跳到主要內容

臺灣博碩士論文加值系統

(107.21.85.250) 您好!臺灣時間:2022/01/18 08:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉禎淑
論文名稱:焚化廢氣中污染物控制之研究
指導教授:魏銘彥
學位類別:博士
校院名稱:國立中興大學
系所名稱:環境工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:半乾式洗滌塔酸性氣體有機物重金屬數學模擬
相關次數:
  • 被引用被引用:17
  • 點閱點閱:2098
  • 評分評分:
  • 下載下載:492
  • 收藏至我的研究室書目清單書目收藏:2
本研究主要針對半乾式洗滌塔中污染物控制之理論機制與實驗作探討,先將半乾式洗滌塔之除酸過程分為濕潤顆粒階段及乾燥顆粒階段二階段來建立模式,探討不同半乾式洗滌塔操作條件對除酸效率的影響,並將相關操作條件應用在實際廢氣的除酸實驗上,同時評估半乾式洗滌塔串聯袋式集塵器同時去除酸性氣體、重金屬及有機物之可行性,並且採集半乾式洗滌塔出口之飛灰,分析其重金屬濃度分佈,找出重金屬及有機物之去除效率與飛灰上重金屬濃度分佈的相關性;最後將實驗所得之灰渣(包括底灰、反應灰與集塵灰)進行熱處理使其穩定化。
探討半乾式洗滌塔中HCl與SO2之解離反應及其共同離子效應對HCl及SO2去除效率之影響的除酸模式中指出,HCl與SO2之解離反應及其共同離子效應對HCl及SO2去除效率的影響並不顯著,因此探討半乾式洗滌塔操作條件對酸性氣體去除率之影響的模式中皆不考慮解離反應及其共同離子效應。而液滴的乾燥時間約在0.5秒以內,較短於半乾式洗滌塔設計之停留時間10秒,由此可知,吸收劑液滴在半乾式洗滌塔中大部份處於乾燥的狀態下。另外,乾燥顆粒階段考量灰膜的擴散阻力,並以實驗結果求得之孔隙率(吸收劑同時去除HCl及SO2時之孔隙率為0.105)計算HCl及SO2於灰膜中的有效擴散係數,模擬結果顯示,HCl的去除率可達95%以上,SO2則可達70%以上的去除率,且HCl的去除率大部份由液滴濕潤顆粒階段所貢獻,而SO2則大部份由乾燥顆粒階段所去除。
在HCl及SO2的競爭吸附實驗中,當氣體停留時間為10秒,半乾式洗滌塔出口溫度為150℃及廢氣中含水率為75±5%時,當HCl濃度為236 ppm,SO2的去除率可由不含HCl的56.7%提升至90.3%,但是當HCl濃度超過535 ppm時,SO2的去除率便會隨著HCl濃度的增加而降低。而將半乾式洗滌塔串聯袋式集塵器應用在同時去除酸性氣體、重金屬及有機物的結果指出,此控制設備在去除酸性氣體的同時,亦可同時對重金屬及有機物進行控制。最後,利用高溫熱處理方式處理焚化後所生成含重金屬(Cd、Zn、Pb、Cr及Cu)之底灰、反應灰及集塵灰發現,降低底灰中重金屬溶出率主要以燒結作用為主,對反應灰與集塵灰中之重金屬則主要以揮發機制為主。
目 錄
摘 要 I
ABSTRACT III
符號表 V
目 錄 IX
圖目錄 XIII
表目錄 XVI
第一章 前言 1
1-1研究緣起 1
1-2研究動機與目的 2
1-3研究架構與內容 3
第二章 文獻回顧 8
2-1 焚化系統中污染物的生成特性及控制方法 8
2-1-1 粒狀污染物的生成特性及控制方法 9
2-1-2 酸性氣體的生成特性及控制方法 9
2-1-3 重金屬的生成特性及控制方法 11
2-1-4 揮發性有機物的生成特性及控制方法 14
2-2 半乾式洗滌塔之除酸原理 15
2-2-1 吸收劑液滴之乾燥過程 16
2-2-2 酸性氣體之吸收中和反應 19
2-3 理論模式之發展概況 20
2-4 影響半乾式洗條塔操作性能之相關因子 27
2-4-1 吸收劑液滴之粒徑分佈 27
2-4-2 鹼性吸收劑之反應特性 29
2-4-2-1 鈣基吸收劑 29
2-4-2-2非鈣基吸收劑 31
2-4-3 Ca/S當量比 31
2-4-4 氣體入口濃度 32
2-4-5 相對濕度 33
2-4-6 反應溫度 33
2-4-7 氣體種類 35
2-4-8 添加劑種類 39
2-4-9 除酸過程之反應自由能、活化能及反應速率常數 41
