跳到主要內容

臺灣博碩士論文加值系統

(54.80.249.22) 您好!臺灣時間:2022/01/20 06:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔣博欽
研究生(外文):Bo-Chin Chiang
論文名稱:以流體化床控制焚化廢氣中污染物之研究
論文名稱(外文):Control of Incinerator Pollutants by a Fluidized Bed Reactor
指導教授:魏銘彥
指導教授(外文):Ming-Yen Wey
學位類別:博士
校院名稱:國立中興大學
系所名稱:環境工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:245
中文關鍵詞:流體化床反應器焚化粒狀物有機物重金屬酸性氣體活性碳
外文關鍵詞:fluidized bed reactorincinerationparticulateorganicsheavy metalsacid gasesactivated carbon
相關次數:
  • 被引用被引用:23
  • 點閱點閱:1105
  • 評分評分:
  • 下載下載:274
  • 收藏至我的研究室書目清單書目收藏:2
本研究主要探討以流體化床反應器控制煙道氣中粒狀污染物,並串聯袋式集塵器,探討不同流體化操作條件下,對粒狀污染物包括模擬飛灰及實際燃燒產生飛灰的控制效率,並由各操作條件的影響探討流化床除塵的控制機制。之後再評估流體化吸附床串聯袋式集塵器組合,應用至對各種不同性質的焚化二次污染物包括有機物污染物、重金屬污染物及酸性氣體的個別或同時去除,最後吸附重金屬之底灰部分,將利用熱處理的方式使其穩定化。
在比較活性碳基礎床質與模擬飛灰混合床質之淘失及流化床濾除模擬飛灰之實驗時,結果顯示B/C粒子群混合床質的淘失現象並不適用於流化床過濾粒狀物的結果。25℃常溫下,操作氣速及靜置床高的增加有助於模擬飛灰的濾除,且以慣性衝擊為主要濾除機制,高溫(200℃)環境除慣性衝擊機制外,亦加強了擴散機制,且床溫效應對模擬飛灰去除效率的影響遠大於靜置床高及操作氣速的改變。對於次微米(submicron)模擬飛灰流化床具有93.2%~99.4%之去除效率,且高溫由於擴散機制的作用更利於次微米微粒的控制。由於流化床去除實際燃燒產生飛灰的效率,明顯低於對模擬飛灰的去除效率,因此推測飛灰之性質如化學組成亦是影響流化床除粒狀物的主因。流體化床串聯袋式集塵器此組合對粒狀物之去除效率多趨近完全濾除。
將流體化吸附床串聯袋式集塵器應用至焚化系統的結果指出,流體化吸附床在除酸的同時,亦可同時對有機污染物、重金屬氣膠及粒狀污染物進行控制。低濃度KOH浸泡處理過之活性碳有助於氣相PAHs的控制。而吸附床溫度的提高有助於化學吸附為主之重金屬的吸附。最後,利用高溫熱處理方式來處理焚化過後所生成含重金屬之固體吸附劑是有效且可行的,尤其是對重金屬Pb而言,而高溫熱處理溫度的影響較熱處理時間來的明顯且重要。
The major objective of the study focuses on the control of particulates in flue gas. The fluidized bed reactor was employed in a laboratory-scale fluidized bed incinerator to demonstrate the performance of the fluidized bed reactor for removal of particulates simulated or generated from incineration at various fluidized operating conditions, and then the control mechanisms of particulates filtered by fluidized bed were studied. Subsequently, a fluidized bed adsorber integrated with a fabric filter applied to control the incinerator pollutants contained organic, heavy metal and acid gas emissions individually and simultaneously during incineration process were evaluated. Heat treatment of incinerator retired sorbents containing heavy metals could increase the stability of metals was also identified.
While comparing the results of the elutriation of group B-C mixtures (activated carbon and simulated fly ash) with the removal of simulated fly ash using a fluidized bed reactor, the results indicate that the elutriation mechanism is not similar to the filtration mechanism. Higher operating velocities and fixed bed heights can enhance the removal of simulated fly ash and inertial impaction is the main mechanism when the fluidized bed is controlled at room temperature (25℃). Besides inertial impaction, diffusion mechanism also occurs when the fluidized bed is controlled at high temperature (200℃) and the temperature effect covers the effects of fixed bed height and operating velocity. On the other hand, the fluidized bed has the ability to filter 93.2% to 99.4% submicron simulated fly ash, and higher temperature is a favorable condition due to diffusion mechanism. Because of the removal efficiency of fly ash generated from incineration is much lower than that of simulated fly ash; it is supposed that characteristics of fly such as chemical composition are also the major factors when using a fluidized bed to filter particulates.
A novel air pollution control devices (APCDs) combination, the fluidized bed adsorber integrated with a fabric filter, can control organics, heavy metals and acid gases simultaneously. Activated carbon after immersing with KOH solution is benefit to adsorb gaseous phase PAHs, and higher adsorption temperatures can increase the removal efficiencies of metals due to chemical adsorption. Heat treatment, serving as a control technique for heavy metals on retired sorbents, is effective and feasible, especially for Pb, and the influence of treatment temperature is more important than treatment time.
