跳到主要內容

臺灣博碩士論文加值系統

(3.87.33.97) 您好!臺灣時間:2022/01/27 17:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊博清
論文名稱:添加灰渣於掩埋場覆土中甲烷氧化作用之研究
指導教授:廖文彬廖文彬引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:環境工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:灰渣甲烷氧化
相關次數:
  • 被引用被引用:9
  • 點閱點閱:680
  • 評分評分:
  • 下載下載:73
  • 收藏至我的研究室書目清單書目收藏:0
摘要
不論國內、外灰渣再利用於掩埋覆土行為已行之多年,但回顧國內外有關於灰渣的文獻,大多著眼於物理、化學性質及重金屬等方面上,尚無評估此技術對於覆土中甲烷氧化作用的影響。
所以本次研究初嚐以批次及管柱實驗方法,探討添加之灰渣對甲烷氧化之影響;在批次灰渣添加實驗結果中,甲烷氧化能力隨灰渣添加劑量增加而減少。當底灰2%至10﹪及飛灰0.2﹪至0.4%之低劑量添加時,雖不會對甲烷氧化造成正面性的促進效益,但也不會形成明顯的抑制效果;底灰15﹪及飛灰0.6%之劑量添加時,對甲烷氧化都會造成遲滯,且遲滯時間的長短也隨灰渣種類而異;底灰及飛灰分別在20%及2%添加劑量時已完全抑制甲烷氧化作用,兩者相較之下,飛灰對於甲烷氧化菌具有較明顯的抑制性。
在灰渣pH值對甲烷氧化速率之影響方面,仍舊以原土樣pH值做為最佳氧化率的依據及標準,隨之跟進的則是底灰或飛灰添加之pH值範圍在中性附近的7.5-8.5;底灰或飛灰添加之pH值範圍達至9.5左右,雖然開始對甲烷氧化菌影響,但在經過短時間的適應後,仍可進行甲烷氧化作用;底灰或飛灰添加之pH值大於11時,則已完全抑制了甲烷氧化作用的產生。
在管柱底灰添加實驗結果,與批次添加實驗結果大致相同,甲烷氧化潛勢大小分別為0%≒2%>10%>15%;管柱及批次甲烷氧化實驗結果,同時指出最佳甲烷氧化潛能位於30cm處。適當的土壤含水量、甲烷與氧氣濃度,可能提供微生物較佳的生長環境,使得甲烷氧化菌的活性較為活潑。在土壤管柱實驗結束之後,土壤氧化甲烷的能力,有明顯提高的現象,此乃指出土壤中的甲烷氧化菌,在管柱實驗期間被馴化所導致的。
目錄
摘要 І
目錄 II
圖目錄 Ⅶ
表目錄 Ⅸ
第一章序論 1
1-1研究動機與緣起 1
1-2 研究目的 2
1-3 研究範疇 3
第二章文獻回顧 4
2-1都市垃圾渣焚化灰渣 4
2-1-1灰渣來源 4
2-2焚化灰渣之基本性質 6
2-2-1焚化底灰之物裡性質 6
2-2-2焚化底灰之化學性質 8
2-2-3焚化底灰之溶出特性 10
2-2-4焚化飛灰之物裡性質 12
2-2-5焚化飛灰之化學性質 13
2-2-6焚化飛灰溶出特性 14
2-3甲烷對溫室效應的影響 16
2-4掩埋場概述 17
2-4-1垃圾掩埋場之穩定化過程 17
2-4-2掩埋場氣體的組成 18
2-5甲烷氧化菌的特性 19
2-5-1生理特性及分類 19
2-5-2甲烷單氧氧化酵素 22
2-6甲烷氧化作用 22
2-6-1好氧下的甲烷氧化 22
2-6-2厭氧下的甲烷氧化 23
2-7影響甲烷氧化之因子 25
2-7-1甲烷 25
2-7-2 pH值 26
2-7-3銅離子(Cu2+) 26
2-7-4土壤深度 27
2-7-5氧氣 28
2-7-6含水量 28
2-7-7溫度 30
2-7-8其他 30
第三章 研究內容與方法 31
3-1研究內容 31
3-2樣本的採集及前處理 31
3-2-1掩埋場覆土 31
3-2-2都市焚化灰渣 34
3-3基本性質分析 36
3-3-1實驗儀器及設備 36
3-3-2土壤基本性質分析 37
3-3-3焚化灰渣基本性質分析 38
3-4批次甲烷氧化實驗 40
3-4-1實驗儀器及設備 40
3-4-2灰渣種類及劑量甲烷氧化實驗 41
3-4-3飛灰pH值甲烷氧化實驗 43
3-5模擬掩埋場現場之管柱實驗 44
3-5-1實驗儀器及設備 44
3-5-2管柱結構簡介 44
3-5-3底灰劑量對甲烷氧化行為之實驗 47
3-6氣體濃度分析方法之OA/QC 52
第四章 結果與討論 56
4-1灰渣基本性質 56
