129:724~731.
Imhoff, J. F. and H. G. Trüper. 1992. The genus Rhodospirillum and related Genera. pp.2141~2155 In: H. Balows, H. G. Trüper., M. Dworkin, W. Hareder and K. H. Schleifer (2nd ed.), The Prokaryotes,Vol. 3. Springer-Verlag, New York.
John G. O., S. K. Ormerod and H. Gest., 1961. Light-Dependent Utilization of Organic Compounds and Photoproduction of Molecular by Photosynthetic Bacteria; Relationships with Nitrogen Metabolism., Archives of Biochemistry and Biophysics 94:449-463.
Jouanneau, Y., B. C. Kelley, Y. Berlier, P. A. Lespinat, and P. M. Vignais. 1980. Continuous monitoring by mass spectrometry of H2 production and recycling in Rhodopseudomonas capsulata. J. Bacteriol. P. 628~636.
Kelley, B. C., C. M. Meyer, C. Gandy, and P. M. Vignais. 1977. Hydrogen recycling by Rhodopseudomonas capsulata. FEBS Lett. 81:281~285.
Kim J., S. Ito, and H. Takahashi. 1982. Production of molar hydrogen in outer bacth cultures of Rhodospeudomonas sphaeroides. Agric. Biol. Chem. 46:937~941.
Kobayashi, M. and H. Nakanishi. 1971. Construction of a purification plant for polluted water using photosynthetic bacteria. J. Ferment. Technol. 49(9):817~825.
Kobayashi, M. and W. Ye. 1986. Role of phototrophic bacteria in nature and the fuel gas production. pp. 1~9. In:Fourth International Symposium on Microbial Ecology. ICOM Conference , Ljubljana, Yugoslavia.
Kobayashi, M., H. Hirotani, Y. Agui, and E. Takahluent. 1990. Removal of coliphages from wastewater effluent by phototrophic bacteria. Wat. Sci. Tech. 22(9):59-63.
Kondratieva, E. N. 1976. Phototrophic micro-orgnisms as source of hydrogen and hydrogenase formation. pp.205~216 In: H. G. Schlegel and J. Barnea (eds.), Microbial Energy Conversion, Erich Goltze KG, Göttingen.
Lay, J.J., Lee. Y. J., and Noike, T. Water Res. 1999, 33(11), 2576.
Margaritis, A. and J. Vogrinnetz. 1983. The effect of glucose concentration and pH on hydrogen production by Rhodopseudomonas Sphaeroides VM81. J. Hydrogen Energ. 8(4):281~294.
Minami M. Biohydrogen production using sewage sludge by photosynthetic bacteria. Biohydrogen 97’, the international conference on Biological Hydrogen Production, Kona, Hawaii, USA, 1997.
Miyake, J., N. Tomizuka, and A. Kamibayashi. 1982. Prolonged photo-hydrogen production by Rhodospirillum rubrum. J. Ferment. Technol. 60 (3):199~203.
Miyake J., X. Mao, and S. Kawamura. 1984. Photoproduction of hydrogen from glucose by Co-Culture of photosynthetic bacterium and Clostridium butyricum. J. Ferment. Technol. 62(6):531~535.
Miyake, J. and S. Kawamura. 1987. Efficiency of light energy conversion to hydrogen by the photosynthetic bacterium Rhodobacter sphaeroides. J. Hydrogen Energ. 12(2):147~149.
Miyake, J., M. Tadashi, and S. P. Anthony. 2001. Hydrogen photoproduction by purple bacteria : immobilized and suspension cultures. Biohydrogen II : 229-239.
Yetis M., U. Gündüz, I. Eroglu, M. Yücel, and L. Türker. 2000. Photoproduction of hydrogen from sugar refinery wastewater by Rhodobacter sphaeroides O.U. 001. International Journal of Hydrogen Energy 25 : 1035-1041.
Nandi, R. and Sengupta, S. Crit. Rev. Microbiol. 1998, 24(1), 61.