目 錄
摘 要 I
ABSTRACT II
目 錄 IV
圖 目 錄 IX
表 目 錄 XIII
符號說明 XV
第一章 前 言 1
1-1 研究緣起與目的 1
1-2 研究架構與內容 2
第二章 文獻回顧 6
2-1 焚化系統中粒狀污染物之控制 6
2-1-1 粒狀污染物控制設備 7
2-1-2 粒狀污染物控制機制 11
2-1-3 流體化床除塵 14
2-1-3-1 流體化床原理 15
2-1-3-2 流體化床參數 16
2-1-3-3 淘失(elutriation)機制應用於流體化床除塵 21
2-2 焚化系統中有機物污染物之控制 32
2-2-1 有機污染物之特性 32
2-2-2 半揮發性有機污染物PAHs的生成及行為 32
2-2-3 飛灰特性與PAHs濃度間的關係 34
2-2-4 重金屬對PAHs生成的影響 34
2-2-5 有機物的吸附控制 35
2-3 焚化系統中重金屬污染物之控制 40
2-3-1 重金屬化合物分佈特性 40
2-3-2 重金屬之控制 41
2-3-3 重金屬吸附機制探討 43
2-4 焚化系統中酸性氣體之控制 45
2-4-1 傳統控制方式 45
2-4-2 碳或含碳物質之控制 48
2-4-3 碳或含碳物質之除酸機制 53
2-5 文獻總結 56
第三章 流體化吸附床濾除焚化廢氣中粒狀物之研究 58
3-1 前言 58
3-2 實驗設備及方法 59
3-2-1 進料組成配置 59
3-2-1-1 模擬飛灰淘失實驗 59
3-2-1-2 模擬飛灰過濾實驗 63
3-2-1-3 實際燃燒模擬進料(LDPE)產生飛灰之濾除實驗 65
3-2-1-4 實際燃燒模擬進料(LDPE、重金屬)產生飛灰之濾除實驗 66
3-2-1-5 實際燃燒模擬進料(LDPE、重金屬、PVC、硫粉)產生飛灰之濾除實驗 67
3-2-2 實驗設備與流程 68
3-2-2-1 模擬飛灰淘失實驗 68
3-2-2-2 模擬飛灰過濾實驗 70
3-2-2-3 實際燃燒模擬進料(LDPE)產生飛灰之濾除實驗 71
3-2-2-4 實際燃燒模擬進料(LDPE、重金屬)產生飛灰之濾除實驗 73
3-2-2-5 實際燃燒模擬進料(LDPE、重金屬、PVC、硫粉)產生飛灰之濾除實驗 75
3-2-3粒狀物採樣與分析 75
3-2-3-1 模擬飛灰淘失實驗 75
3-2-3-2 模擬飛灰過濾實驗 75
3-2-3-3 實際燃燒模擬進料(LDPE)產生飛灰之濾除實驗 76
3-2-3-4 實際燃燒模擬進料(LDPE、重金屬)產生飛灰之濾除實驗 76
3-2-3-5 實際燃燒模擬進料(LDPE、重金屬、PVC、硫粉)產生飛灰之濾除實驗 77
3-3 結果與討論 79
3-3-1 不同操作氣速對混合床質淘失速率之影響 79
3-3-2 不同飛灰添加量對混合床質淘失速率之影響 80
3-3-3 不同流化床床溫對混合床質淘失速率之影響 81
3-3-4 不同流化床靜置床高對模擬飛灰去除效率之影響 83
3-3-5 不同流化床操作氣速對模擬飛灰去除效率之影響 86
3-3-6 流化床高低溫對模擬飛灰去除效率之影響 90
3-3-7 流化床除飛灰之床質負荷 94
3-3-8 流化床出口模擬飛灰粒徑分佈的改變 98
3-3-8-1 操作氣速對流化床出口飛灰粒徑分佈的影響 98
3-3-8-2 靜置床高對流化床出口飛灰粒徑分佈的影響 98
3-3-8-3 床溫對流化床出口飛灰粒徑分佈的影響 99
3-3-8-4 操作時間對流化床出口飛灰粒徑分佈的影響 99
3-3-8-5 次微米模擬飛灰之濾除 99
3-3-9 過濾前後床質表面特性 103
3-3-10 流體化速度對粒狀污染物去除效率的影響(實際燃燒廢棄物所產生之粒狀污染物) 105
3-3-11 活性碳靜置床高對粒狀污染物去除效率的影響(實際燃燒廢棄物所產生之粒狀污染物) 108
3-3-12 吸附溫度對粒狀污染物去除效率的影響(實際燃燒廢棄物所產生之粒狀污染物) 109
3-3-13 不同操作條件對粒狀物於流體化吸附床入出口粒徑分佈改變的影響(實際燃燒廢棄物所產生之粒狀污染物) 110
3-3-14 流體化吸附床去除含重金屬飛灰之探討 112
3-3-15 流體化吸附床入出口細粒飛灰質量粒徑分佈變化 114
3-4 結論 120
第四章 流體化吸附床控制焚化廢氣中有機物之研究 122
4-1 前言 122
4-2 實驗設備及方法 123
4-2-1 進料組成配置 123
4-2-2 吸附劑(流化床床質)準備 123
4-2-3 實驗設備 123
4-2-4 流體化吸附床操作條件 124
4-2-5 實驗流程 124
4-2-6 有機物採樣及濃度分析方法 124
4-3 結果與討論 127
4-3-1 操作氣速對半揮發性有機物PAHs去除效率的影響 127
4-3-2 活性碳靜置床高對半揮發性有機物PAHs去除效率的影響 129
4-3-3 吸附溫度對半揮發性有機物PAHs去除效率的影響 131
4-3-4 流體化速度對揮發性有機物BTEX去除效率的影響 132
4-3-5 活性碳靜置床高對揮發性有機物BTEX去除效率的影響 133
4-3-6 吸附溫度對揮發性有機物BTEX去除效率的影響 134
4-4 結論 135
第五章 流體化吸附床同時控制焚化廢氣中揮發性重金屬及有機污染物之研究 137
5-1 前言 137
5-2 實驗設備及方法 138
5-2-1 進料組成配置及吸附劑準備 138
5-2-2 實驗設備 138
5-2-3 實驗流程 139
5-2-4 樣品之採樣與濃度分析 139
5-3 結果與討論 141
5-3-1 不同吸附劑/添加劑去除重金屬之比較 141
5-3-2 流體化吸附床串聯袋式集塵器對重金屬之去除效果 144
5-3-3 流體化吸附床對氣相半揮性有機物PAHs之去除效果 146
5-3-4 流體化吸附床對固相半揮性有機物PAHs之去除效果 149
5-3-5 流體化吸附床串聯袋式集塵器對PAHs之去除效果 151
5-3-6 掃描式電子顯微鏡(SEM)分析結果 152
5-4 結論 154
第六章、流體化吸附床同時控制焚化廢氣中酸性氣體、揮發性重金屬及有機污染物之研究 155
6-1 前言 155
6-2 實驗設備及流程 156
6-2-1 實驗設備 156
6-2-2 進料組成配置及吸附劑準備 156
6-2-3 實驗流程 158
6-2-3-1 貫穿曲線實驗 158
6-2-3-2 實驗室規模焚化系統實驗 159
6-3 樣品之採樣與濃度分析 159
6-3-1 酸性氣體 159
6-3-2 重金屬污染物 161
6-3-3 有機物污染物 161
6-3-4煙道微粒採樣 161
6-3-5其它樣品分析 162
6-4 結果與討論 163
6-4-1 活性碳物理特性分析 163
6-4-2 流體化吸附床對酸性氣體吸附效率 168
6-4-3 流體化吸附床入出口細粒飛灰金屬濃度粒徑分佈變化 173
6-4-4 流體化吸附床對重金屬污染物之去除效率 178
6-4-5 流體化吸附床對有機物污染物PAHs之去除效率 182
6-5 結論 187
第七章、吸附重金屬吸附劑之最終處理 188
7-1 前言 188
7-2 實驗設備及方法 189
7-2-1 實驗設備 189