4-1-1焚化底灰基本物化性質 56
4-1-2焚化飛灰基本物化性質 58
4-1-3酸中和當量 61
4-1-4毒性溶出試驗 62
4-2灰渣種類對甲烷氧化之影響 64
4-2-1底灰對甲烷氧化之影響 64
4-2-2飛灰對甲烷氧化之影響 67
4-2-3二氧化碳濃度變化趨勢 70
4-2-4灰渣pH值對甲烷氧化速率之影響 74
4-2-5灰渣中重金屬對甲烷氧化之影響 78
4-2-6飛灰pH值對甲烷氧化實驗 81
4-3不同底灰劑量下土壤管柱的甲烷氧化 83
4-3-1管柱底部之甲烷濃度變化量 83
4-3-2管柱縱深之氣體分佈 85
4-3-3管柱縱深之甲烷氧化能力 90
4-3-4 Michaelist-Menten equation 之動力常數 93
第五章 結論與建議 95
5-1結論 95
5-2建議 97
5-3本研究實用性 98
參考文獻 99
附錄一:氣體標準濃度的製作 106
附錄二:甲烷氧化速率之計算 108
附錄三:甲烷氧化之數據整理 110
附錄四:二氧化碳之數據整理 111
附錄五:pH值對甲烷氧化影響 112
附錄六:不同底灰劑量下土壤管柱之縱深氣體分佈 113
參考文獻(中文)
王鯤生,「一般廢棄物焚化灰渣之有害物質特性研究」,行政院環保署委託報告 。EPA-85-E3H1-09-02。民國八十五年。
王鯤生、孫長榮、林凱隆、張景雲、張毓舜,「都市廢棄物焚化對灰渣粒徑與重金屬分佈及溶出之探討」,第十三屆廢棄物技術研討會論文集,第463-469頁,民國八十七年。
王義狄,「環境中甲烷氧化菌計數方法之研究」,碩士論文,國立中興大學環境工程研究所民國八十七年,民國八十九年。
王興國,「掩埋場溫室效應氣體監測方法之研究-通量室法」,碩士論文,國立中興大學環境工程研究所,民國八十九年。。
林良平,土壤微生物,南山堂出版社,民國八十二年。
李建中、李釗、何啟華、鄭清江,「垃圾焚化灰燼之力學特性與在大地工程之應用」,一般廢棄物焚化灰渣資源化技術與實務研討會論文集,民國八十七年。
李季眉等,環境微生物,中華民國環境工程學會印行,民國八十六年。
李釗、江少鋒、郭文田,「都市垃圾焚化灰渣做為混凝土細骨材之可行性研究」, 一般廢棄物焚化灰渣資源化技術與實務研討會,第91-112頁,民國八十五年。
吳麗芬,「含可溶性甲烷單氧氧化酵素之甲烷氧化菌對三氯乙烯之分解」,碩士論文,國立中興大學環境工程研究所,民國八十二年。
周奮興,「以通量室監測封閉掩埋場甲烷排放量之研究」,碩士論文,國立中興大學環境工程研究所,民國八十七年。
徐玟瑜,「掩埋場覆土中土壤水對甲烷氧化行為之研究」,碩士論文,國立中興大學環境工程研究所,民國八十九年。
莊秉潔、廖文彬、劉大江,「溫室效應減緩計畫─1990台灣地區溫室效應氣體之調查」,行政院環保署,民國八十一年。
莊秉潔、廖文彬、劉其昌、張立鵬,「垃圾掩埋場溫室效應氣體排放研究(一)」,行政院國家科學委員會,NSC 82-0618-E-005-046,民國八十二年。
陳振鐸 譯,土壤物理學,初版,台北市徐氏基金會,台北,民國63年。
張祖恩,台灣地區都市垃圾焚化灰渣物化組成即溶出特性探討,一般廢棄物焚化灰渣資源化技術與實務研討會,民國八十五年。
廖文彬,「台中地區垃圾掩埋場溫室氣體排放量推估與監測」,行政院環境保護署,EPA-86-EA03-09-B6,民國八十六年。
廖文彬、洪肇嘉、李季眉等,「台中市垃圾掩埋場之溫室效應氣體排放量推估及監測」,行政院環保署,民國八十七年。
廖明村、張豐藤,「垃圾焚化灰渣處理處置及資源化技術探討」,中興工程顧問公司,第125 ~ 136頁,民國八十七年。
廖錦聰,「從日本的經驗談台灣焚化灰渣資源化方向」,一般廢棄物焚化灰渣資源化技術與實務研討會論文集,台北市,第29-42頁,民國八十五年。
廖錦聰、徐文慶、張蕙蘭、黃契儒,「焚化灰渣資源化研究(研究報告)」,工業技術研究院計畫報告,民國八十五年。
籃賢傳,「含水量對管柱中甲烷氧化行為影響之研究」,碩士論文,國立中興大學環境工程研究所,民國八十九年。
參考文獻(英文)
Adamsen, A., P. and G. M. King (1993), “Methane consumption in temperate and subarctic forest soils-Rates”, Appl. Environ. Microbial.,Vol.59, pp.485-490.