Odom, J. M., and J. D. Wall. 1983. Photoproduction of H2 from cellulose by an anaerobic bacteria Co-culture. Appl. Environ. Microbiol. 45(4):1300~1305.
Ohta, Y., J. Frank, and A. Mitsui. 1981. Hydrogen production by marine photosynthetic bacteria─Effect of environment factors and substrate specificity on growth of a hydrogen-Producing marine photosynthetic bacterium, Chromatium sp. Miami PBS 1071. J. Hydrogen Energ. 6(5):451~460.
Pfenning, N. 1978. Rhodocyclus purpureus gen. nov. and sp. nov., a ring-shaped vitamin B12-requiring member of the family Rhodospirillaceae. International Journal of Systematic Bacteriology. 28:283-288.
Pfenning, N., and H. G. Trüper. 1977. The Rhodospirillale (phototrophic or photosynthetic bacteria). pp. 119~130. In : Laskin, A. I., Lechevalied, H. A. (eds.), CRC Handbook of microbiology, Vol. 1. Organismic Microbiology, (2nd ed), Cleveland:CRC Press.
Planchard, A., L. Mighot, T. Jounenne, and G-A. Junter. 1989. Photoproduction of molecular hydrogen by Rhodospirillum rubrum immobilized in composite agar alyer / microporous membrane structure. Appl. Microbiol. Biotechnol. 31:49~54.
Roychowdhury, S., D. Cox, and M. Levandowsky. Intl. Assoc. Hydrogen energy 1988, 584.
Sasikala, K., C. V. Ramana, and P. R. Rao. 1991. Environmental regulation for optimal biomass yield and photoproduction of hydrogen by Rhodobacter sphaeroides O.U.001*. J. Hydrogen Energ. 16(9):597~601.
Sasikala, K., C. V. Ramana, P. R. Rao, and M. Subrahmanyam. 1990. Effect of gas phase on the photoproduction of hydrogen and substrate conversion efficiency on the photosynthetic bacterium Rhodobacter sphaeroides O.U. 001*. J. Hydrogen Energ. 154(6):795~797.
Sasikala K., Chv. Ramana, and RP. Raghuveer. Photoproduction of hydrogen from the wastewater of a distillery by Rhodobacter Sphaeroides O.U.001. Int. J. Hydrogen energy 1992. 17:23-7.
Sawada, H. and P. L. Rogers. 1977. Photosynthetic bacteria in waste treatment-Role of Rodopseudomonas capsulata with agriculture industrial effluents. J. Ferment. Technol. 55(4):326~336.
Schick, H. J. 1971. Interrelationship of nitrogen fixation, hydrogen evolution and photoproduction in Rhodospirillum rubrum. Arch. Mickrobiol. 75:102-109.
Schlegel, H. G. and K. Schneider. 1985. Microbial metabolism of hydrogen. pp.439~457 In:M. Mooyoung. Comprehensive Biotechnology. Pergamon Press, Oxford.
Schmidt, K. S. Liaaen-Jensen, and H. G. Schlegel. 1963. Die Carotinaide der Thiorhodaeae I. Okenon als Hauptcarotinoid von Chromatium okennii Perty. Archiv fur Mikrobiologie. 46:171~126.
Sierfert, E., R. L. Itgens, and N. Pfenning. 1978. Phototrophic purple and green bacteria in a sewage treatment plant. Appl. Environ. Microbiol. 35(1):38~44.
Singh, S. P. and S. C. Srivastava. 1991. Isolation of non-sulphur photosynthetic bacterial strain efficient in hydrogen production at elevated temperatures. J. Hydrogen Energ. 16(6):403~405.
Stevens, P., C. Vertoghen, P. D. Vos, and J. D. Ley. 1984. The effect of temperature and light intensity on hydrogen gas production by different Rhodopseudomonas capsulata strains. Biotechnol. Lett. 6(5):277~282.
Thangaraj, A. and G. Kulandaivelu. 1994. Biological hydrogen photoproduction using dairy and sugarcane waste waters. Bioresource Technology 48:9~12.