7-2-2 實驗流程 189
7-2-3 TCLP溶出試驗 191
7-2-4 重金屬濃度分析 192
7-2-5 X光繞射物種分析與掃描式電子顯微鏡(SEM)分析 192
7-3 結果與討論 193
7-3-1 重金屬Cr的穩定性 195
7-3-2 重金屬Cu的穩定性 198
7-3-3 重金屬Cd的穩定性 200
7-3-4 重金屬Pb的穩定性 202
7-3-5 XRD物種分析結果及掃描式電子顯微鏡SEM分析結果 203
7-4 結論 205
第八章 結論與建議 206
參考文獻 209
附錄一 BTEX的物化特性及毒理特性 A
附錄二 PAHs基本物理化學特性 B
附錄三 PAHs分子結構的寬度、長度及厚度 D
附錄四 重金屬銅、鉛、鉻及鎘之物化特性與毒性 E
Al-Zahrani, A. A. and Daous, M. A., “Bed Expansion and Average Bubble Rise Velocity in a Gas-Solid Fluidized Bed”, Powder Technology, Vol. 87, pp. 255-257, 1996.
Baeyens, J., Geldart, D. and Wu, S. Y., “Elutriation of Fines from Gas-Fluidized Beds of Geldart A-Type Powders ─ Effect of Adding Superfines”, Powder Technology, Vol. 71, No. 1, pp. 71-80, 1992.
Baron, T., Briens, C. L., Hazlett, J. D., Bergougnou, M. A. and Galtier, P., “Size Distribution of the Particles Entrained from Fluidized-Beds ─ Gas Humidity Effects”, Canadian Journal of Chemical Engineering, Vol. 70, No. 4, pp. 631-635, 1992.
Barton, R. G., Clark, W. D. and Seeker, W. R., “Fate of Metals in Waste Combustion Systems”, Combust. Sci. and Tech, Vol. 74, pp. 327-342, 1990.
Becher, R. D. and Schlünder, E. U., “Fluidized Bed Granulation-the Importance of a Drying Zone for the Particle Growth Mechanism”, Chem. Eng. Prog., Vol. 37, pp. 1-6, 1998.
Bedell, S. A., Tsai, S. S. and Grinstead, R. R., “Polymeric Iron Chelates for Nitric Oxide Removal form Flue Gas Steam”, Ind. Eng. Chem. Res., Vol. 27, pp. 2092-2095, 1988.
Benestad, C., Hagen, I., Jebens, A., Oehme, M. and Ramdahl, T., “Emissions of Organic Micropollutants from Discontinuously Operated Municipal Waste Incinerators”, Waste Management & Research, Vol. 8, pp. 193-201, 1990.
Brauer, H. and Varma, Y. B. G., “Air Pollution Control Equipment”, Springer-Verlag Berlin, Heidelberg, 1981.
Briens, C. L., Bergougnou, M. A., Inculet, I. I., Baron, T. and Hazlett, J. D., “Size Distribution of Particles Entrained from Fluidized-Beds ─ Electrostatic Effects”, Powder Technology, Vol. 70, No. 1, pp. 57-62, 1992.
Bülau, H. C. and Hallström, A., “Carry-Over from Shallow Fluidized Beds”, Powder Technology, Vol. 97, pp. 45-50, 1998.
Cal, M. P., Strickler, B. W. and Lizzio, A. A., “High Temperature Hydrogen Sulfide Adsorption on Activated Carbon I. Effects of Gas Composition and Metal Addition”, Carbon, Vol. 38, pp. 1757-1765, 2000a.
Cal, M. P., Strickler, B. W., Lizzio, A. A. and Gangwal, S. K., “High Temperature Hydrogen Sulfide Adsorption on Activated Carbon II. Effects of Gas Temperature, Gas Pressure and Sorbent Regeneration”, Carbon, Vol. 38, pp. 1767-1774, 2000b.
Charles, A., Potocki, B. B. and Joseph, S., “Exposure to Carcinogenic PAHs in the Environment”, Environ. Sci. Technol., Vol. 26, pp. 1278-1284, 1992.
Chen, J. C. and Wey, M. Y., “The Effect of Operating Conditions on the Capture of Metals with Limestone During Incineration”, Environment International, Vol. 22, No. 6, pp. 743-752, 1996.
Chen, J. C., Wey, M. Y. and Lin, Y. C., “The Adsorption of Heavy Metals by Different Sorbents under Various Incineration Conditions”, Chemosphere, Vol. 37, No. 13, pp. 2617-2625, 1998a.
