跳到主要內容

臺灣博碩士論文加值系統

(35.153.100.128) 您好!臺灣時間:2022/01/19 03:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:游世達
研究生(外文):Shr-Da You
論文名稱:氣泡式流體化床焚化爐中熱傳特性之研究
論文名稱(外文):The study of heat transfer characteristics in bubbling fluidized bed incinerator
指導教授:魏銘彥
指導教授(外文):Ming-Yen Wey
學位類別:碩士
校院名稱:國立中興大學
系所名稱:環境工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:109
中文關鍵詞:氣泡式流體化床焚化爐二元床質熱傳
外文關鍵詞:Bubbling fluidized bed incineratorBinary bed materialsHeat transfer to immersed spheres
相關次數:
  • 被引用被引用:3
  • 點閱點閱:1042
  • 評分評分:
  • 下載下載:181
  • 收藏至我的研究室書目清單書目收藏:1
氣泡式流體化床因其高熱質傳之特性,漸廣為應用於廢棄物焚化處理,但過去基於化工領域之相關研究多以冷模及單一床質為主,而在流體化床焚化爐中,則多操作在高溫及因廢棄物之進料、吸附劑、底灰、床質破碎及燒結等因素而呈現床質複雜之特性下,應用時若未考量上述因子所造成之差異,可能使爐體設計不佳或操作不當而導致二次污染增加,故為了使流體化床焚化爐之技術更為完備,本研究擬以實驗室規模之氣泡式流體化床焚化爐,操作於焚化之溫度下(1000K)藉由添加不同種類(SiO2、Al2O3)、粒徑(545、650、770μm)及添加量(0、10、20wt%)之粒子於基礎床質(545μm-SiO2)中,探討非單一床質對爐內之流體化及熱傳特性之影響,並且配合實際進料燃燒之試驗,以探討非單一床質對燃燒效率之影響。
結果顯示,二元床質流體化床之流體化行為,會隨添加較大或較重床質之含量、粒徑及密度而更接近所添加床質之特性,其中添加量影響最明顯,呈現一幕次關係之趨勢。
在二元床質之hmf方面,因添加氧化鋁砂試程具有較高之體積熱容量而略高於石英砂之試程;另外,因添加較大或較重床質造成Umf之提高,會使熱傳上升段之發生延後,但熱傳上升段之上升率及hmax卻具升高之趨勢,推測原因可能為添加較大或較重之床質會使相同操作氣速下有較高的床區粒子濃度及增加顆粒小尺度之運動。
二元床質的混合效果會隨添加較大或較重之床質含量增加而降低,而造成CO及CxHy之排放濃度明顯提高,另外,實驗結果亦顯示,熱傳係數對於PP燃燒效率之影響並不明顯。

Bubbling fluidized bed was conventionally applied in waste incineration, due to its high heat and mass transfer. However, the previous studies focused on cold model and mono bed material in chemical engineering region mainly. Bubbling fluidized bed incinerator is mostly operated under high temperature and complex bed material due to the natural of feed wastes, sorbent, bottom ash, sinter and particle crack. If the above factors were not considered, it may cause inadequate design or operation and subsequently induce the secondary pollution. Experimental was conducted to investigate the influence of complex bed material towards fluidization and heat transfer characteristics. The evaluated parameters included:(1)various particle (SiO2, Al2O3); (2)size(545,650,770μm), and (3)weight fraction (0,10,20wt%) in basic bed material(545μm-SiO2). PP combustion was also conducted to evaluate the relation of fluidization, heat transfer characteristics and combustion efficiency.
The results indicated that the fluidization behavior of binary bed material fluidized bed was affected by the adding material with its weight fraction, particle size and density. Among them, the weight fraction of additives played the most important role and revealed the tendency of an exponential relation.
The hmf in the binary systems of adding Al2O3 was slightly higher than SiO2 due to its higher volumetric heat capacity. The start of heat transfer rising section was postponed by the raise of Umf. The rising tendency of heat transfer rising section and hmax was increased by the addition of particle with higher density or larger size. It was supposed that the higher density or larger size increase the bed particle packing concentration and movement at the same superficial gas velocity.
The mixing efficiency in binary bed materials were decreased with increased quantity of addition of particle with higher density or larger size. Nevertheless, the influence of heat transfer rate towards combustion efficiency of PP is not apparent.

