(44.192.10.166) 您好!臺灣時間:2021/03/06 19:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:葉峻榕
論文名稱:大陸沙塵暴對中部地區酸性空氣污染物之影響
指導教授:鄭曼婷鄭曼婷引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:環境工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:沙塵暴酸性空氣污染物環型擴散採樣器
相關次數:
  • 被引用被引用:16
  • 點閱點閱:1505
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:418
  • 收藏至我的研究室書目清單書目收藏:3
摘 要
本研究於2002年配合環保署監資處大陸沙塵暴密集觀測計畫,利用環型擴散採樣器在台中市中興大學測站進行酸性空氣污染物的密集採樣,採樣時間分別為2002年1/29-2/1、2/11-2/13、3/5-3/11及3/17-3/24。採樣時同時收集大氣的溫度、濕度及風速資料,以瞭解大陸沙塵暴對中部地區酸性空氣污染物之影響。
採樣期間氣狀污染物HCl、HNO2、HNO3、NH3及SO2的平均濃度分別為0.74、2.81、1.35、6.30及8.36 g / m3,統計分析結果顯示沙塵暴及非沙塵暴期間上述氣體並無顯著差異。沙塵暴過境期間PM10、PM2.5-10及PM2.5之平均濃度為87 ± 31、 45 ± 19及42 ± 17 g / m3,而非沙塵暴期間PM10、PM2.5-10及PM2.5平均濃度則為71 ± 28g 、32 ± 17及40 ± 16 g / m3 ,在沙塵暴過境期間PM2.5-10之質量濃度有顯著增加(p<0.05)。此外,在非沙塵暴期間,台中都會區PM2.5-10 佔 PM10之質量比例約為43 %, 而沙塵暴過境期間其質量比例高達52 %(p=0.0502)。
氣膠中水溶性離子成分的分析結果顯示,沙塵暴過境期間PM2.5中之化學組成濃度並無增加之現象,而PM2.5-10氣膠中的Cl-、Na+、Mg2+及Ca2+則在沙塵暴期間濃度明顯增加1.6 ~21倍之間(p<0.05),PM10氣膠中亦是以這四種離子增加最明顯,而NH4+則是唯一在PM2.5及PM2.5-10氣膠中濃度均減少的物種。在粗細粒比方面,NO3-及SO4=在沙塵暴期間粗粒濃度有明顯的增加,其餘的離子則不明顯。
分析PM10之[NH4+] / ([nss-SO4=] + [NO3-]),沙塵暴期間比值為0.72而非沙塵期間為0.81,兩者間有顯著的差異,另外計算([NH4+] + [ Ca+])/([nss-SO4=] + [NO3-]),發現不論在沙塵暴及非沙塵暴期間均趨近於1,表示沙塵暴期間的高污染是粗粒中的nss-SO4=及NO3-濃度增加所導致,且Ca2+在NH4+濃度相對減少時是另一個重要之氣膠中和物種。
沙塵暴及非沙塵暴期間的PM2.5-10氣膠中氯損失分別為52及68 %,沙塵暴過境氯損失約減少23%(p<0.05),氯損失百分比與[Ca2+] / [Na+]比值呈現負相關,原因是沙塵暴期間Ca2+取代部分的Na+與酸性氣體反應所致,該線性回歸式為:
氯損失(%)= - 0.25([Ca2+] / [Na+])+0.85 (R2=0.51)
氣膠的污染來源推估結果,中部地區的PM10氣膠中是以二次氣膠的含量最多。沙塵暴帶來大量粗粒及部分細粒的塵土顆粒,造成PM10氣膠質量增加主要是來自粗粒的塵土顆粒(2倍)及海水飛沫(1.4倍),粗粒中的Ca2+與nss-SO4=呈現中度相關,而與NO3-的相關性則較差,推測應該是沙塵暴傳輸過程中經過較多SOx排放的地區所致。
Abstract
This study used Annular Denuder System (ADS) to collect acidic air pollutants ( PM10 and PM2.5 particles and acidic gases ) at Chung-Hsing university in Taichung city from January to March in 2002. In the sampling period, China dust storms effected Taiwan in 2/11-2/12D、3/6-3/9、3/18-3/19 and 3/23-3/24.
The mean concentrations of HCl(g)、HNO2(g)、HNO3(g)、SO2(g) and NH3(g) were 0.74、2.81、1.35、6.30 and 8.36 g / m3 , respectively. These concentrations are not remarkably different between the dust storm and the non-dust storm periods. In the dust storm periods the mean concentrations of PM10、PM2.5 and PM2.5-10 were 87±31、45±19 and 42±17 g / m3, respectively. The concentrations of PM2.5-10 are remarkably higher in the dust storm periods. The average ratios of PM2.5-10 / PM10 were 43% and 52% in the non-dust storm and the dust storm periods, respectively.