Chen, J. C., Wey, M. Y. and Ou, W. Y., “Capture of Heavy Metals by Sorbents in Incineration Flue Gas”, The Science of Total Environment, Vol. 228, pp. 67-77, 1999a.
Chen, J. C., Wey, M. Y., Liu, Y. F. and Chiang, B. C., “The Dynamic Adsorption Behaviors of Heavy Metals on Sorbents under Various Incineration Conditions”, Journal of Environmental Engineering, ASCE, Vol. 124, No. 8, pp. 776-779, 1998b.
Chiang, B. C., Wey, M. Y. and Yang, W. Y., “Control of Incinerator Organics by Fluidized Bed Activated Carbon Adsorber”, Journal of Environmental Engineering, ASCE, Vol. 126, No. 11, pp. 985-992, 2000.
Chiang, P. C., You, J. H., Chang, S. C. and Wei Y. H., “Identification of Toxic PAH Compounds in Emitted Particulates from Incineration of Urban Solid Wastes”, Journal of Hazardous Materials, Vol. 31, pp. 29-37, 1992.
Chitester, D. C., Kornosky, R. M., Fan, L. S. and Danko, J. P., “Characteristics of Fluidization at High Pressure”, Chem. Eng. Sci., Vol. 39, No. 2, pp. 253-261, 1984.
Choi, J. H., Choi, K. B., Kim, P., Shun, D. W. and Kim, S. D., “The Effect of Temperature on Particle Entrainment Rate in a Gas Fluidized Bed”, Powder Technology, Vol. 92, pp. 127-133, 1997.
Choi, J. H., Kim, S. D. and Son, J. E., “Bubble-Size and Frequency in Gas-Fluidized Beds”, J. Chem. Eng. Jpn., Vol. 21, No. 2, pp. 171-178, 1988.
Choi, J. H., Son, J. E. and Kim, S. D., “Solid Entrainment in Fluidized-Bed Combustors”, J. Chem. Eng. Jpn., Vol. 22, No. 6, pp. 597-606, 1989.
Choi, J. H., Suh, J. M., Chang, I. Y., Shun, D. W., Yi, C. K., Son, J. E. and Kim S. D., “The Effect of Fine Particles on Elutriation of Coarse Particles in a Gas Fluidized Bed”, Powder Technology, Vol. 121, pp. 190-194, 2001.
Clift, R. and Grace, J. R., Fluidization, Academic Press, London, pp. 73-125, 1985.
Cooper, C. D. and Alley, F. C., “Air Pollution Control”, Central Book Publishing Company, 1996.
Darton, R. C., LaNauze, R. D., Davidson, J. F. and Harrison, D., Trans. Instn. Chem. Engrs, Vol. 55, pp. 274, 1977.
Davies, C. N., (Ed.), Air Filtration, Academic Press, London, 1973.
Davini, P., “Desulphurization Properties of Active Carbons Obtained from Petroleum Pitch Pyrolysis”, Carbon, Vol. 37, pp. 1363-1371, 1999.
Delebarre, A., Bitaud, B. and Regnier, M. C., “Gas-solid suspensions flowing through a granular bed”, Powder Technology, Vol. 91, pp. 229-236, 1997.
Dichson, L. C., Lenoir, D. and Hutzinger, O., “Quantitative Comparison of de Novo and Precursor Formation of Polychlorinated Dibenzo-p-dioxins under Simulated Municipal Solid Waste Incineration Postcombustion Conditions”, Environ. Sci. Technol., Vol. 26, pp. 1822-1828, 1992.
Dubinin, M. M., “Adsorption Properties and Microporous Structures of Carbonaceous Adsorbents”, Carbon, Vol. 25, No. 5, pp. 593-598, 1987.
Dubinin, M. M., Polyakov, N. S. and Kataeva, L. I., “Basic Properties of Equations for Physical Vapor Adsorption in Micropores of Carbon Adsorbents Assuming a Normal Micropore Distribution”, Carbon, Vol. 29, No. 4-5, pp. 481-488, 1991.
Durlak, S. K., Biswas, P., Shi, J. and Bernhard, M. J., “Characterization of Polycyclic Aromatic Hydrocarbon Particulate and Gaseous Emissions from Polystyrene Combustion”, Environ. Sci. Technol., Vol. 32, pp. 2301-2307, 1998.
Friedlander, S. K. “Smoke, Dust and Haze”, John Wiley and Sons, New York, 1976.
Geldart, D. and Abrahamsen, A. R., Chem. Eng. Progr. Symp. Ser., Vol. 77, No. 205, pp. 160, 1981.
Geldart, D. and Rhodes, M., “Developments in Fluidisation”, The Chemical Engineer, February, 1986.
Geldart, D. and Wong, A. C. Y., “Entrainment of Particles from Fluidized Beds of Fine Powders”, AIChE Symp. Ser., Vol. 83, No. 255, pp. 1-9, 1987.
Geldart, D., “Gas Fluidization Technology”, John Wiley and Sons, 1986.
Geldart, D., “The Effect of Particle Size and Size Distribution on the Behaviour of Gas-Fluidised Beds”, Powder Technology, Vol. 6, pp. 201-215, 1972.
George, S. E. and Grace, J. R., “Entrainment of Particles from a Pilot Scale Fluidized Bed”, Can. J. Chem. Eng., Vol. 59, pp. 279-284, 1981.
Griest, W. H. and Tomkins, B. A., “Influence of Carbonaceous Particles on the Interaction of Coal Combustion Stack Ash with Organic Matter”, Environ. Sci. Technol., Vol. 20, pp. 291-295, 1986.
Halonen, I., Tarhanen, J., Ruokojärvi, P., Tuppurainen, K. and Ruuskanen, J., “Effect of Catalysis and Chlorine Source on the Formation of Organic Chlorinated Compounds”, Chemosphere, Vol. 30, No. 7, pp. 1261-1273, 1995.