2-4-10 影響鈣基吸收劑除酸效果之綜合整理 41
2-5 袋式集塵器除酸機制及其影響因子 43
2-6 影響燒結過程中重金屬揮發率及溶出率之相關因子 46
2-6-1 影響重金屬溶出的因素 47
2-6-2 影響重金屬揮發的因素 50
2-7 文獻總結 52
第三章 半乾式洗滌塔同時除HCl與SO2之數學模式推導 54
3-1 前言 54
3-2 數學模式之基本假設 55
3-3 數學模式之推導 56
3-3-1 吸收劑液滴水份蒸發之質量平衡方程式 58
3-3-2液滴表面之含水率 60
3-3-3 液滴粒徑變化 61
3-3-4 吸收劑液滴水份蒸發之能量平衡方程式 61
3-3-5 HCl之質量平衡方程式 62
3-3-6 SO2之質量平衡方程式 64
3-3-7考慮HCl與SO2之解離反應 65
3-3-8吸收劑液滴與廢氣間之相對速率 67
3-3-9 各項參數 68
3-3-10 模式之求解 72
3-4 結果與討論 76
3-4-1模式精確度之驗證 76
3-4-2 解離效應對去除效率之影響 79
3-4-3 操作變數之敏感度分析 83
3-4-3-1 廢氣入口溫度之影響 84
3-4-3-2 吸收劑液滴粒徑大小之影響 90
3-4-3-3 噴霧流量之影響 93
3-4-3-4 廢氣中含水率之影響 98
3-4-3-5 酸性氣體入口濃度對去除率之影響 101
3-5 結論 104
第四章 半乾式洗滌塔中污染物控制之實驗探討 105
4-1 前言 105
4-2實驗設備及方法 107
4-2-1實驗設備 107
4-2-2進料物種之模擬 108
4-2-3 實驗流程 110
4-2-4 污染物之採樣及分析方法 110
4-3 結果與討論 112
4-3-1 半乾式洗滌塔中Ca(OH)2與HCl及SO2間競爭吸附之研究 112
4-3-1-1 單一HCl存在 112
4-3-1-2 單一SO2存在 113
4-3-1-3 HCl/SO2共存 121
4-3-1-4 CaCl2對SO2去除率之影響 123
4-3-1-5 XRD物種鑑定 123
4-3-1-6 SEM表面分析 124
4-3-2 半乾式洗滌塔串聯袋式集塵器同時去除酸性氣體、重金屬與有機物之研究及其操作條件對半乾式洗滌塔中重金屬氣膠生成之影響 125
4-3-2-1 添加物對酸性氣體去除效率之影響 126
4-3-2-2 添加物對飛灰及重金屬去除效率之影響 130
4-3-2-3 添加物對PAHs去除效率之影響 132
4-3-2-4 添加物對飛灰質量粒徑分佈之影響 137
4-3-2-5 添加物對重金屬於飛灰上質量濃度分佈之影響 140
4-3-2-6 飛灰表面形態之分析 148
4-4 結論 151
第五章 焚化灰渣之熱處理 153
5-1 前言 153
5-2實驗設備與方法 154
5-2-1實驗設備 154
5-2-2實驗流程與操作條件 154
5-2-3分析方法 154
5-3結果與討論 156
5-3-1底灰、反應灰與集塵灰中重金屬之揮發率 156
5-3-2底灰、反應灰與集塵灰中重金屬之溶出率 159
5-3-3添加劑及進料組成對反應灰與集塵灰中重金屬揮發率之影響 162
5-3-4添加劑及進料組成對反應灰與集塵灰中重金屬溶出率之影響 165
5-3-5 XRD物種鑑定 170
5-3-6 SEM表面分析 170
5-4結論 173
第六章 結論與建議 174
參考文獻 177
附錄一 HCl採樣及分析方法 A
附錄二 重金屬採樣方法 B
附錄三 樣品微波消化程序與重金屬分析 C
附錄四 有機物採樣及分析方法 D
附錄五 階段衝擊器 F
附錄六 生成物種X光繞射分析 H
附錄七 毒性物質溶出試驗(TCLP) I
Al-Aswad, K.K., Mumfor, C.V. and Jeffreys, G.V., The application of drop size distribution and discrete drop mass transfer models to assess the performance of a rotating contactor, AIChE Journal, 31(9), 1488-1497, 1985.