摘 要 I
ABSTRACT III
目 錄 V
圖 目 錄 VII
表 目 錄 IX
符號說明 X
第一章 前言 1
1-1研究緣起與目的 1
1-2研究架構與內容 2
第二章 文獻回顧 5
2-1流體化床技術 6
2-1-1流體化現象 6
2-1-2流體化品質之評估技術 9
2-1-3流體化床之應用 11
2-1-4流體化特性對焚化之影響 13
2-2非單一床質之流體化床 16
2-2-1混合特性 16
2-2-2最小流體化速度 20
2-3氣泡式流體化床之熱傳 24
2-3-1熱傳機構 24
2-3-2床質對浸入面間之熱傳 25
2-3-3床質對浸入面間之最大熱傳係數 32
2-3-4熱傳分析技術 35
2-4文獻總結及研究方向 38
第三章實驗設備及方法 40
3-1實驗設備及材料 40
3-1-1實驗設備 40
3-1-2實驗材料 45
3-2實驗流程及操作條件 46
3-2-1實驗流程 46
3-2-2實驗操作條件 47
3-3分析方法 51
3-3-1最小流體化速度之測定 51
3-3-2熱傳係數之測定 51
3-3-3床膨脹之測定 54
3-3-4顆粒濃度之測定 54
3-3-5最小氣泡生成速度Umb之測定 55
3-3-6煙道氣中CO、CxHy濃度及含氧量之監測 55
第四章結果與討論 57
4-1 流體化行為之影響 57
4-1-1單一及二元床質之Umf與文獻預測式之比較 58
4-1-2添加床值含量對流體化行為之影響 60
4-1-2添加床值粒徑及密度對流體化行為之影響 70
4-2熱傳特性之影響 73
4-3燃燒效率及污染物排放特性 86
第五章 結論與建議 100
5-1結論 100
5-2建議 102
參考文獻 103
附錄 109

Al-Busoul, M., “Predicition of heat transfer coefficient between immersed surfaces and fluidzed beds”, Int.Comm.Heat Mass Thansfer, Vol.27, pp.549-558, 2000.
Al-Zahrani, A. A. and Daous, M. A., “Bed expansion and average bubble rise velocity in a gas-solid fluidized bed”, Powder Technology, Vol. 87, pp. 255-257, 1996.
Andorf, R., Mleczko, L., Schweer, D. and Baerns, M., “Oxidative coupling of methane in a bubbling fluidized bed reactor”, Can. J. Chem. Eng., Vol. 69, pp. 891, 1991.
Becher, R. D. and Schlünder E. U., “Fluidized bed granulation-the importance of a drying zone for the particle growth mechanism”, Chem. Eng. Prog., Vol. 37, pp. 1-6, 1998.
Botterill, J. S. M.,”Fluid-Bed Heat Transfer “,ACADEMIC PRESS, London, 1975.
Cheung, L.,Nienow, A. W. and Rowe, P. N.,”Minimum fluidisation velocity of a binary mixture of different sized particles”,Chemical Engineering Science, Vol.29, pp.1301-1303, 1974.
Chiang, B. C., Wey, M. Y. and Yang, W. Y., “Control of Incinerator Organics by Fluidized Bed Activated Carbon Adsorber”, Journal of Environmental Engineering ASCE, Vol. 126, pp. 985-992, 2000.
Delebarre, A., Bitaud, B., and Regnier, M. C., “Gas-solid suspensions flowing through a granular bed”, Powder Technology, Vol. 91, pp. 229-236, 1997.
Dincer, I., Kilic Y. A.and Kahveci, N., “Heat transfer modeling of spherical particles subject to heating in a fluidized bed”, Int.Comm.Heat Mass Thansfer, Vol. 23, pp.705-712, 1996.
Denloye, A. O. O. and Botterill, J. S. M.,”Bed to surface heat transfer in a fluidized bed of large partcles”, Powder Technology, Vol.19, pp. 293-299., 1978.
Donsí, G.; Ferrari, G.,” Heat transfer coefficients between gas fluidized beds and immersed spheres: dependence on the sphere size”, Powder Technology, Vol.82, pp. 293-299., 1995.
Fan, L. T., Ho, T. C., Hiraoka, S. and Walawender, W. P., “Pressure Fluctuations in a Fluidized Bed”, AIChE J., Vol. 27, pp. 388-396, 1981.
Gauthier, D., Zerguerras, S. and Flamant, G., “Influence of the particle size distribution of powders on the velocities of minimum and complete fluidization”, Chemical Engineering Journal, Vol. 74, pp. 181-196, 1999.
Geldart, D. and Rhodes, M., “Developments in fluidisation”, The Chemical Engineer, February 1986.
Guo, F., ”Gas Flow and Mixing Behavior in Fine-Powder Fluidized Bed “, AIChE J., Vol. 33, pp. 1895-1898, 1987.