Bedard, C. (1989) , “Physiology,biochemistry and specific of CH4,NH4+,and CO oxidation by methanotrophs and nitrifier” ,Microbiol. Vol.53, pp68-84
Bender, M., and R. Conrad (1993), “Kinetic of methane oxidation in oxic soil”, Chemosphere., Vol. 26, pp.687-696.
Bender, M. and R. Conrad (1994), “Methane oxidation activity in various soils and freshwater sediment ,occurrence characteristic vertical profiles and distribution on grain size fractions”, Journal of geophysical research, Vol.99, pp.16531-16540.
Bender, M. and R. Conrad (1995), “Effect of CH4 concentration and soil conditions on the induction of CH4 oxidation activity”, Soil Biol. Biochem., Vol.27, pp.1517-1527.
Bobner, J., K. Spokas, E. Burton, R. Sweeney, and V. Corona (1996), “Landfills as atmospheric methane sources and sinks”,Atmospheric Environment, Vol.30, pp.4-5.
Boeckx, P., O. P. Cleemput, and I. Villaralvo (1996), “Methane emission from a landfil1 and the methane oxidising capacity of it’s covering soils”, Soil Biol. Biochem, Vol. 28, pp.1397-1405.
Börjesson, G. and B. H. Svensson (1997), “Seasonal and Diurnal methane emissions from a landfill and their regulation by methane oxidation”, Waste Management & Research, Vol.15, pp.33-54.
Börjesson, G., I. Sundh, A. Tunlid , and B. H. Svesson (1998), “Methane oxidation in landfill cover soils, as revealed by potential oxidation measurement and phospholipid fatty acid analyses”,Soil Biol. Biochem, Vol.30, pp.1423-1433.
Börjesson, G., I. Sundh, A. Tunlid, and A. Frostegård, (1998), “Microbial oxidation of CH4 at high partial pressures in an organic landfill cover soil under different moisture regimes”, FEMS Microbiology Ecology, Vol.26, pp.207-217.
Bowden, R. D., K. M. Newkirk, and G. M. Rullo (1998), “Carbon dioxide and methane fluxes by a forest soil under Laboratory-controlled moisture and temperature conditions”, Soil Biol. Biochem ,Vol.30, pp.1591-1597.
Buchholz , B.A. and S. Landsberger (1995), “Leaching Dynamics Studies of Municipal Solid Waste Incinerator”,Air & Waste Management Association, Vol.45, pp.579.
Broholm, K., T. H. Christensen, and B. K. Jensen (1993), “Different abilities of eight mixed cultures of methane-oxidation bacteria to degrade TCE”, Wat. Res., Vol. 27, pp.215-224.
Crill P., Martikainen P. J., Nykänen. H., and Silvola J (1994), “Temperature and N fertilization effects on methane oxidation in a drained peatland”, Soil Biol. Biochem, Vol.26, pp1331-1339
Dalton, H., D. J. Leak , and S. H. Stanley (1985), “Regulation and control monooxygense”, American Society for Microbiology, pp75-82.