Allen, D. and Hayhurst, A.N., Reaction between gaseous sulfur dioxide and solid calcium oxide-mechanism and kinetic, Journal of Chemistry Society, 92(7), 1227-1238, 1996.
Andrews, D.H. and Kokes, R.J., Fundamental Chemistry, John Wiley & Sons, New York, 1963.
Bailar, J.C., Emeleus, H.J., Nyholm, S.R., and Trotman-dickenson, A.F., Comprehensive Inorganic Chemistry, New York, 1973.
Barton, R.G., Clark, W.D. and Seeker, W.R., Fate of metals in waste combustion system, Combustion Science and Technology, 74, 327-342, 1990.
Bird, R.B., Stewart, W.E. and Lightfoot, E.N., Transport Phenomena, John Wiley & Sons, Inc., New York, 1960.
Brogren, C. and Karlsson, H.T., Modeling the absorption of SO2 in a spray scrubbing using the penetration theory, Chemical and Engineering Science, 52(18), 3085-3099, 1997.
Bush, P.V. and Snyder, T.R., Determination of baghouse performance from coal and ash properties: Part I, Journal of Air and Waste Management Association, 39, 228-237, 1989.
Bush, P.V., Snyder, T.R. and Smith, W. B., Filtration properties of fly ash from fluidized bed combustion, Journal of Air and Waste Management Association, 37, 1292-1297, 1987.
Carr, R.C. and Smith, W.B., Fabric filter technology for utility coal-fired power plants: Part VI: future research, Development and Demonstration of Utility Baghouses, Journal of Air and Waste Management Association, 34(6), 694-699, 1984.
Chan, C., Jia, C.Q., Graydon, J.W. and Kirk, D.W., The behavior of selected heavy metals in MSW incineration electrostatic precipitator ash during roasting with chlorination agents, Journal of Hazardous Materials, 50, 1-13, 1996.
Chan, C.C.Y., Behavior of metals under the conditions of roasting MSW incinerator fly ash with chlorinating agents, Journal of Hazardous Materials, 64(1), 75-89, 1999.
Chen, J.C., Wey, M.Y. and Lin, Y.C., The adsorption of heavy metals by different sorbents under various incineration conditions, Chemosphere, 37(13), 2617-2625, 1998.
Cheremisinoff, P.N. and Young, R.A., Air Pollution Control and Design Handbook Part 2, Marcel Dekker, INC., New York and Basel, 1977.
Chiang, B.C., Wey, M.Y. and Huang, S.M. Heat treatment of incinerator retired sorbents containing heavy metals, The Science of the Total Environment, 73(1-3), 83-92, 2001.
Chiang, P.C., You, J.H., Chang, S.C. and Wei, Y.H., Identification of toxic PAH compounds in emitted particulates from incineration of urban solid wastes, Journal of Hazardous Materials, 31, 29-37, 1992.
Chisholm, P.N. and Rochelle, G.T., Dry absorption of HCl and SO2 with hydrated lime from humidified flue gas, Industrial Engineering and Chemical Research, 38, 4068-4080, 1999.
Cooper, C.D., Alley, F.C., Air pollution control (A design approach), second edition, Taipei, Taiwan, R.O.C., 1996.
Cudahy, J.J. and Helsel, R.W., Removal of products of incomplete combustion with carbon, Waste Management. 20, 339-345, 2000.
Cunill, F., Izquierdo, J.F., Martinez, J.C., Tejero, J. and Querol, J., Influence of different additives on the reaction between hydrated lime and sulfur dioxide, Environmental Progressing, 10(4), 273-277, 1991.
Dahlin, R.S., Snyder, T.R. and Bush, P.V., Effects of sorbent injection on particulate properties: Part II. high-temperature sorbent injection, Journal of the Air and Waste Management Association, 43, 91-96, 1993.
Dahlin, R.S., Snyder, T.R. and Bush, P.V., Effects of sorbent injection on particulate properties: Part I. low-temperature sorbent injedtion, Journal of the Air and Waste Management Association, 42, 1592-1602, 1992.