Hartge, E.-U.; Luecke, K.; Werther, J.,” The role of mixing in the performance of CFB reactors”,Chemical Engineering Science,Vol.54,No.22,pp.5393-5407,1999.
Hiby, J. W., “Proceedings of the International Symposium of Fluidization”, Eindhoven, Netherlands Univ. Press, Amsterdam, pp. 99, 1967.
Joulié, R.; Barkat, M. and Rios, G. M.,” Effect of particle density on heat and mass transfer during fluidized bed sublimation”, Powder Technology, Vol.90, pp.79-88, 1997.
Huilin, L., Guangbo, Z., Rushan, B., Yongjin, C. and Gidaspow, D., “A coal combustion model for circulating fluidized bed boilers”, Fuel, Vol. 79, pp. 165-172, 2000.
Kang, W. K., Sutherland, J. P. and Osberg, G. L., “Pressure Fluidization in a Fluidized Bed with and without Screen Cylindrical Packings”, IﯼEC Fundamentals, Vol. 6, pp. 449, 1967.
Kunii, D. and Levenspiel, O., “Fluidization Engineering”, Butter-worth-Heinemann Publishing, Inc, 2nd Ed., 1991.
Llop, M. F., Casal, J. and Arnaldos, J., “Expansion of gas-solid fluidized beds at pressure and high temperature”, Powder Technology, Vol. 107, pp. 212-225, 2000.
Li, H. S., Huang, W. D. and Qian, R. Z., ”An instrumented cylinder for simultaneous measurements of instantaneous local heat transfer coefficients and hydrodynamics in high-temperature fluidized beds”, Powder Technology, Vol. 83, Iss.3, pp. 281-285, 1995.
Li, J. and Weinstin, H., ”An experimental comparison of gas back in fluidized beds across the regime spectrum”, Chemical Engineerig Science, Vol.44, pp. 1697-1704, 1989.
Lirag, R. and Littman, H., “Statistical Study of the Pressure Fluctuations in a Fluidized Bed”, AIChE Symp. Ser., Vol. 67, pp. 11, 1971.
Lu, J. D. and Flamant, G. “A quantitative analysis of heat transfer regimes in gas-solid fluidized beds”, Int. J. heat and Fluid Flow, Vol. 16, pp. 131-138, 1995.
Ma, Y. and Zhu, J.-X., “Heat transfer between gas-solid suspension and immersed surface in an upflow fluidized bed(riser), Chemical Engineering Science, Vol. 55, PP. 981-989, 2000.
Ma, X. and Kato, K., “Effect of interparticle adhesion forces on elutriation of fine powder from a fluidized bed of a binary particle mixture”, Powder Technology, Vol. 95, pp. 93-101, 1998.
Miyamoto, M., Takahashi, K., Jie, J. R., Katoh, Y., and Kurima, J., “Unsteady heat transfer and particle behavior around a horizontal tube bundle near an expanded bed surface of a gas fluidized bed: conditional sampling statistical analysis “, Int.Comm.Heat Mass Thansfer, Vol. 38, pp. 3263-3273, 1995.
Morse, R. D. and Ballou, C. O., “The uniformity of Fluidization- Its Measurement and Use”, Chem. Eng. Progr., Vol. 47, pp. 199-204, 1951.
Ouyang, S., LI, X.-G., Davies, G. and Potter, O. E., “Heat transfer between a vertical tube bundle and fine particles in a CFB downcomer with and without circulation of solids”, Chem. Eng. Progr., Vol. 35, pp. 21-27, 1996.
Pence, D. V.,Beasley, D. E. and Riester, J. B., “Deterministic chaotic behavior of heat transfer in gas fluidized beds”,J of Heat Transfer, Vol.117, pp.465-472,1995.
Pidwerbecki, D. and Welty, J. R.,”Heat transfer to a horizontal tube in the splash zone of a bubbling fluidized bed, an experimental study of particle size effects”, Experimental Thermal and Fluid Science, Vol. 10, pp. 307-317, 1995.
Pilar Aznar, M., Gracia-Gorria, FA., and Corella, J., ”Minimum and maximum velocities for fluidization for mixture of agricultural and forest residues with second fluidized solid“ International Chemical Engineering, Vol.32,pp.95-102, 1992.
Rincon, J., Guardiola, J., Romero, A. and Ramos, G., “Perdicting the minimum fluidization velocity of multicomponent systems”, J. Chem. Eng. Japan, Vol.27, pp.177-181, 1994.