The mean concentrations of Cl-、Na+、Mg2+ and Ca2+ in the PM2.5-10 and PM10 particles in the dust storm periods are 1.6 to 2.1 times higher than these in the non-dust storm periods(p<0.05). NO3- and SO4= species in the PM2.5-10 particles increased remarkable in the dust storm periods. However, NH4+ specie in the PM2.5 and PM2.5-10 were found significantly lower in the dust storm periods.
The average ratio of [NH4+] / ([nss-SO4=] + [NO3-])in PM10 particles in the dust storm periods and in the non-dust storm periods were 0.72 and 0.81, respectively(p<0.05). But([NH4+] + [ Ca+])/([nss-SO4=] + [NO3-])in PM10 particles were closed to 1.0 either in the dust storm periods or in the non-dust storm periods. These results indicate that the concentrations of nss-SO4= and NO3- in PM2.5-10 particles increase in the dust storm periods, and Ca2+ is an important neutralizing agent.
There were 52% and 68% chlorine loss in the dust storm periods and in the non-dust storm periods, respectively. In the dust storm periods, chlorine loss decreased about 23%(p<0.05). Chlorine loss (%) was negatively correlated with the ratio of [Ca2+] / [Na+], since Ca2+ might replace Na+ to react with acidic gases. The relationship between Chlorine loss (%) and the ratio of [Ca2+] / [Na+] was
Chlorine loss (%) = - 0.25×( [Ca2+] / [Na+] )+0.85 R2=0.51
Secondary aerosols (nss-NO3- and nss-SO4= ) were the major species in PM10 aerosols in central Taiwan. During the dust storm periods, most of coarse particles and a few fine particles were brought along with the China dust storms. There are about 2 times PM2.5-10 and 1.4 times ocean salts contributed by the dust storms. Ca2+ in coarse particles correlated better with nss-SO4= ias compared with NO3- in coarse particles. This result indicated that the dust storms may have passed through the area with higher SO2(g) concentrations.
目 錄
第一章 前言…...……..…...................................................1-1
1.1 研究緣起..................................................................1-1
1.2 研究目的..................................................................1-3
第二章 文獻回顧.................................................................2-1
2.1 氣膠的來源及物理化學組成特性..........................2-1
2.1.1 氣膠來源及粒徑分佈.....................................................2-1
2.1.2 氣膠水溶性離子之形成.................................................2-3
2.1.3 氣膠水溶性離子之粒徑分佈.........................................2-5
2.1.3 水溶性離子物種之特性.................................................2-7
2.2 氣膠與氣象及地形因子的關係.............................2-10
2.2.1 氣象因子的影響..........................................................2-10
2.2.2 地形因子的影響..........................................................2-11
2.3 氣膠對環境及人體健康的影響.............................2-11
2.4 台中都會區氣膠特性.............................................2-13
2.5 大陸沙塵暴特性.....................................................2-14
2.5.1 大陸沙塵暴發生原因..................................................2-14
2.5.2 大陸沙塵暴對環境及人體健康的影響......................2-15
2.5.3 台灣地區受大陸沙塵暴影響的情況..........................2-16
2.5.4 國內對於大陸沙塵暴的研究成果..............................2-16
2.6 國內外酸性空氣污染物的分析結果.....................2-19
第三章 研究方法.................................................................3-1
3.1 採樣規劃...................................................................3-1
3.1.1 採樣時間...................................................................... ..3-1
3.1.2 採樣測站之環境描述.....................................................3-1
3.1.3 採樣濾紙處理程序.........................................................3-2
3.1.4 採樣儀器設備.................................................................3-2
3.2 分析項目...................................................................3-3
3.2.1 氣膠水溶性離子分析....................................................3-3