Trüper, H. G. and N. Pfenning. 1981. Characterization and identification of the anoxygenic phototrophic bacteria. pp.299-312. In: M. P. starr, H. Stolp, H. G. Truper, A. Balows, H. G. Schlegel (eds), The Prokaryote, Vol. 1. Springer-Verlag, New York.
Van G. S. and S. Sung. 2001. Biohydrogen production as a function of pH and substrate concentration. Environ. Sci. Technol. 35: 4726-4730.
Vincenzini, M., R. Materassi , M. R. Tredici, and G. Florenzano. 1982. Hydrogen production by immobilized cell light-dependent dissimilation of organic substances by Rodopseudomonas Palustris. J. Hydrogen Energ. 7(3)
Wilmotte, A. 1994. Molecular evolution and taxonomy of the cyanobacteria. In: D. Bryant (ed.) The Molecular Biology of Cyanobacteria, pp. 1-25. Kluwer Academic, Netherlands.
Woo, S. J., J. K. Lee, T. J. Kwon, and Y. H. Kho. 1985. Sanop Misaengmul Hakhoechi 13:257.
Yokoi, H., T. Ohkawara, J. Hirose, S. Hyashi, and Y. Takasaki. 1995. Characteristics of hydrogen production by aciduric Enterobacter aerogenes strain HO-39. J. Ferment. Bioeng. 80(6):571~574.
Zajic, J. E., N. Kosaric, and J. D. Brosseau. 1978. Microbial production of hydrogen. Adv. Biochem. Eng. 9:57~109.
Zhu H., Suzuki T., Tsygankov AT, Asada Y., and Miyake J. 1999. Hydrogen production from tofu wastewater by Rhodobacter sphaeroides immobilized in agar gels. Int. J. Hydrogen energy. 24: 305-310.
Zürrer, H. and R. Bachhofen. 1982. Apsects of growth and hydrogen production of the photosynthetic bacterium Rhodospirillum rubrum in continuous culture. Biomass 2:165~174.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 林原宏(民90a):模糊語意變數量表計分之信度模擬分析。測驗統計年刊,9,193-219。
2. 張有恆、何成章(民84):應用模糊理論於捷運系統服務水準評估之研究。運輸計劃季刊,24(1),15-38。
3. 林清平(民87):模糊理論與藝術作品評價。國教月刊,45(1),7-16。
4. 吳毓瑩(民85):量表奇偶點數的效度議題。台北市:第一屆調查研究方法與應用學術研討會。
5. 吳柏林 (民85):社會科學研究中的模糊邏輯與模糊統計分析。中國統計通訊,7(11),14-30。
6. 吳柏林 (民83):模糊統計分析─問卷調查研究之新方向。國立政治大學研究通訊,2,65-80。
7. 何偉雲 (民84):學生學習成就的模糊統計分析。國立屏東師範學院屏東師院學報,8,167-180。
8. 甘兆欽(民88):模糊數對不同人格特質管理者的策略研擬之應用:以高雄國賓飯店為例。中山管理評論,7(3),907-929。
9. 王鵬華、吳昭彥(民85):模糊多準則決策應用在高等教育之選擇。高雄工學院學報,3,295-304。
10. 王元仁 (民89):以模糊理論建構以技職為導向知之課程單元評估模式。教育研究資訊,8(3),1-12。
11. 徐村和、朱國明、詹惠君 (民88):廣告業服務接觸與顧客行為意圖關係之研究─模糊語意尺度之應用。東吳經濟商學學報,26,1-25。
12. 張國恩、林水成、潘宏明、陳世旺(民87):屬性化概念圖的模糊評量。科學教育學刊,6(1),81-94。
13. 張鈿富、孫慶珉 (民82):學習成就評量與模糊模式之分析。國立政治大學學報(社會科學類上冊),67,57-73。
14. 連經宇、陳彥仲(民88):模糊語意變數法應用於住宅消費決策行為之初探研究。住宅學報,8,69-90。
15. 陳昭宏(民87):以fuzzy演算法分析評量用詞對問卷調查之影響。東方工商學報,21,76-82。