Rao, T. R. and Ram. Bheemarasetti, J. V.,”Minimum fluidization velocities of mixtures of biomass and sands’, Energy, Vol.26,pp.633-644,2001.
Rasul, M. G. and Rudolph, V., “Fluidized bed combustion of Australian bagasse”, Fuel, Vol. 79, pp. 123-130, 2000a.
Rasul, M. G., Rudolph, V. and Carsky, M., “Segregation potential in binary gas fluidized beds”, Powder Technology, Vol. 103, pp. 175-181, 1999.
Rasul, M. G., Rudolph, V. and Wang, F. Y., “Particles separation using fluidization techniques”, Int. J. Miner. Process., Vol. 60, pp. 163-179, 2000b.
Rowe, P. N., Foscolo, P. U., Hoffmann, A. C. and Yates, I. G., in:Kunii, D. and Toei, R.(Eds.), Fluidization, Vol. Ⅳ, Engineering Foundation, New York, pp.53-60, 1984.
Saxena, S. C.; Dewan, S. S.,” Co-combustion and fluidized-bed incineration of cellulose pellets”,Energy,Vol.21, pp. 889-897, 1996.
Shah, M. M.,”Generalized prediction of maximum heat transfer to single cylinders and spheres in gas-fluidized beds”, Heat Transfer engineering, Vol.4, pp.107-122,1983.
Shuster, W. W. and Kisliak, P., “The measurement of fluidization quality”, Chem. Eng. Prog., Vol. 48, pp. 455-458, 1952.
Tamarin, A. I.,Palchyonok, G. I. and Goryunov, K. E., “Heat and mass transfer of model particles in a fluidized bed of inter material”, Heat Transfer-Soviet Research, Vol.17, pp.136-141. 1982.
Todes, O. M.,”In applications of fluidized beds in the chemical industry”, Part 11,4, Zonanie, Leningrad,1965.
Tsukada, M. and Horio, M.,”Maximum heat-transfer coefficient for an immersed body in bubbling fluidized bed”, Ind. Eng. Chem. Res., Vol.31, pp.1147-1156,1992.
Tamarin, A. I., “The Origin of Self-Excited Oscillations in Fluidized Beds”, Int. Chem. Eng., Vol. 4, pp. 50, 1964.
Venkat Reddy, G. and Mahapatra, S. K.,”Effect of particle size distribution on agglomerate formation in afluidized bed combustor”, Energy Conversion & Management, Vol.40, pp.447-458, 1999.
Volk, W., Johnson, C. A. and Stotler, H. H., “Effect of reactor internals on quality of fluidization”, Chem. Eng. Prog., Vol. 58, pp. 44-47, 1962.
Vuthaluru, H.B.; Linjewile, T.M.; et. al.,”Investigations into the control of agglomeration and defluidisation during fluidised-bed combustion of low-rank coals”, Fuel, Vol.78, pp. 419-425 , 1999.
Wen, C. Y. and Yu, Y. H., “Mechanics of Fluidization”, Chem. Eng. Progr. Symp. Ser., Vol. 62, pp. 100-111, 1966.
Westphalen, D. and Glicksman, L., ”Lateral solids mixing measurement in circulatingfluidized beds”, Powder Technology, Vol. 82, pp. 153-167, 1995.
Wiman, J. and Almstedt, A. E., “Influence of pressure, fluidization velocity and particle size on the hydrodynamics of a freely bubbling fluidized bed”, Chem. Eng. Sci., Vol. 53, pp. 2167-2176, 1998.
Wu, S. Y. and Baeyens, J., “Segregation by difference in gas fluidized beds”, Powder Technology, Vol. 98, pp. 139-150, 1998.
Wu, W. Y. and Saxena, S. C., “Mixing characteristics of light paper pellets in a sand fluidized bed”, Energy, Vol. 22, pp. 615-619, 1997.
Zabrodsky, S. S.”Hydrodynamics and heat transfer in fluidized beds”, MIT, Cambridge, Mass, 1966.
吳石乙,”流化床在工業上之應用─流化床乾燥器介紹”,化工,第5期,第84-99頁,1997。
吳俊錫,”於渦旋式流體化床燃燒爐中高揮發性物質之燃燒探討”,碩士論文,中原大學化學工程學系,中壢,1999。
洪朝陽,”流體化床焚化逸失及其危害風險研究”,碩士論文,國立台北科技大學土木與防災技術研究所,台北,1998
錢建嵩等,“流體化床技術”,高立圖書有限公司,1992。
賴茂德,”具面版多孔噴氣流中噴泉效應與干擾現象對熱傳之影響”,碩士論文,國立中興大學機械工程研究所,台中,2000
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top