3.2.2 氣狀污染物分析............................................................3-4
3.3 分析方法...................................................................3-5
3.3.1 氣膠酸鹼性分析.............................................................3-5
3.3.2 海水加強因子分析.........................................................3-6
3.3.3 主成分因子分析.............................................................3-6
3.3.4 氯離子損失法分析…………………………………….3-8
第四章 結果與討論..............................................................4-1
4.1 觀測值與環保署空品測站監測值之比較...............4-1
4.2 大氣氣膠質量濃度變化分析...................................4-4
4.2.1 採樣期間之空氣品質狀態及氣象因子特性..............4-10
4.2.2 氣膠質量濃度變化及粗細粒比..................................4-13
4.2.3 氣膠日夜濃度變化......................................................4-15
4.3 氣膠水溶性陰陽離子特性分析.............................4-17
4.3.1 氣膠水溶性陰陽離子濃度...........................................4-17
4.3.2 氣膠水溶性陰陽離子濃度百分比及粒徑分佈...........4-24
4.3.3 氣膠水溶性陰陽離子當量濃度平衡及酸鹼性分析...4-35
4.3.4 氣膠水溶性陰陽離子相關性分析...............................4-41
4.4 氣膠污染來源推估.................................................4-50
4.4.1 海水加強因子分析.......................................................4-50
4.4.2 主成分因子分析.............................................................4-57
4.4.3 氯離子損失法分析…………………………………….4-58
4.5 採樣期間氣狀污染物特性.....................................4-99
4.5.1 沙塵暴及非沙塵暴期間比較.......................................4-99
4.5.2 與國內外文獻比較.......................................................4-99
第五章 結論..........................................................................5-1
第六章 建議
參考文獻
附錄
附錄一 環形擴散採樣器實驗步驟
附錄二 粒狀污染物採樣結果
附錄三 氣狀污染物採樣結果
附錄四 氯鹽及硝酸鹽微粒的揮發量
附錄五 1994-2002年大陸沙塵暴影響台灣的日數統計
附錄六 沙塵暴事件日統計(PM2.5-10 / PM10)
附錄七 2000年3月中部地區沙塵暴事件日統計分析
表 目 錄
表2.1 典型大氣氣膠的三尖峰粒徑分佈...........................................2-2
表4.2.1 a 採樣紀錄(1/29-2/1及2/11-2/13)........................................4-5
表4.2.1 b 採樣紀錄(3/5-3/11)............................................................4-6
表4.2.1 c 採樣紀錄(3/17-3/24)..........................................................4-7
表4.2.2 a 採樣期間天氣型態及中部監測站PSI值(1/29-2/1及2/11-2/13)..............................................................................4-11
表4.2.2 b 採樣期間天氣型態及中部監測站PSI值(3/5-3/11及3/17-3/24).............................................................................4-12
表4.2.3 沙塵暴與非沙塵暴採樣期間氣膠平均質量濃度與粗細粒比...........................................................................................4-15
表4.2.4 採樣期間日間及夜間大氣氣膠質量濃度比較..................4-16
表4.3.1 a 沙塵暴及非沙塵暴期間氣膠水溶性離子平均質量濃度...........................................................................................4-22
表4.3.1 b 沙塵暴及非沙塵暴期間氣膠水溶性離子平均質量百分比...........................................................................................4-23
表4.3.2 沙塵暴及非沙塵暴期間PM10、PM2.5及PM2.5-10氣膠水溶性離子含量百分比排序...........................................................4-26
表4.3.3 沙塵暴及非沙塵暴期間氣膠水溶性陰陽離子PM2.5 / PM10比值...........................................................................................4-34
表4.3.4 沙塵暴及非沙塵暴期間PM10、PM2.5 及PM2.5-10氣膠水溶性陰陽離子平衡及NR值計算結果........................................4-40
表4.3.5 a 沙塵暴期間PM10氣膠質量濃度與水溶性離子成分相關性...........................................................................................4-44
表4.3.5 b 非沙塵暴期間PM10氣膠質量濃度與水溶性離子成分相關性...........................................................................................4-45
表4.3.6 a 沙塵暴期間PM2.5氣膠質量濃度與水溶性離子成分相關性...........................................................................................4-46
表4.3.6 b 非沙塵暴期間PM2.5氣膠質量濃度與水溶性離子成分相關性...........................................................................................4-47
表4.3.7 a 沙塵暴期間PM2.5-10氣膠質量濃度與水溶性離子成分相關性...........................................................................................4-48