Damle, A.S., Modeling of SO2 removal in spray-dryer flue-gas desulfurization system, EPA-600/7-85-038, December, 1985.
Dantuluri, S.R., Limitation of sulfur dioxide removal in a FGD spray dryer using once through slaked lime, Dissertation for the Doctor of Philosophy Degree, University of Tenn. Knoxville, December, 1988.
Derie, R., A new way to stabilize fly ash from municipal incinerators, Waste Management, 16(8), 711-716, 1996.
Doyle, J.B., Jankura, B.J., Vetterick, R.C., Comparison of dry scrubbing operation of Laramie river and Craig stations, presented at the Tenth Symposium on Flue Gas Desulfurization, Atlanta, November, GA, 16-21, 1986.
Duo, W., Sevill, J.P.K., Kirkby, N.F. and Clift, R., Formation of product layers in solid-gas reactions for removal of acid gases, Chemical and Engineering Science, 49(24A), 4429-4442, 1994.
Durham, M.D., Holstein, D.B., Blythe, G., Hieneken, K.A., Rhudy, R.G., Altman, R.F., Burnett, T.A., Bartibn, R.A. and Dawson, C.W., High efficiency electrostatic precipitator operation at spray dryer conditions, presented at the Ninth Particulate Control Symposium, Williamsburg, VA, 15-18, October, 1991.
Felix, L.G. and Merritt, R.L., Improving baghouse performance at the monticello generating station, Journal of Air and Waste Management Association, 36, 1075-1085, 1986.
Flagan, R.C. and Seinfeld, J.H., Fundamentals of Air Pollution Engineering, Prentice-Hall, Inc., New Jersey, 1988.
Fournier, D.J., Whitworth, W.E., Lee, J.W. and Waterland, L.R., The fate of trace metals in a rotary kiln incineration with a venturi/packed column scrubber; U. S. EPA/600/S2-90/043, Feb, 1991.
Friedlander, S.K., Smoke, Dust and Haze, John Wiley and Sons, New York, 1976.
Getler, J.L., Shelton, H.L. and Furlong, D.A., Modeling the spray absorption process for SO2 removal, Journal of Air Pollution Control Association, 29(12), 1270-1275, 1979.
Gleiser, R. and Felsvang, K., Mercury emission reduction using activated carbon with spray dryer flue gas desulfurization, Proceeding American Power Conference, 56, 452-457, 1994.
Gretscher, H. and Schaber, K., Aerosol formation by heterogeneous nucleation in wet scrubbing processes, Chemical Engineering and Processing, 38(4-6), 541-548, 1999.
Harriott, P. and Kinzey, M., Modeling the gas and liquid-phase resistances in the dry scrubbing process for SO2 removal, Process Pittsburgh Coal Conference, 1986.
Himmelblau, D.M., Basic Principles and Calculations in Chemical Engineering, 5th ed., Prentice-Hall, Englewood Cliffs, N.J., 1989.
Hinds, W.C., Aerosol technology(properties, behavior, and measurement of airborne particles), 2th ed., John Wiley & Sons, Inc., New York, 1999.
Hiroaki, T., Tomohiro, I., Hideki, N., Tsutomu, U. and Hideshi, H., Removal of sulfur dioxide from flue gas by the absorbent prepared from coal ash:effects of nitrogen oxide and water vapor, Industrial Engineering Chemistry Research, 35, 851-855, 1996.
Hirth, M., Jochum, H., Jodeit, H., Wieckert, Ch., Zirm, K.L. and Mauer, H. In proceedings of envirotech, umweltbundesamt wien; Elsevier Science Publishers: Amsterdam, 2, 267-281, 1989.
Ho, T.C., Tan, T., Chen, C. and Hopper, J.R., Characteristics of metal capture during fluidized bed incineration, AIChE Symposium Series, 281(87), 118-126, 1991.
Irabien, A., Cortabitarte, F. and Ortiz, M.I., Kinetics of flue gas desulfurization at low temperatures: nonideal surface adsorption model, Chemical Engineering Science, 47(7), 1533-1543, 1992.
Izquierdo, J.F., Fite, C., Cunill, F., Iborra, M. and Tejero, J., Kinetic study of the reaction between sulfur dioxide and calcium hydroxide at low temperature in a fixed-bed reactor, Journal of Hazardous Materials, 76, 113-123, 2000.