Hartenstein, H. U., “Fixed Bed Activated Coke Filters for the Control of Toxic Metals and Organics from Waste Incinerators-the Second Generation”, Chemosphere, Vol. 29, No. 9-11, pp. 2071-2081, 1994.
Hatate, Y., Ikari, A., Migita, M. and King, D. F., “Behavior of Bubbles in a Semi-Cylindrical Gas-Solid Fluidized-Bed”, J. Chem. Eng. Jpn., Vol. 18, No. 2, pp.99-104, 1985.
Hesketh, H. E., “Air Pollution Control”, Technomic Publishing Company, Inc., 1991.
Hinds, W. C., “Aerosol Technology”, John Wiely & Sons. Inc., New York, 1999.
Ho, T. C., Chen, C., Hopper, J. R. and Oberacker, D. A., “Metal Capture during Fluidized Bed Incineration of Wastes Contaminated with Lead Chloride”, Combustion Science And Technology, Vol. 85, pp. 101-116, 1992.
Ho, T. C., Chen, J. M., Shukla, S. and Hopper, J. R., “Metal Capture during Fluidized Bed Incineration of Solid Wastes”, AIChE Symposium Series, Vol. 276, No. 86, pp. 51-60, 1990.
Ho, T. C., Tan, T., Chen, C. and Hopper, J. R., “Characteristics of Metal Capture during Fluidized Bed Incineration”, AIChE Symposium Series, Vol. 281, No. 87, pp. 118-126, 1991.
Huilin, L., Guangbo, Z., Rushan, B., Yongjin, C. and Gidaspow, D., “A Coal Combustion Model for Circulating Fluidized Bed Boilers”, Fuel, Vol. 79, pp. 165-172, 2000.
Kato, K., Kanbara, S., Ozawa, K., Shibasaki, H., Tajima, T. and Takarada, T., “Effect of Particle-Size on Elutriation Rate-Constant for a Fluidized-Bed”, J. Chem. Eng. Jpn., Vol. 20, No. 5, pp. 498-504, 1987.
Kato, K., Takarada, T., Matsuo, N., Suto, T. and Nakagawa, N., “Residence-time distribution of fine particles in a powder-particle fluidized bed”, Int. Chem. Eng., Vol. 34, No. 4, pp. 605-610, 1994.
Kirsh, A. A. and Stechkina, I. B., “The Theory of Aerosol Filtration with Fibrous Filters”, in Fundamentals of Aerosol Science, D. T. Shaw (Ed.), Wiley, New York, 1978.
Knoblauch, K., Richter, E. and Jüntgen, H., “Application of Active Coke in Processes of SO2- and NOx-Removal from Flue Gases”, Fuel, Vol. 60, pp. 832-837, 1981.
Knowlton, T. M., Findlay, J. and Sishtla, C., Final Rep. DOE/MC/22061-2883, DE90009699, US Deparment of Energy, Morgantown Energy Technology Center, Morgantown, WV, 1990.
Knowlton, T. M., in Potter, O. E. and Nicklin, D. J. (Eds.), Fluidization VII, Engineering Foundation, New York, pp. 27, 1992.
Kunii, D. and Levenspiel, O., “Fluidization Engineering”, Butterworth-Heinemann Publishing, Inc., 2nd Ed., 1991.
Kuo, J. T., Smid, J , Hsiau, S. S. and Chou, C. S., “Granular Bed Filter Technology”, Proceedings of the National Science Council, Republic of China, Part A: Physical Science and Engineering, Vol. 22, No. 1, pp. 17-34, 1998.
Lee, S. H. D. and Johnson, I. J., “Removal of Gaseous Alkali Metal Compounds from Hot Flue Gas by Particulate Sorbents”, Journal of Engineering Power, Vol. 102, pp. 397-402, 1980.
Li, C. T., Lee, W. J., Mi, H. H. and Su, C. C., “PAH Emission from the Incineration of Waste Oily Sludge- and Plastic-Waste Mixtures” Proceedings of the 7th IUAPPA Regional Conference on Air Pollution and Waste Issues, November 2-4, pp. 159-163, 1994.
Li, J. and Kato, K., “A Correlation of the Elutriation Rate Constant for Adhesion Particles (Group C Particles)”, Powder Technology, Vol. 118, pp. 209-218, 2001.
Linak, W. P. and Peterson, T. W., “Effect of Coal Type and Residence Time on the Submicron Aerosol Distribution from Pulverized Coal Combustion”, Aerosol Science and Technology, Vol. 3, pp. 77-95, 1984.
Lisovskii, A., Semiat, R. and Aharoni, C., “Adsorption of Sulfur Dioxide by Active Carbon Treated by Nitric Acid: I. Effect of the Treatment on Adsorption of SO2 and Extractability of the Acid Formed”, Carbon, Vol. 35, No. 10-11, pp. 1639-1643, 1997.
Liu, Z. S., Wey, M. Y. and Lin, C. L., “Simultaneous Control of Acid Gases and PAHs Using a Spray Dryer Combined with a Fabric Filter Using Different Additives”, J. of Hazardous Materials, Vol. 91, pp. 129-141, 2002.
Lizzio, A. A. and DeBarr, J. A., “Effect of Surface Area and Chemisorbed Oxygen on the SO2 Adsorption Capacity of Activated Char”, Fuel, Vol. 75, No. 13, pp. 1515-1522, 1996.
Llop, M. F., Casal, J. and Arnaldos, J., “Expansion of Gas-Solid Fluidized Beds at Pressure and High Temperature”, Powder Technology, Vol. 107, pp. 212-225, 2000.
Ma, X. and Kato, K., “Effect of Interparticle Adhesion Forces on Elutriation of Fine Powders from a Fluidized Bed of a Binary Particle Mixture”, Powder Technology, Vol. 95, pp. 93-101, 1998.