表4.3.7 b 非沙塵暴期間PM2.5-10氣膠質量濃度與水溶性離子成分相關性.......................................................................................4-49
表4.4.1 海水來源離子的比值..........................................................4-50
表4.4.2 a PM10氣膠氣膠中Cl-、SO4=、K+、Mg2+及Ca2+對Na+的質量比值...................................................................................4-52
表4.4.2 b PM2.5氣膠氣膠中Cl-、SO4=、K+、Mg2+及Ca2+對Na+的質量比值...................................................................................4-53
表4.4.2 c PM2.5-10氣膠氣膠中Cl-、SO4=、K+、Mg2+及Ca2+對Na+的質量比值...............................................................................4-54
表4.4.3 a PM10氣膠海水加強因子分析法結果(應用Wilson, 1975).....................................................................................4-55
表4.4.3 b PM10氣膠海水加強因子分析法結果(應用Cheng et al., 2000).....................................................................................4-55
表4.4.4 a PM2.5氣膠海水加強因子分析法結果(應用Wilson, 1975).....................................................................................4-55
表4.4.4 b PM2.5氣膠海水加強因子分析法結果(應用Cheng et al., 2000).....................................................................................4-55
表4.4.5 a PM2.5-10氣膠海水加強因子分析法結果(應用Wilson, 1975).....................................................................................4-56
表4.4.5 b PM2.5-10氣膠海水加強因子分析法結果(應用Cheng et al., 2000).....................................................................................4-56
表4.4.6 a 沙塵暴期間PM10氣膠化學組成、氣態空氣污染物及氣象資料之VARIMAX轉換因子分析結果總表(樣本數為18筆).........................................................................................4-61
表4.4.6 b 非沙塵暴期間PM10氣膠化學組成、氣態空氣污染物及氣象資料之VARIMAX轉換因子分析結果總表(樣本數為20筆).........................................................................................4-62
表4.4.7 a 沙塵暴期間PM2.5氣膠化學組成、氣態空氣污染物及氣象資料之VARIMAX轉換因子分析結果總表(樣本數為18筆).........................................................................................4-63
表4.4.7 b 非沙塵暴期間PM2.5氣膠化學組成、氣態空氣污染物及氣象資料之VARIMAX轉換因子分析結果總表(樣本數為20筆).........................................................................................4-64
表4.4.8 a 沙塵暴期間PM2.5-10氣膠化學組成、氣態空氣污染物及氣象資料之VARIMAX轉換因子分析結果總表(樣本數為18筆).........................................................................................4-65
表4.4.8 b 非沙塵暴期間PM2.5-10氣膠化學組成、氣態空氣污染物及氣象資料之VARIMAX轉換因子分析結果總表(樣本數為20筆)....................................................................................4-66
表4.4.9 利用主成分因子分析法推估沙塵暴及非沙塵暴期間PM10、PM2.5及PM2.5-10氣膠之污染貢獻因子................................4-67
表4.4.10 a 氯離子損失法推估PM10氣膠海鹽成分計算過程……4-70
表4.4.10 b 氯離子損失法推估PM2.5氣膠海鹽成分計算過程……4-72
表4.4.10 c 氯離子損失法推估PM2.5-10氣膠海鹽成分計算過程…4-74
表4.4.11 a 氯離子損失法推估PM10氣膠中海鹽相關離子濃度……………………………………………………......….4-76
表4.4.11 b 氯離子損失法推估PM2.5氣膠中海鹽相關離子濃度………………………………………………………...…4-79
表4.4.11 c 氯離子損失法推估PM2.5-10氣膠中海鹽相關離子濃度…………………………………………………………...4-82
表4.4.12 a 利用氯損失法推估PM10氣膠的污染來源……………4-85
表4.4.12 b 利用氯損失法推估PM2.5氣膠的污染來源……………4-87
表4.4.12 c 利用氯損失法推估PM2.5-10氣膠的污染來源…………4-89
表4.4.13 a 2002年1/29-3/24中興大學測站PM10氣膠中氯損失百分比與[Ca2+]/[Na+]比值……………………………………...4-92
表4.4.13 b 2002年1/29-3/24中興大學測站PM2.5氣膠中氯損失百分比與[Ca2+]/[Na+]比值……………………………………...4-94
表4.4.13 c 2002年1/29-3/24中興大學測站PM2.5-10氣膠中氯損失百分比與[Ca2+]/[Na+]比值…………………………………...4-96
表4.5.1 沙塵暴及非沙塵暴期間酸性空氣污染物平均質量濃度………………………………………………………….4-101
表4.5.2 本研究酸性氣體採樣結果與國內量測結果比較............4-102
表4.5.3 本研究酸性氣體採樣結果與國外量測結果比較............4-103
圖 目 錄
圖3.1.1 環形擴散採樣器裝置..........................................................3-11
圖3.1.2 採樣點位置及其鄰近環境..................................................3-12
圖3.1.3 石英濾紙處理流程圖..........................................................3-13
圖3.1.4 水溶性陰陽離子分析流程圖..............................................3-14
圖4.1.1 中興大學測站(1)PM10氣膠質量濃度及(2)SO2氣體濃度觀測值與大里測站監測值比較圖.....................................4-2
圖4.1.2 中興大學測站(1)PM10氣膠質量濃度及(2)SO2氣體濃度觀測值與大里測站監測值之相關性.................................4-3