Jakob, A., Stucki, S. and Kuhn, P., Evaporation of heavy metals during the heat treatment of municipal solid waste incinerator fly ash, Environmental Science and Technology, 29, 2429-2436, 1995.
Jakob, A., Stucki, S. and Struis, R.P.W.J., Complete heavy metal removal from fly ash by heat treatment: influence of chlorides on evaporation rates, Environmental Science and Technology, 30, 3275-3283, 1996.
Johannes, M.N. and Lotens, J.P., Modelling and conceptual design of a waste smelting process, Resources, Conservation and Recycling, 14, 35-45, 1995.
Jons, E., Felsvang, K. and Madhok, R., Limestone spray drying absorption for SO2 control, presented at the Tenth Symposium on Flue Gas Desulfurization, Atlanta, GA, November 17-21, 1986.
Jorgensen, C., Chang, J.C.S. and Brna, T.G., Evaluation of sorbents and additives for dry sulfur dioxide removal, Proceedings of Spring National AIChE Meeting, New Orleans, 1986.
Jozewicz, W. and Rochelle, G., Modeling of SO2 Removal by Spray Dryers, Process Pittsburgh Coal Conference, 1984.
Jozewicz, W., Chang, J.C.S. and Sedman, C.B., Bench-scale evaluation of calcium sorbents for acid gas emission control, Environmental Progress, 9(3), 137-142, 1990.
Kaiser, S., Weigl, K., Spiess-Knafl, K., Aichernig, C. and Friedl, A., Modeling a dry-scrubbing flue gas cleaning process, Chemical Engineering and Processing, 39, 425-432, 2000.
Karatza, D., Lancia, A. and Musmarra, D., Fly ash capture of mercuric chloride vapors from exhaust combustion gas, Environmental Science and Technology, 32, 3999-4004, 1998.
Karlsson, H.T. and Klingspro, J., Tentative modeling of spray-dry dcrubbing of SO2, Chemical Engineering Technology, 10, 104-112, 1987.
Kauppinen, E.I. and Pakkanen, T.A., Mass and trace element size distributions of aerosols emitted by a hospital refuse incinerator, Atmospheric Environment, 24A, 2, 423-429, 1990.
Kiil, S., Michelsen, M.L. and Dam-Johansen, K., Experimental investigation and modeling of a wet flue gas desulfurization pilot plant, Industrial Engineering and Chemical Research, 37, 2792-2806, 1998.
Kiil, S., Nygaard, H. and Johnsson, J.E., Simulation studies of the influence of HCl absorption on the performance of a wet flue gas desulphurization pilot plant, Chemical Engineering Science, 57, 347-354, 2002.
Klingspor, J., Karlsson, H.T. and Bjerle, I., A kinetic study of the dry SO2-limestone reaction at low temperature, Chemical Engineering Communication, 22, 81-103, 1983.
Klingspor, J., Strömberg, A.M., Karlsson, H.T. and Bjerle, I., Similarities between lime and limestone, Chemical and Engineering Processing, 18(5), 239-247, 1984.
Krammer, G., Brunner, Ch., Khinast, J. and Staudinger, G., Reaction of Ca(OH)2 with SO2 at low temperature, American Chemistry Society, 36, 1410-1418, 1997.
Kubota, H. and Kanaya, K., Reaction kinetics of formation of HCl in municipal refuse incinerator, Industrial Engineering Chemistry Process Design Development, 22, 144-149, 1983.
Lancia, A., Musmarra, D., Pepe, F. and Volpicelli, G., Adsorption of mercuric chloride vapors from incinerator flue gases on calcium hydroxide particles, Combustion Science and Technology, 93, 277-289, 1993.
Lawrence, A.D., and Bu, J., The reactions between Ca-based solids and gases representative of those found in a fluidized-bed incinerator, Chemical and Engineering Science, 55, 6129-6137, 2000.
Lee, W.M., Yuan, Y.S. and Chen, J.C., Polycyclic aromatic hydrocarbons adsorbed in fly ash from municipal incinerator, Journal of Environmental Science and Health, A28(5), 1017-1035, 1993.
Li, C. T., Lee, W. J., Mi, H. H. and Su, C. C., PAH emission from the incineration of waste oily sludge- and plastic-waste mixtures, Proceedings of the 7th IUAPPA Regional Conference on Air Pollution and Waste Issues, 2-4, 159-163, 1994.