Merrick, D. and Highley, J., AIChE Symp. Ser., Vol. 70, pp. 366, 1974.
Mochida, I., Korai, Y., Shirahama, M., Kawano, S., Hada, T., Seo, Y., Yoshikawa, M. and Yasutake, A., “Removal of SOx and NOx over Activated Carbon Fibers”, Carbon, Vol. 38, pp. 227-239, 2000.
Mustonen, J. P. S., Bossart, J. and Durner, M. W., in: Proc. Int. Conf. on Fluidized Bed Combustion, Montreal, Canada, Vol. 1, pp. 475, 1991.
Nakagawa, N., Arita, S., Uchida, H., Takamura, N., Takarada, T. and Kato, K., “Particle Hold-Up and Elutriation Rate in the Freeboard of Fluid Beds”, J. Chem. Eng. Jpn., Vol. 27, No. 1, pp. 79-84, 1994.
Nienow, A. W. and Cheesman, D. J., in: Grace, J. R. and Matsen, J. M. (Eds), Fluidization, Plenum, New York, pp. 373, 1980.
Nienow, A. W. and Chiba, T., 2nd edn., Academic Press, pp. 9, 1985.
Nienow, A. W., Rowe, P. N. and Chung, L. Y. L., Powder Technology, Vol. 20, pp. 189, 1978.
Pemberton, S. T. and Davidson, J. F., “Elutriation from Fluidized-Beds. 2. Disengagement of Particles from Gas in the Freeboard”, Chem. Eng. Sci., Vol. 41, No. 2, pp. 253-262, 1986.
Punjak, W. A., Uberoi, M. and Shadman, F., “High Temperature Adsorption of Alkali Vapors on Solid Sorbents”, AIChE Journal, Vol. 35, No. 7, pp. 1186-1194, 1989.
Raymundo-Piñero, E., Cazorla-Amorós, D., Salinas-Martinez de Lecea, C. and Linares-Solano, A., “Factors Controlling the SO2 Removal by Porous Carbons: Relevance of the SO2 Oxidation Step”, Carbon, Vol. 38, pp. 335-344, 2000.
Rodrĺguez, J. M., Sánchez, J. R., Alvaro, A., Florea, D. F. and Estévez, A. M., “Fluidization and Elutriation of Iron Oxide Particles. A Study of Attrition and Agglomeration Processes in Fluidized Beds”, Powder Technology, Vol. 111, pp. 218-230, 2000.
Romanova, T. T. et al., Deposited Doc., Viniti 5129-80, pp. 1, 1980.
Rowe, P. N., Foscolo, P. U., Hoffmann, A. C. and Yates, I. G., in: Kunii, D. and Toei, R. (Eds.), Fluidization, Vol. 4, Engineering Foundation, New York, pp. 53-60, 1984.
Rowe, P. N., “Prediction of Bubble Size in a Gas Fluidised Bed”, Chem. Eng. Sci., Vol. 31, pp. 285-288, 1976.
Rubel, A. M. and Stencel, J. M., “The Effect of Low-Concentration SO2 on the Adsorption of NO from Gas over Activated Carbon”, Fuel, Vol. 76, No. 6, pp. 521-526, 1997.
Rubio, B. and Izquierdo, M. T., “Influence of Low-Rank Coal Char Properties on Their SO2 Removal Capacity from Flue Gases: I. Non-Activated Chars”, Carbon, Vol. 35, No. 7, pp. 1005-1011, 1997.
Rubio, B., Izquierdo, M. T. and Mastral, A. M., “Influence of Low-Rank Coal Char Properties on Their SO2 Removal Capacity from Flue Gases. 2. Activated Chars”, Carbon, Vol. 36, No. 3, pp. 263-268, 1998.
Ruddy, E. N. and Carroll, L. A., “Select the Best VOC Control Strategy”, Chem. Eng. Process, Vol. 89, No. 7, pp. 28-35, 1993.
Ruthven, D. M., “Principles of Adsorption & Adsorption Process, John Wiley and Sons, 1984.
Santana, D., Rodríguez, J. M. and Macías-Machín, A., “Modelling Fluidized Bed Elutriation of Fine Particles”, Powder Technology, Vol. 106, pp.110-118, 1999.
Sciazko, M., Bandrowski, J. and Raczek, J., “On the Entrainment of Solid Particles from a Fluidized-Bed”, Powder Technology, Vol. 66, No. 1, pp. 33-39, 1991.
Senior, C. L. and Flagan, R. C., “Ash Vaporization and Condensation During Combustion of a Suspended Coal Particle”, Aerosol Science and Technology, Vol. 1, pp. 371-387, 1982.
Seville, J. P. K. and Clift, R., in J. P. K. Seville (Ed.), “Gas Cleaning Demanding Applications”, Chapter 9, Blackie Academic & Professional, London, 1997.
Smolders, K. and Baeyens, J., “Elutriation of Fines from Gas Fluidized Beds: Mechanisms of Elutriation and Effect of Freeboard Geometry”, Powder Technology, Vol. 92, pp. 35-46, 1997.
Tèjima, H., Nakagawa, I., Shinoda, T. A. and Maeda, I., “PCDDs/PCDFs Reduction by Good Combustion Technology and Fabric Filter with/without Activated Carbon Injection”, Chemosphere, Vol. 32, No. 1, pp. 169-175, 1996.
Tamura, Y., Hishinuma, Y., Hisamura, T. and Mori, A., Hitachi Hyouron, Vol. 1968, pp. 78-82, 1968.
Tasirin, S. M. and Geldart, D., “Entrainment of FCC from Fluidized Beds  A New Correlation for the Elutriation Rate Constants ”, Powder Technology, Vol. 95, pp. 240-247, 1998.
Theodore, L. and Buonicore, A. J., “Air Pollution Control Equipment”, Prentice Hall, Inc., 1982.