圖4.2.1 a 採樣期間環保署陽明及大里監測站PM10氣膠質量濃度逐時變化圖.................................................................................4-8
圖4.2.1 b 採樣期間環保署陽明及大里監測站CO氣體濃度逐時變化圖.............................................................................................4-9
圖4.2.2 採樣期間PM10、PM2.5及PM2.5-10氣膠質量濃度與粗細粒比逐日變化圖...........................................................................4-14
圖4.3.1 a 沙塵暴及非沙塵暴期間(1)PM10、(2)PM2.5及(3)PM2.5-10氣膠水溶性離子平均質量濃度比較...................................4-20
圖4.3.1 b 沙塵暴及非沙塵暴期間PM10、PM2.5及PM2.5-10氣膠水溶性離子平均質量百分比比較...............................................4-21
圖4.3.2 a 沙塵暴及非沙塵暴期間PM10氣膠水溶性離子含量圓餅圖...........................................................................................4-27
圖4.3.2 b 沙塵暴及非沙塵暴期間PM2.5氣膠水溶性離子含量圓餅圖...........................................................................................4-28
圖4.3.2 c沙塵暴及非沙塵暴期間PM2.5-10氣膠水溶性離子含量圓餅圖...........................................................................................4-29
圖4.3.3 a 採樣期間硝酸鹽微粒質量濃度與粗細粒比逐日變化圖...........................................................................................4-30
圖4.3.3 b 採樣期間硫酸鹽微粒質量濃度與粗細粒比逐日變化圖...........................................................................................4-30
圖4.3.3 c 採樣期間氯鹽微粒質量濃度與粗細粒比逐日變化圖....4-31
圖4.3.3 d 採樣期間鈉鹽微粒質量濃度與粗細粒比逐日變化圖...4-31
圖4.3.3 e 採樣期間銨鹽微粒質量濃度與粗細粒比逐日變化圖....4-32
圖4.3.3 f 採樣期間鉀鹽微粒質量濃度與粗細粒比逐日變化圖....4-32
圖4.3.3 g 採樣期間鎂鹽微粒質量濃度與粗細粒比逐日變化圖...4-33
圖4.3.3 h 採樣期間鈣鹽微粒質量濃度與粗細粒比逐日變化圖...4-33
圖4.3.4 (1)PM10、(2)PM2.5及(3)PM2.5-10氣膠中水溶性陰陽離子當量濃度平衡關係.......................................................................4-37
圖4.3.5 a 採樣期間PM10氣膠NR值及Ca2+微粒質量濃度逐日變化圖...........................................................................................4-38
圖4.3.5 b 採樣期間PM2.5氣膠NR值及Ca2+微粒質量濃度逐日變化圖...........................................................................................4-39
圖4.4.1 (a)PM10(b)PM2.5及(c)PM2.5-10氣膠中氯損失百分比與[Ca2+]/[Na+]比值之比較…………………………………...4-98
圖4.5.1 沙塵暴及非沙塵暴期間氣狀空氣污染物平均質量濃度比較.........................................................................................4-101
參考文獻
1. Barblaux M., Scheff P. A. and L. R. Babcock, “Characterization of respirable particulate matter in Mexico city, Mexico.” Presentation at the 9th World Clean Air Congress and Exhibition. Montreal, Canada, 30 August - 4 September, IU-7.07.(1992).
2. Calvert J. G. and W. R. Stockwell,“Acid Generation in the Troposphere by Gas-phase Chemistry,”Environmental Science and Technology, Vol. 17, No. 9, pp. 428A-443A (1983).
3. Chan C. C., H. F. Hung, L. F. Fu, “The indoor outdoor relationship of acid aerosol in Taipei city.” Intern. Confer. Aerosol Sci. Technol, pp.139-147, Taichung, (1993).
4. Chan C. C., H. F. Hung, L. F. Fu, “The spatial distribution of acid aerosol around a petrochemical complex areas before construction.” Intern. Confer. Aerosol Sci. Technol, pp.291-303, Taichung, (1993).
5. Chang Y., H. Kurita and H. Ueda,“Transport and Formation of Sulfates and Nitrates,” Atmospheric Environment, Vol., No. , pp. 1749-1773 (1990).
6. Charlson R. J. and T. M. L. Wigley, “Sulfate Aerosol and Climatic Change,”Scientific American, No. 2, pp. 48-57 (1994).
7. Chung Y. S., “On the observations of yellow sand (dust storms) in Korea.” Atmospheric Environment No.26A, pp.2743-2749 (1992).
8. Chung Y. S. and M. B. Yoon, “On the occurrence of yellow sand and atmospheric loadings.” Atmospheric Environment No.30, pp.2387-2397 (1996).
9. Colbeck I. And R. M. Harrison, “Ozone-Secondary Aerosol-Visibility Relationships in North-West England,” The Science of Total Environment, Vol. 34, pp. 87-100 (1984).
10. Chow J. C.,“Measurement Methods to Determine Compliance with Ambient Air Quality Standards for Suspended Particles,”J. Air & Waste Manage. Assoc., Vol. 45, pp. 320-382 (1995).