Li, Y. and Sadakata, M., Study of gypsum formation for appropriate dry desulfurization process of flue gas, Fuel, 78, 1089-1095, 1999.
Lin, W.P. and Biswas, P., Metallic particle formation and growth dynamics during incineration, Combustion Science and Technology, 101, 29-43, 1994.
Linak, W.P. and Peterson, T.W., Effect of coal type and residence time on the submicron aerosol distribution from pulverized coal combustion, Aerosol Science and Technology, 3, 77-95, 1984.
Liu, Z.S., Wey, M.Y. and Lin, C.L. The capture of heavy metals from incineration using a spray dryer integrated with a fabric filter using various additives, Journal of the Air and Waste Management Association, 51(7), 983-991, 2001.
Markowski, G.R. and Fllby, R., Trace element concentration as a function of particle size in fly ash from a pulverized coal utility boiler, Environmental Science and Technology, 19(9), 796-804, 1985.
Mastsers, K., Spray Drying Handbook, 5th ed., John Wiley, New York, 1991.
Matsukata, M., Takeda, K., Miyatani, T. and Ueyama, K., Simultaneous chlorination and sulphation of calcined limestone, Chemical and Engineering Science, 51(11), 2529-2534, 1996.
McCabe, W.L., Smith, J.C. and Harriott, P., Unit Operations of Chemical Engineering, 4th ed., McGraw-Hill, New York, 1988.
Newton, G.H., Kramlich, J. and Pane, R., Modeling the SO2-slurry droplet reaction, AIChE Journal, 36(12), 1865-1872, 1990.
Norton, G.A., Dekalb, E.L. and Malaby, K.L., Elemental composition of suspended particulate matter from the combustion of coal and coal/refuse mixtures, Environmental Science and Technology, 20(6), 604-609, 1986.
Ontiveros, J.L., Clapp, T.L. and Kosson, D.S., Physical properties and chemical species distributions within municipal waste combustor ashes, Environmental Progress, 8(3), 200-206, 1989.
Parti, M. and Paláncz, B., Mathematical model for spray drying, Chemical Engineering Science, 29, 355-362, 1974.
Partridge, G.P., A mechanistic spray dryer mathematical model based on film theory to predict sulfur dioxide absorption and reaction by a calcium hydroxide slurry in the constant rate period, Dissertation for the Doctor of Philosophy Degree, University of Tenn. Knoxville, December, 1987.
Perry, R.H. and Chilton, C.H., Chemical Engineer’s Handbook, 5th ed., McGraw-Hill Book Company, New York, 1973.
Pluss, A. and Ferrell, R.E., Characterization of lead and other heavy metals in fly ash from municipal waste incinerators, Hazardous Waste and Hazardous Material, 8(4), 275-292, 1991.
Ranz, W.E. and Marshall, J., Evaporation from drops-parts 2, Chemical Engineering Progress, 48, 141-173, 1952.
Rink, K.K., Kozinski, J.A. and Lighty, J.S., Biosludge incineration in FBCs: Behavior of ash particles, Combustion and Flame, 100, 121-130, 1995.
Ruiz-Alsop, R. and Rochelle, G.T., Effect of relative humidity and additives on the reaction of sulfur dioxide with calcium hydroxide, Report prepared for US Environmental Protection Agency, 1987.
Ruiz-Alsop, R.N. and Rochelle, G.T., Fossil fuels utilization:environmental concerns, ACS J., 108, 209-222, 1986.
Sawell, S.E., Bridle, T.R. and Constable, T.W., Heavy metal leachability from solid waste incinerator ashes, Waste Management and Research, 6, 227-238, 1988.
Schaber, K., Aerosol formation in absorption processes, Chemical Engineering Science, 50(8), 1347-1360, 1995.
Senior, C.L. and Flagan, R.C., Ash vaporization and condensation during combustion of a suspended coal particle, Aerosol Science and Technology, 1, 371-387, 1982.
Sørensen, M.A., Mogensen, E.P.B., Lundtorp, K., Jensen, D.L. and Christensen, T.H., High temperature co-treatment of bottom ash and stabilized fly ashes from waste incineration, Waste Management, 21, 555-562, 2001.