Thomai, P., Yiannis, A. L., Joel, C., Yuriy, M. D. and Paul, V., “Aromatic Hydrocarbon Emissions from Burning Poly(styrene), Poly(ethylene) and PVC Particles at High Temperature”, Combust. Sci. and Tech., Vols. 116-117, pp. 91-128, 1996.
Tseng, H. H., Wey, M. Y. and Lu, C. Y., “The Study of Modified Calcium Hydroxides with Surfactants for Acid Gas Removal during Incineration”, Environmental Technology, Vol. 23, pp. 109-119, 2002.
Uberoi, M. and Shadman, F. “Sorbents for Removal of Lead Compounds from Hot Flue Gases”, AIChE Journal, Vol. 36, No. 2, pp. 307-309, 1990.
Uberoi, N. and Shadman, F., “High-Temperature Removal of Cadmium Compounds Using Solid Sorbents”, Environmental Science and Technology, Vol. 25, pp. 1285-1289, 1991.
Urano, K., Ornori, S. and Yamamoto, E., “Prediction Method for Adsorption Capacities of Commercial Activated Carbons in Removal of Organic Vapors”, Envir. Sci. and Technol., Vol. 16, No. 1, pp. 10-14, 1982
Wei, Y. L., “Effect of Potassium Hydroxide on PAH Formation during Toluene Incineration”, Chemosphere, Vol. 37, No. 3, pp. 509-521, 1998.
Wen, C. Y. and Yu, Y. H., “Mechanics of Fluidization”, Fluid Particle Technol. Chem. Eng. Progr. Symp. Ser., Vol. 62, No. 62, pp. 100-111, 1966.
Wey, M. Y. and Shi, J. L., “The Effect of Pressure Fluctuations on PAHs Emission and Combustion Efficiency During Incineration”, Journal of Toxicological and Environmental Chemistry, Vol. 61, pp. 83-98, 1997.
Wey, M. Y., Chao, C. Y. and Yu, L. J., “The Influences of Heavy Metals on PAH Formation During Incineration”, Toxicological and Environmental Chemistry, Vol. 56, pp. 35-45, 1996a.
Wey, M. Y., Chao, C. Y., Chen, J. C. and Yu, L. J., “The Relationship between the Quantity of Heavy Metal and PAHs in Fly Ash”, J. of the Air and Waste Management Association, Vol. 48, No. 8, pp. 750-756, 1998a.
Wey, M. Y., Chao, C. Y., Wei, M. C., Yu, L. J. and Liu, Z. S., “The Influence of Heavy Metals on Partitioning of PAHs during Incineration”, J. of Hazardous Materials, Vol. 77, No. 1-3, pp. 77-87, 2000.
Wey, M. Y., Huang, J. H. and Chen, J. C., “The Behavior of Heavy Metal Cr, Pb and Cd during Waste Incineration in Fluidized Bed under Various Chlorine Additives”, Journal of Chemical Engineering of Japan, Vol. 29, No. 3, pp. 494-500, 1996b.
Wey, M. Y., Lu, C. Y., Tseng, H. H. and Fu, C. H., “The Utilization of Catalyst Sorbent in Scrubbing Acid Gases from Incineration Flue Gas”, J. of the Air and Waste Management Association, Vol. 52, No. 4, pp. 449-458, 2002c.
Wey, M. Y., Peng, C. Y., Wu, H. Y., Chiang, B. C. and Liu, Z. S., “Effects of Different Additives on the Performance of Spary Dryer System during Incineration Process”, Environmental Technology, 2002b (Accepted).
Wey, M. Y., Su, J. L., Yan, M. H. and Wei, M. C., “The Concentration Distribution of Heavy Metal under Different Incineration Conditions”, The Science of Total Environment, Vol. 212, pp. 183-193, 1998c.
Wey, M. Y., Yang, J. T., Peng, C. Y. and Chiang, B. C., “Size Distribution of Heavy Metal Aerosols in Cooling and Spray Dryer System”, J. of Environmental Engineering, Vol. 125, No. 11, pp. 1082-1089, 1999b.
Wey, M. Y., Yang, W. Y., Huang, H. C. and Chen, J. C., “Catalytic Oxidation of Organic Compounds in Incineration Flue Gas by a Commercial Palladium Catalyst”, J. of the Air and Waste Management Association, Vol. 52, No. 2, pp. 198-207, 2002a.
Wey, M. Y., Yu, L. J. and Jou S. I., “The Influence of Heavy Meatals on the Formation of Organics and HCl during Incinerating of PVC-Containing Waste”, J. of Hazardous Materials, Vol. 60, pp. 259-270, 1998b.
Wey, M. Y., Yu, L. J., Jou, S. I., Chiang, B. C. and Wei, M. C., “Adsorption on Carbon and Zeolite of Pollutants from Flue Gas during Incineration”, J. of Environmental Engineering, Vol. 125, No. 10, pp. 925-932, 1999a.
Wiman, J. and Almstedt, A. E., “Influence of Pressure, Fluidization Velocity and Particle Size on the Hydrodynamics of a Freely Bubbling Fluidized Bed”, Chem. Eng. Sci., Vol. 53, No. 12, pp. 2167-2176, 1998.
Wu, S. Y. and Baeyens, J., “Effect of Operating Temperature on Minimum Fluidization Velocity”, Powder Technology, Vol. 67, pp. 217-220, 1991.
Wu, S. Y. and Baeyens, J., “Segregation by Size Difference in Gas Fluidized Beds”, Powder Technology, Vol. 98, pp. 139-150, 1998.
Yang, J., Mestl, G., Herein, D., Schlögl, R. and Find, J., “Reaction of NO with Carbonaceous Materials 1. Reaction and Adsorption of NO on Ashless Carbon Black”, Carbon, Vol. 38, pp. 715-727, 2000a.