11. Danalatos D. and Glavas S., ”Atmospheric Nitric Acid Concentrations in a Mediterranean site, Patras, Greece,” Atmospheric Environments Vol. 29 No.15, pp. 1849-1852 (1995).
12. Danalatos D. and Glavas S., ”Gas Phase Nitric Acid , Ammonia and Related Particulate Matter at a Mediterranean Coastal site, Patras, Greece,” Atmospheric Environments Vol. 33 , pp. 3417-3425 (1999).
13. Duce R. A., C. K. Unni. And B. J. Ray, “Long-range atmospheric transport of soil dust from Asian to the tropical North Pacific : Temporal Variability.” Science No.209, pp.1522-1523, (1980).
14. Fan X. B. et al., ”Mineral particles collected in China and Japan during the same Asian dust-storm event. ”Atmospheric Environment Vol.30, pp.347-351, (1996).
15. Fang, M., M. Zheng, F. Wang, K. S. Chim, S. C. Kot, “The Long-range Transport of Aerosols from Northern China to Hong-Kong — a Mutli-technique Study,” Atmospheric Environment, Vol. 33, pp. 1803-1817(1999).
16. Fang G. C. et al., ”The concentration variation of acidic gas and their relationship with meteorological factors in Sha-Lu, Taichung , ”Proceedings 17th Air Pollution Control Technology Conference, (2000).
17. Fraser Matthew P. and Glen R. Cass, “Detection of excess ammonia emission from in-use vehicles and the implications for fine particle control.” Environment Science and Technology Vol.32, No.8, pp.1053-1057 (1998).
18. Harrison, R. M., Pio, C. A.,”Size-differentiated composition of inorganic atmospheric aerosols of both marine and polluted continental origin. ”Atmospheric Environment 17,1733-1783(1983).
19. Henry, R. C., and G. M. Hidy, “Multivariate analysis of particulate sulfate and other air quality variables by principal components.” Salt Lake City, Utah and St. Louis, Missouri. Atmos. Environ, pp.929-943, (1985).
20. Henry, R. C., and G. M. Hidy, “Multivariate analysis of particulate sulfate and other air quality variables by principal components-Part I. Annual Data from Los Angeles and New York.” Atmospheric Environment Vol.13, pp.1581-1596 (1979).
21. Hinds, W. C., Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, 2nd Edition, John Willey & Sons, Inc., New York, pp. 3-4 (1999).
22. Harrison R. M. and A. M. N. Kitto,“Field Intercomparison of Filter Pack and Drnuder Sampling Methods for Reactive Gaseous and Particulate Pollutants,” Atmospheric Environment, Vol. 24A, No. 10, pp. 2633-2640 (1990).
23. Harrison R. M., M.I. Msibi, A. M. N. Kitto and S. Yamulki,“Atmospheric Chemical Transformations of Nitrogen Compounds Measured in the North Sea Experiment, September 1991,” Atmospheric Environment, Vol. 28, pp. 1593-1599 (1994).
24. Hoek G.., Mennen M. G.., Allen G. A., Hofschreuder P. and Ton Van Der Meulen, “Concentrations of Acid Air Pollutants in the Netherlands,” Atmospheric Environments Vol. 30 , No. 18, pp. 3141-3150(1996).
25. Huang B., “A study of sampling efficiency for nitrate acid gas and Particulate nitrate concentration in atmosphere.” MS Thesis, Institute of Environmental Engineering, National Chiao Tnng University, Taiwan, (1996).
26. Iwasaka Y., M. Yamato, R. Iamasu, A. Ono, “Transport of Asian dust (Kosa) particles; importance of weak Kosa events on the geochemical cycle of soil particles.” Tellus 40B, pp.494-503 (1988).
27. John W., S. M. Wall, J. L. Ondo and W. Winklmayr,“Modes in the Size Distribution of Atmospheric Inorganic Aerosol,”Atmospheric Environment, Vol. 24A, pp. 2349-2359 (1990).
28. Kerminen V. M., Pakkanen T. A. and Hillamo R. E.,“Interactions Between Inorganic Trace Gases and Supermicrometer Particles at a Coastal Site,”Atmospheric Environment, Vol. 31, No. 17, pp. 2753-2765 (1997).
29. Kim B. G. and Park S.U.,”Transport and Evolution of a Winter-Time Yellow Sand Observed in Korea, ” Atmospheric Environments Vol. 35 , pp. 3191-3201 (2001).
30. Kotamarthi V. R., and G. R. Carmichanel, “A modeling study of the long range transport of Kosa using particle trajectory analysis.” Tellus 45B, pp.426-441 (1993).