Strömberg, A.M., Prospects for further development of spray-dry scrubbing, Doctoral Dissertation, Lund University, Sweden, May, 1992.
Stucki, S. and Jakob, A., Thermal treatment of incinerator fly ash: factors influencing the evaporation of ZnCl2, Waste Management, 17(4), 231-236, 1997.
Thomai, P., Yiannis, A., Levendis, J.C., Yuriy, M.D. and Paul, V., Aromatic hydrocarbon emissions from burning poly(styrene), poly(ethylene) and PVC particles at high temperature, Combustion Science and Technology, 116-117, 91-128, 1996.
Treybal, R.E., Mass Transfer Operation, 3th ed., McGraw-Hill, New York, 1980.
Tsuchiai, H., Ishizuka, T., Ueno, T., Hattori, H. and Kita, H., Highly active absorbent for SO2 removal prepared from coal fly ash, Industrial Engineering Chemistry Research, 34, 1404-1411, 1995.
Uchida, S. and Tsuchiya, K., Simulation of spray drying absorber for removal of HCl in flue gas from incinerators, Industrial Engineering Chemistry Process Design and Development, 23(2), 300-307, 1984.
Uchida, S. and Wen, C.Y., Gas absorption by alkaline solutions in a venturi scrubber, Industrial Engineering Chemistry Process Design and Development, 12(4), 437-443, 1973.
Wang, W., Ye, Z. and Bjerle, I., The kinetics of the reaction of hydrogen chloride with fresh and spent Ca-based desulfurization sorbents, Fuel, 75(2), 207-212, 1996.
Weast, R.C., Selby, S.M., Handbook of Chemistry and Physics, Forty-Eighth, New York, 1968.
Wei, M.C., Wey, M.Y., Huang, J.H. and Chen, J.C., Stability of heavy metals in bottom ash and fly ash under various incineration conditions, Journal of Hazardous Materials, 57, 145-154, 1998.
Weinell, C.E., Jensen, P.I., Dam-Johansen, K. and Liybjerg, H., Hydrogen chloride reaction with lime and limestone: kinetics and sorption capacity, Industrial Engineering and Chemical Research, 31, 164-171, 1992.
Welander, P. and Vincent, T.L., Select the right spray nozzle, Reaction and Separations, 75-79, 2001.
Wey, M.Y., Yan, J.T., Peng, C.Y. and Chiang, B.C., The size distribution of heavy metal aerosols in cooling and spray dryer system, Journal of Environmental Engineering, ASCE, 125(11), 1082-1089, 1999.
Wey, M.Y. and Fang, T.J., The effect of organic and inorganic chlorides on the formation of HCl with various hydrogen containing sources in a fluidized bed incinerator, Environment International, 21(4), 423-431, 1995.
Wey, M.Y., Chao, C.Y. and Yu, L.J., The influences of heavy metal on PAH formation during incineration, Toxicological and Environmental Chemistry, 56, 35-45, 1996a.
Wey, M.Y., Chao, C.Y. and Yu, L.J., The relationship between the quality of heavy metal and PAHs in the fly ash, Journal of the Air and Water Management Association, 48(8), 750-756, 1998a.
Wey, M.Y., Huang J.H. and Chen, J.C., The behavior of heavy metal Cr, Pb and Cd during waste incineration in fluidized bed under various chlorine additives, Journal of Chemical Engineering of Japan, 29(3), 494-500, 1996b.
Wey, M.Y., Huang, J.H. and Chen, J.C., Mass and elemental size distribution of chromium, lead and cadmium under various incineration, Journal of Chemical Engineering of Japan, 31(4), 506-517, 1998b.
Wey, M.Y., Chao, C.Y., Wei, M.C., Yu, L.J. and Liu, Z.S., The influence of heavy metals on partitioning of PAHs during incineration, Journal of Hazardous Materials, A77, 77-87, 2000.
Wunsch, P., Greilinger, C., Bieniek, D. and Kettrup, A., Investigation of the binding of heavy metals in thermally treated residues from waste incineration, Chemosphere, 32 (11), 2211-2218, 1996.
Xavier, Q., Trace element in coal and their behavior during combustion in a large power station, Fuel, 74(3), 331-343, 1995.
Yuan, C.S., Simultaneous collection of SO2, NOx, HCl via spray drying: using sodium based and calcium based sorbent with select additives, Ph.D. Dissertation, University of Urbana-Champaign, August, 1989.