Yang, J., Mestl, G., Herein, D., Schlögl, R. and Find, J., “Reaction of NO with Carbonaceous Materials 2. Effect of Oxygen on the Reaction of NO with Ashless Carbon Black”, Carbon, Vol. 38, pp. 729-740, 2000b.
Yang, J., Sanchez-Cortezon, E., Pfänder, N., Wild, U., Mestl, G., Find, J. and Schlögl, R., “Reaction of NO with Carbonaceous Materials: III. Influence of the Structure of the Materials”, Carbon, Vol. 38, pp. 2029-2039, 2000c.
Yasuda, K. and Takahashi, M., “The Emission of Polycyclic Aromatic Hydrocarbons from Municipal Solid Waste Incinerators during the Combustion Cycle”, J. Air and Waste Management Association, Vol. 48, pp. 441-447, 1998.
Yeh, H. C. and Liu, B. Y. H., “Aerosol Filtration by Fibrous Filters”, J. Aerosol Sci., Vol. 5, pp. 191-217, 1974.
Yerushalmi, J., Kolodney, M., Graff, R. A. and Squires, A. M., “Agglomeration of Ash in Fluidized Beds Gasifying Coal: The Godel Phenomenon”, Science, Vol. 187, pp. 646-648, 1974.
You, J. H., Chiang, P. C., Chang, S. C. and Wang-Wuu, S., “Polycyclic Aromatic Hydrocarbons (PAHs) and Mutagenicity in Air Emissions from the Two-Stage Incineration of Polystyrene with Various Metallic Salt Additives”, J. of Hazardous Materials, Vol. 48, pp. 69-82, 1996.
Zevenhoven, C. A. P., “Particle Charging and Granular Bed Filtration for High Temperature Application”, PhD Thesis, Delft University of Technology, Delft, Netherlands, 1992.
Zhang, X. J., “Emissions of Volatile Organic-Compounds from Large-Scale Incineration Plants”, J. of Environ. Sci. and Health Part A-Toxic/Hazardous Substances & Environ. Engrg., Vol. 33, No. 2, pp. 279-306, 1998b.
Zhang, X. J., “The Effect of the Oxygen Fraction on Volatile Organic-Compound Emissions from Waste Combustion”, J. of Environ. Sci. and Health Part A-Toxic/Hazardous Substances & Environ. Engrg., Vol. 33, No. 1, pp. 147-163, 1998a.
王鯤生、江康鈺、儲雯娣、林仕敏、葉宗智,“焚化溫度與垃圾PVC含量對焚化灰渣重金屬分佈特性之研究”,第十三屆空氣污染控制技術研討會論文集,pp. 371-377,1996。
司洪濤、鄭乙任、袁中新,“乾式煙道噴注法處理燃燒廢氣中酸性之研究”,第十三屆空氣污染防治技術研討會論文集,pp. 461-466,1996。
朱信,“煙道氣中濕式除硫、除氮整合系統之研究(II)系統最適化”,NSC-83-0410-E-006-075,1994。
吳水欽,“吸收技術在空氣污染防治上的應用”,化工技術,Vol. 3,No. 8,1995。
李慧梅,“都市地區大氣環境中有機氣膠之研究”,NSC 80-0410-E-002063,1991。
李慧梅,“都市地區空氣中多環芳香族碳氫化合物之研究”,NSC-79-0421-E-002-37Z,1990。
李慧梅、董曉音,“燃煤電廠煙道氣中PAHs在飛灰上吸附之研究”,第十二屆空氣污染控制技術研討會論文集,pp. 570-576,1995。
孫世勤,“都市垃圾焚化廠廢氣中重金屬物質之控制方式”,中興工程,第四十一期,pp. 49-64,1993。
袁中新、游源喬、洪崇軒,“無機物添加於氫氧化鈣/飛灰吸附(收)劑對乾式噴注同時去除SO2及NO效率之影響”,第十五屆空氣污染防治技術研討會論文集,pp. 206-215,1998。
袁中新、廖國進、蔡聖叢,“強氧化劑添加物對於改善噴霧乾燥塔去除酸性氣體效率之影響”,第十屆空氣污染控制技術研討會論文集,pp. 27-32,1993。
袁中新、蔡聖叢,“濾布塵餅處理廢氣中酸性氣體之研究”,第十一屆空氣污染防治技術研討會論文專輯,pp. 326-336,1994。
郝吉明、馬廣大,“空氣污染控制工程”,科技圖書股份有限公司,1995。
陳邦雄、李慧梅、董曉音,“都市垃圾焚化爐煙道氣中PAHs在飛灰上吸附之研究”,第十一屆空氣污染控制技術研討會論文集,1994。
陳俊成、黃亮傑,“洗滌塔添加氧化劑應用於去除硫化氫之參數研究”,第十六屆空氣污染控制技術研討會論文集,pp. 151-157,1999。
章裕民、洪朝陽、李昌憲,“Study on Elutriation from Bubbling Fluidized Bed Incineration — A Correlation for Elutriaiton Rate Constant”,第十六屆廢棄物處理技術研討會,2-13,2001。
蔡文田、張慶源,“活性碳及其在空氣污染防製之應用”,環境工程會刊,Vol. 3,No. 2,pp. 65-84,1993。
魏玉麟,“流動床爐處理工業有機污泥之PAHs排放探討”,第十一屆空氣污染控制技術研討會論文集,NSC 82-0410-E-029-004,1994。
魏玉麟、周黃崑龍,“添加金屬溶液對焚化廢溶劑產生PAHs之影響”,第十二屆空氣污染控制技術研討會論文集,pp. 539-546,1995。
魏銘彥、吳欣益、曾惠馨,“半乾式除酸系統中操作條件對焚化廢氣污染物去除之影響”,第十六屆空氣污染控制技術研討會論文集,pp. 108-113,1999。
魏銘琪、魏銘彥、林秋良,“焚化過程中吸附劑對重金屬競爭吸附性的探討”,第十五屆空氣污染控制技術研討會論文集,pp. 477-482,1998。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top