31. Kulmala M., P. Keronen, A. Laaksonen, T. Vesala and P. Korhonen,“The Effect of HCl on Cloud Droplet Formation,” J. Aerosol Sci., Vol. 26, Suppl 1, pp. S413-S414 (1995).
32. Lee H. S., Wadden R. A. and P. A. Scheff, ”Measurement and evaluation of acid air pollutants in Chicago using an annular denuder system. ” Atmospheric Environments Vol. 27A , pp. 543-553(1993).
33. Lee H. S., Kang C. M., Kang B. W. and Kim H. K., ”Seasonal Variations of Acidic Pollutants in Seoul, South Korea,” Atmospheric Environment Vol. 33 , pp.3143-3152(1999).
34. Liu rt al.,”Comparison of Aerosol Acidity in Urban and Semi-rural Environments,” Atmospheric Environment Vol. 30 ,No. 8, pp.1237-1245 (1996).
35. Liu, Shaw Chen and Chein-Jung Shiu, “Asian dust storms and their impact on the air quality of Taiwan.” Aerosol and Air Quality Research, Vol.1, No.1, pp.1-8, (2001).
36. Mamane Y. and J. Gottlieb,“Nitrate Formation on Sea-salt and Mineral Particles ----- a Single Particle Approach,”Atmospheric Environment, Vol. 26A, pp. 1763-1769 (1992).
37. Manahan, Stanley E., Environmental Chemistry, 5nd Edition, Lewis publishers, Inc., Chelsea, (1991)
38. Matsumoto M. and Okita T.,”Long Term Measurements of Atmospheric Gaseous Aerosol Species Using an Annular Denuder System in Nara, Japan,” Atmospheric Environment Vol. 32 ,No. 8, pp.1419-1425(1997)
39. Mehlmann A. and P. Warneck,“Atmospheric Gaseous HNO3, Particulate Nitrate, and Aerosol Size Distributions of Major Ionic Species at a Rural Site in Western Germany,”Atmospheric Environment, Vol. 29, No. 17, pp. 2359-2373 (1995).
40. Mori I., M. Nishikawa, Y. Iwasaka, “Chemical reaction during the coagulation of ammonium sulphate and mineral particles in the atmosphere.” The Science of the Total Environment No.224, pp.87-91, (1998).
41. Ohta, S. and T. Okita, “A Chemical Characterization of Atmospheric Aerosol in Sapporo,” Atmospheric Environment, Vol. 24A, No. 4, pp. 815-822 (1990).
42. Perng S. B., “A study of the performance od different sampling systems and characteristics of acidic aerosols,” MS Thesis, Institute of Environmental Engineering, National Chiao Tnng University, Taiwan, (1998).
43. Parrington J. R., W. H. Zoller, N. K. Aras, “Asian dust : Seasonal Transport to the Hawaiian Islands.” Science No.220, pp.195-196, (1983).
44. Perng S. N., “A study of ambient ionic species using diffusion denuder, dichotomous and Hi-vol PM10 samplers.” MS Thesis, Institute of Environmental Engineering, National Chiao Tnng University, Taiwan, (1995).
45. Scheff. P. A. and C. Valiozis, ”Characterization and source identification of respirable particulate matter in Athens, Greece.” Atmospheric Environment Vol.24A(1), pp.203-211(1990).
46. Schwartz J. ,D. W. Dockery, and L. M. Neas,“Is Daily Mortality Associated Specifically With Fine Particles?,” J. Air & Waste Manage. Assoc., Vol. 46, pp. 927-939 (1996).
47. Stelson A. W. and J. H. Seinfeld“Relative Humidity and Temperature Dependence of the Ammonium Nitrate Dissociation Constant,”Atmospheric Environment, Vol. 16, pp. 983-992 (1982).
48. Thurston G. D. and P. J. Lioy, “Receptor modeling and aerosol transport.” Atmospheric Environment, Vol. 21,No.3, pp. 687-698 (1987).
49. Watson, J. G., J. C. Chow, Z. Lu, E. M. Fujita, D. H. Lowenthal, and D. R. Lawson, “Chemical Mass Balance Source Apportionment of PM10 during the Southern California Air Quality Study,” Aerosol Sci. Technol., Vol. 21, pp. 1-36 (1994).
50. Wen H. Y., “A study ofsampling error for HNO3, HNO2, SO2, and NH3 gases using annular denuder system.” MS Thesis, Institute of Environmental Engineering, National Chiao Tnng University, Taiwan, (1997).
51. Wilson T. R. S., “Salinity and the major elements of sea water.” Chemical Oceanography, 1, 2nd edtion., J. P. Riley and G. Skirrow, pp.365-413, Academic, Orlando, Fla. (1975).
52. Wu P. M. and K. Okada,“Nature of Coarse Nitrate Particles in the Atmosphere ----- a Single Particle Approach,”Atmospheric Environment, Vol. 28, pp. 2053-2060 (1994).