David k., B. N., David and C, Michael (1995), “Capacity for Methane Oxidation in Landfill Cover Soils Measured in Laboratory-Scale Soil” Microcosms, Microbiology, Vol.61, pp.592-601.
Dobbie, K. E., and K. A. Smith (1996), “Comparison of CH4 oxidation rates in woodland, arable and set aside soils”. Soil Biol. Biochem, Vol.28, pp.1357-1365.
Gisi U., Schenker R., Stadelmann F. X. and Sticker H., (1990), Bodenökologie. Thieme, Stuttgart.
Graham, D. W., D. G. Korich, R. P. Lebance N. A. Sinclair, and R. G. Arnold (1993), Aplication of a Calorimetric Plate Assay for Soluble Methane Monooxygenase Activity” Apple. Environ. Microbial. Vol.58. No.7, pp.1176-1195.
Grasso D. (1993), “Hazardous waste site remediftion source control” ,Lewis Publishers, Florida.
Gulledge, J., and J. P. Schimel (1998), “Moisture control over atmospheric CH4 consumption and CO2 Production in diverse alaskan soils”, Soil Biol. Biochem, Vol.30, pp.1172-1132.
Gunnar, B. and B. H. Svensson, (1997), “Seasonal and diurnal methane emission from a landfill and their regulation by methane oxidation” , Waste Management & Research, Vol.15, pp.33-54.
Ham, R. K., M. R. Norman, and P. R. Fritschel (1993), “Chemical characterization of fresh kill landfill refuse and extracts”, Journal of environment engineering ,Vol. 119, pp.1176-1195.
Hanson, R. S., and T. E. Hanson, (1996), Methanotrophic bacteria, Microbio. Rev, Vol.60 , pp.439-471.
Helena, M. (1996), “Trace Metal Emissions From Co-combustion of Refuse Derived and Packaging Derived Fuels in a Circulationg Fluidized Bed Boiler”, Chemosphere , Vol. 32 , Issue.12 , pp.2457-2469.
IAWG(The International Ash Working Group) (1997), “Municipal Solid Waste” , Incinerator Residues, Resources, Conservation and Recycling, Vol.20, Issue 4, pp.295-296.
Johnson, C.A. and S. Brandenberger (1995), “Acid Neutralizing Capacity of Municipal Waste Incinerator Bottom Ash”, Environmental Science & Technology, Vol.29, No.1, pp.142-147.
Johnson, C.A., Kersten, M., Ziegler, F., Moor, H.C. (1996), “Leaching Behavior and Solubility — Controlling Solid Phases of Heavy Metals in Municipal Solid Waste Incinerator Ash”, Waste Management, Vol.16, No.1-3, pp.129-134.
Kightley, D., D. B. Nedwell, and M. Copper (1995), “Capacity for methane oxidation in landfill cover soils measured in laboratory-scale soil microcosms”. Appl. Eviron. Microbiol, Vol.61, pp.592-601.
Kida Akiko, Yukio N. and Teruji I. (1996), “Chemical Speciation and Leaching Properties of Elements in Municipal Incinerator Ashes”, Waste Management, Vol.16, Issue: 5-6, pp.527-536.
King, G., M. and A. Adamsen (1992), “Effect of temperature on methane-oxidation in forest soil and pure cultures of methanotroph Methylomonas rubra” , Appl. Environ. Microbiol., Vol.58, pp.2758-2763.
King, G. M., and S. Schnell (1994), “Effect of increasing atmospheric methane consumption”, Nature, Vol.370 ,pp.282-284.
Kjeldsen, P., D., and B. Kim (1997), “Attenuation of methane and nonmethane organic compounds in landfill gas affected soils”, Air & waste manage, Vol.47, pp.1268-1275.
Lidstron, M. E., and L. Somers. (1984), “Seasonal study of oxidation in lake Washington”. Appl. Environ. Microbiol., Vol.47,pp.1255-1260。
Mancinelli R. L. (1995), “The regulation of methane oxidation in soil”, Annual Reviews of Microbiology, Vol.49 , pp.581-60.
Marshall, K. C. and P. Press (1992), “Ecological aspects of methane oxidation ;a key determinant of global methane dynamic”, Advances in microbial ecology, Vol.12 ,pp.431-468.
Mingkui, K. C., Grayson, and S. Marshall (1998), “Global methane emission from wetlands and its sensitivity to climate change”, Vol. 32 , pp.3293-3299.