千輝淳二著,賴耿陽譯著,實用傳熱計算,復漢出版社,1982。
中華民國臺灣地區環境保護統計年報,行政院環境保護署 編印,2001。
方天志,焚化過程中有機氯化物與無機氯化物對CO, HCl及有機物生成之影響,中興大學環境工程研究所,碩士論文,1995。
王鯤生,江康鈺,儲雯娣,林仕敏,葉宗智,焚化溫度與垃圾PVC含量對焚化灰渣重金屬分佈特性之研究,第十三屆空氣污染控制技術研討會論文集,371-377,1996。
王鯤生,張君偉,孫常榮,王弟文,水洗前處理及添加矽質化合物對都市垃圾焚化飛灰燒結體資源化之研究,第十五屆廢棄物處理技術研討會論文集,1-177~1-184,2000。
司洪濤,鄭乙任,李遠志,垃圾焚化廠廢氣處理系統規劃設計與運轉之探討,工業污染防治,第十七卷,第三期,46-65,1998。
司洪濤,鄭孔任,袁中新,乾式煙道噴注法處理燃燒廢氣中酸性氣體之研究,第十三屆空氣污染控制技術研討會論文集,461-466,1996。
朱文宗,噴霧乾燥系統除硫特性研究,國立屏東技術學院環境工程技術研究所,碩士論文,1997。
朱信,簡聰文,煙道氣濕式除硫氮整合系統之研究,第十屆空氣污染控制技術研討會論文集,1-8,1993。
吳石乙,陳政群,柯成河,氣固流體化床乾式煙道氣脫硫系統之研究,第十四屆究氣污染控制研討會論文集,316-367,1997。
吳富楠,以噴霧乾燥法同時去除燃燒廢氣中二氧化硫、氮氧化物及氯化氫之數學模擬,國立成功大學化學工程研究所,碩士論文,1990。
徐怛文,陳瑞燕,溫增文,吳森榮,國內排煙脫硫系統性能評鑑,工業污染防治,第六十九期,25-39,1999。
徐健泰,水溶液液滴吸收二氧化硫之模擬研究,國立台灣大學化學工程研究所,博士論文,1993。
袁中新,廖國進,蔡聖叢,強氧化劑添加物對於改善噴霧乾燥塔去除酸性氣體效率之影響,第十屆空氣污染控制技術研討會論文集,27-32,1993。
郝吉明,馬廣大,空氣污染控制工程,科技圖書股份有限公司,台北市,1993。
高思懷,李昌煥,都市垃圾焚化灰渣掩埋過程重金屬之釋出趨勢以及氯鹽對其溶出之影響,第九屆廢棄物處理技術研討會論文集,203-214,1994。
高思懷,林家禾,垃圾焚化飛灰中無機鹽對重金屬溶出之影響,第十屆廢棄物處理技術研討會論集,247-254,1995a。
高思懷,鄭文欽,垃圾焚化底灰中銅釋出趨勢之探討,第十屆廢棄物處理技術研討會論文集,392-399,1995b。
康國裕,碳酸氫鈉在煙道氣脫硫之應用,工業污染防治,第三十九期,97-105,1991。
張一岑,有害廢棄物焚化技術,聯經出版事業公司,台北,1991。
張乃斌,垃圾焚化廠系統工程規劃與設計,新雅出版社,高雄市,1997。
陳志成,魏銘彥,顏名宏,廢棄物組成與操作條件對焚化過程中種金屬吸附效果之影響,第十一屆廢棄物處理技術研討會論集,347-353,1996。
葉和明,單元操作(三),科學技術叢書,三民書局,台北市,1992。
蔣博欽,以流體化床控制焚化廢氣中污染物之研究,國立中興大學環境工程研究所,博士論文,2002。
環保署全球資訊網,2002。
謝長良,黃志峰,袋式集塵技術與小型焚化爐廢氣處理應用實例介紹,工業污染防治,第十七卷,第一期,19-30,1998。
魏玉麟,洪崇舜,熱處理含鉛鎘吸附劑之研究,第十三屆廢棄物處理技術研討會論文集,355-361,1998。
顧順榮,鍾盷泰,張木彬,台灣地區都市垃圾焚化灰分中重金屬濃度及TCLP溶出之評估,第十屆廢棄物處理技術研討會論文集,271-279,1995。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top