53. Yang T. Y., “A study of cxharacteristics of acidic aerosols at a monitoring station in Taipei,” MS Thesis, Institute of Environmental Engineering, National Chiao Tnng University, Taiwan, (1997).
54. Zhou M., K. Okada, F. Qian, P.-M. Wu, L. Su, B. E. Casareto, T. Shimohara, “Characteristics of dust-storm particles and their long-range transport from China to Japan — case studies in April 1993.” Atmospheric Research No.40, pp.19-31, (1996).
55. Zhuang H., C. K. Chen, M. Fang and A. S. Wexler,“Size Distributions of Particulate Sulfate, Nitrate, and Ammonium at a Coastal Site in Hong Kong,”Atmospheric Environment, Vol. 33, pp. 843-853 (1999a).
56. Zhuang H., C. K. Chen, M. Fang and A. S. Wexler,“Formation of Nitrate and Non-sea-salt Sulfate on Coarse Particles,”Atmospheric Environment, Vol. 33, pp. 4223-4233 (1999b).
57. 王景良,「中部空品區污染源逸散粉塵的組成分析」,國立中興大學環境工程研究所碩士論文,台中(2000)。
58. 王證權,「亞洲氣膠特性實驗-台灣北海岸春季氣膠化學特性」,國立中央大學環境工程研究所碩士論文,中壢(2001)。
59. 李崇德、許文昌、林能暉,「台中地區氣膠微粒化學組成及其污染來源推估」,一九九五年氣膠研討會論文專輯,台北,第 111 - 118 頁 (1995)。
60. 李崇德、宋鎮宇、王俊凱、張士昱、王證權,「沙塵暴期間台北地區氣膠散光係數和物理化學特性」,大陸沙塵暴對台灣地區空氣品質影響與預測研討會論文集,台北,第133-156頁(2001)。
61. 林斌龍、李崇德,「台北地區PM10濃度與氣象因子之多變量統計分析」,第七屆空氣污染控制技術研討會論文集,中壢,第 455 - 483 頁 (1990)。
62. 林能暉,「東亞地區空氣污染跨國長程傳輸對台灣地區之影響」,行政院環境保護署研究報告(2000)。
63. 林能暉、彭啟明、吳承翰,「大陸沙塵暴之長程傳輸:模式模擬與個案探討」,大陸沙塵暴對台灣地區空氣品質影響與預測研討會論文集,台北,第35-66頁(2001)。
64. 吳家興,「台灣北部地區國中學生氣喘的研究─空氣污染的影響」,國立台灣大學公共衛生學研究所碩士論文,台北 (1995)。
65. 袁中新、張瑞正、袁菁、楊宏宇、林文印、李崇垓、李崇德,「能見度與懸浮微粒物化特徵之相關性探討」,一九九九年氣膠研討會論文專輯,台北,第 67 - 75 頁 (1999)。
66. 徐玉眉、劉遵賢、鄭福田,「大氣中氣態亞硝酸與硝酸」之觀測研究,第十七屆空污研討會論文,雲林(2000)。
67. 黃美倫,「中部空品區大氣氣膠中水溶性離子微粒之特性探討」,國立中興大學環境工程學研究所碩士論文,台中(2001)。
68. 程萬里,「中部地區懸浮微粒相關之氣象條件分析」,行政院國家科學委員會研究報告 (2000)。
69. 詹俊南,「臺灣地區PM10污染特性分析」,國立台灣大學環境工程研究所碩士論文,台北 (1996 )。
70. 彭雙能,「微粒於採樣過程中反應及揮發性物種之研究」,國立中央大學環境工程研究所碩士論文,中壢(1995)。
71. 張智泳,「台灣中南部地區空氣品質監測站代表性評估」,國立中興大學環境工程研究所碩士論文,台中 (2000 )。
72. 張維嘉,「台灣中部大氣氣膠特性及粒徑分佈---阿里山測站案例分析」,國立中興大學環境工程研究所碩士論文,台中 ( 2000 )。
73. 詹長權等,「中國大陸沙塵暴對台灣居民健康之影響」,沙塵暴學術研討會,台北市(2002)。
74. 蔡瀛逸,鄭曼婷,「高污染狀態下大氣二次氣膠組成之探討」,第十五屆空氣污染控制技術研討會論文集,第711-718頁,高雄市(1998)。
75. 鄭曼婷,林煜棋,邱嘉斌,王竹方,郭崇義,「2000年大陸沙塵暴過境中部地區大氣懸浮微粒之化學成分分析」,第十七屆空氣污染控制技術研討會論文集,pp. 77-80,雲林(2000)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