Mizutani, S., T. S.-i TsuneyukiSakai and H. Takatsuki (1996), “Release of Metals From MSWI Fly Ash and Availability in Alkali ConditionWaste” ,Management ,Vol.16 , pp.537-540.
Ontiveros, J.T. and D. S. Kosson (1989), “Physical Properties and Chemical Species Distributions Within Municipal Waste Combuster Ashes” , Environmental Progress, Vol.8, Issue: 3 ,pp 200-210.
Roslev, P. and G. M. King (1994), “Survival and recovery of methanotrophic bacteria starved under oxic and anoxic condition”, Appl. Environ. Microbial, Vol.60, pp.2602-2608.
Schnell, S. and G. M. King (1994), “Mechanistic analysis of ammonium inhibition of atmospheric methane consumption in forest soils”, Appl. Environ. Microbial, Vol.60, pp.3514-3521
Schnell, S. and G. M. King (1996), “Responses of methanotrophic activity in soils and cultures to water stress”, Appl. Environ. Microbiol., Vol.62, pp.3203-3209.
Singh, S., J. S. Singh, and A. K. kashyap (1999), “Methane consumption by soils of dryland rice agriculture:influence of varieties and N-fertilization”, Soil Biol., Vol. 38, pp.175-189.
Sitalua, B. K., L. R. Bakken, and G. Abrahamsen (1995), “CH4 uptake by temperate forest soil:effect of N input and soil acidification”, Soil Biol. Biochem. Vol.27, pp.871-880.
Steuder, P. A., R. D. Jones, M. S. Castro, J. M. Mellillo, and D. L. Lewis, (1995), “Microbial Controls of Methane Oxidation in Temperate forest and agricultural soils”, In Microbiology of Atmospheric Trace Gases, Vol.39, pp.69-84.
Thorneloe, S. A. ,B. A. Barlaz, R. Peer, L. C. Huff, L. Davis, and J. Mangino (1993), “Atmospheric methane:sources , sinks , and role in gobal change”, Waste Management, Vol.13, pp.60-398.
Tchobanoglous , G. H. Theisen, and S. Vigil (1993), Integrated solid waste management engineering principles and management issues, McGraw-Hill Inc. p.978.
Visscher , A. D., D. Thomas , P. Boeckx ,and V. C. Oswald (1999), “Methane oxidation in simulated landfill cover soil environments” ,Environ. Sci. Technol, Vol.33, pp.1854-1859
Visvanathan , J. C., P. A. Helttiaratchi ,and J. S. Wu(1999), “Methanotrophic activities in tropical landfill cover soils:effects of temperature , moisture content and methane concentration”, Waste Management & Research, Vol.17, pp.313-323
Visscher, A. D., M. Schippers, and O. V. Cleemput (2000), “Short-term Kinetic Response of Enhanced Methane Oxidation in Landfill Covers to Environmental Factors”, Biology and Fertility Soils, Vol.33 ,pp.231-237.
Ward, R. S., G. M. Williams., and C. C. Hills. (1996), “Changes in major and trace components of landfill gas during subsurface migration”, Waste Management & Research, Vol.14 , pp.243-261.
West, A. E., and S. K. Schmidt, (1998), “Wetting stimulated at atmospheric CH4 oxidation by alpine soil”, FEMS Microbiology Ecology, Vol.25, ppt.349-353.
Wiles, C. C. (1996), ”Municipal Solid Waste Combustion Ash: State-of-the-Knowledge”, Journal of Hazardous Materials, Vol.47, pp.325-329.
Whalen, S. C. and W. S. Reeburgh, (1996), “Moisture and temperature sensitivity of CH4 oxidation in boreal soils”, Soil Biol. Biochem. ,Vol. 28, pp.1271-1281.
Wiles, C. C., (1996), “Municipal Solid Waste Combustion Ash: State-of-the-knowledge”, Journal of Hazardous Materials, Vol.47, pp.325-329.
Whittenbury, R. and H. Dalton, (1981), The methylotrophic bacteria, p.894-902. In M. Starr, H. Stolp, H. G. Truper, A. Balows and H. G. Schlegel(ed.),The prokaryotes vol: 1.Spring-Verlag, New York.
Yan, J., Moreno, L., Neretnieks, I., (1998), “Neutralizing Processes in Leaching of Solid Waste: Modeling of Interactions Between Solid Waste and Strong Acid, Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substance & Environmental Engineering, Vol.33, No.6, pp.923-950.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top