跳到主要內容

臺灣博碩士論文加值系統

(75.101.211.110) 您好!臺灣時間:2022/01/26 12:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張碧真
論文名稱:假性狂犬病毒立即早期基因與病毒致病機制之相關性研究
論文名稱(外文):Study on the immediate-early gene and viral pathogenesis of pseudorabies virus
指導教授:黃千衿
學位類別:碩士
校院名稱:國立中興大學
系所名稱:獸醫微生物學研究所
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:假性狂犬病毒立即早期基因
相關次數:
  • 被引用被引用:2
  • 點閱點閱:1097
  • 評分評分:
  • 下載下載:214
  • 收藏至我的研究室書目清單書目收藏:1
假性狂犬病毒(Pseudorabies virus, PRV)是屬於疱疹病毒科(Herpesviridae)、阿爾法疱疹病毒亞科(Alphaherpesvirinae)中之Varicellovirus屬,可引起小豬嚴重死亡率並造成成豬之潛伏感染。PRV基因體全長大約150 Kb,而病毒基因依照感染細胞後表現的前後順序可分為立即早期基因( immediate early, IE)、早期基因( early )及晚期基因( late )三群。其中立即早期基因( IE gene)在病毒複製時,具有活化早期基因及晚期基因的功能,因此在病毒致病機制上扮演了非常重要的角色。由於假性狂犬病毒只具有一個立即早期基因,因此本實驗室先前已構築了一個以綠色螢光蛋白(green fluorescence protein, GFP)基因取代IE基因之缺陷病毒株,經過連續5次病毒斑純化步驟挑選具綠色螢光之病毒斑後,將其感染PKIE細胞(能穩定表現IE 蛋白之細胞株,以提供IE基因缺陷病毒複製時之所需),以進行此缺陷病毒株的增殖複製而製備成種毒液,並進一步進行病毒力價測定及病毒生長曲線分析。目前共分離出2株重組病毒株。此基因缺損重組病毒株感染正常PK-15細胞株時,病毒之生長明顯受到抑制,顯示IE基因功能之缺乏可導致病毒複製能力之喪失。另外,此IE基因缺損病毒株在PK細胞上之病毒力價亦明顯降低。
Pesudorabies virus (PRV) belongs to the genus Varicellovirus of the subfamily Alphaherpesvirinae and can cause severe disease in piglets leading to the latent infection in all surviving pigs. The genome of PRV consists of a double stranded linear DNA of approximately 150 kbp. The viral genes are classified into three kinetic groups, defined as immediate-early, early and late genes, on the basis of the sequential cascade regulation during the lytic cycle. The immediate-early gene of PRV activates early and late viral genes and plays an essential role in regulating viral gene expression. PRV contains only one immediate-early gene which encodes a protein of 180 kDa. We have constructed an IE gene deleted PRV mutant strain, which N-terminal 630 codons of IE gene was replaced with GFP gene. After five times of virus plaque-purification on PKIE cells (an IE180-expressing cell line), two recombinant PRV strains were obtained. The replication of the recombinant PRV was significantly inhibited on PK cells but not restricted on PKIE cells. PRV is a neurotropic virus, the replication deficient PRV holds the great potential to be an effective and safe gene transfer vector for various cells (especially neuron cells) and provides a model for the studies of human gene therapy.
頁次
中文摘要-------------------------------------------------------------------------I
英文摘要------------------------------------------------------------------------II
目錄-----------------------------------------------------------------------------III
圖次-----------------------------------------------------------------------------V
表次-----------------------------------------------------------------------------VI
第一章、 前言------------------------------------------------------------------1
第二章、 文獻探討------------------------------------------------------------2
第一節 假性狂犬病之簡介-------------------------------------------3
第二節 假性狂犬病毒之特性----------------------------------------3
第三節 假性狂犬病毒之基因體組成-------------------------------4
第四節 病毒之複製週期----------------------------------------------5
第五節 假性狂犬病毒基因之表現----------------------------------6
第六節 立即早期基因的特性----------------------------------------7
第七節 病毒之潛伏及潛伏相關轉錄體----------------------------8
第八節 綠色螢光蛋白-------------------------------------------------9
第九節 基因重組病毒載體在基因治療上之應用--------------10
第十節 假性狂犬病毒在近代之研究-----------------------------12
第三章、 材料及方法-------------------------------------------------------16
第一節 細胞培養-----------------------------------------------------16
第二節 病毒增殖-----------------------------------------------------16
第三節 立即早期基因缺陷病毒之純化--------------------------17
第四節 病毒力價之測試--------------------------------------------18
第五節 以免疫過氧化氫酵素染色確認PKIE細胞表現IE180
蛋白之能力-------------------------------------------------18
第六節 病毒之LD50測試-------------------------------------------19
第七節 病毒生長曲線之測定--------------------------------------20
第四章、 結果----------------------------------------------------------------22
第五章、 討論----------------------------------------------------------------32
參考文獻----------------------------------------------------------------------37
林孫權、董明澄、劉正義、張照夫、黃萬居、鄭清木。1972。假性狂犬病之發生報告。中華民國微生物學會雜誌 5: 56-68。
劉昭君。1993。假性狂犬病毒基因缺損變異株之誘發及篩選。中興大學獸醫研究所碩士論文。
張菁雯。1997。假性狂犬病毒立即早期蛋白於真核細胞之表現及功能分析。中興大學獸醫微生物學研究所碩士論文。
陳姿如。2000。穩定表現假性狂犬病毒立即早期蛋白細胞株之製備與應用。中興大學獸醫微生物學研究所碩士論文。
林維莉。2001。假性狂犬病毒立即早期基因缺損病毒株之構築。中興大學獸醫微生物學研究所碩士論文。
Abmayr, S., L. Feldman, and R. Roeder. 1985. In vitro stimulation of specific RNA polymerase II-mediated transcription by the pseudorabies virus immediate early protein. Cell 43: 821-829.
Ahlers, S. E., and L. T. Feldman. 1987. Immediate-early protein of pseudorabies virus is not continuously required to reinitiate transcription of induced genes. J. Virol. 61: 1258-1260.
Ahlers, S., and L. Feldman. 1987. Effects of a temperature-sensitive mutation in the immediate-early gene of pseudorabies virus on class II and class III gene transcription. J. Virol. 61: 1103-1107.
Ahmed, M., M. Lock, C. G. Miller, and N. W. Fraser. 2002. Regions of herpes simplex virus type 1 latency-associated transcript that protect cells from apoptosis in vitro and protect neuronal cells in vivo. J.Virol. 76: 717-729.
Angulo A., P. Ghazal, and M. Messerle. 2000. The major immediate-early gene ie3 of mouse cytomegalovirus is essential for viral growth. J. Virol. 74: 11129-11136.
Aubert, M. and J. Blaho. 1999. The herpes simplex virus type 1 regulatory protein ICP27 is required for the prevention of apoptosis in infected human cells. J. Virol. 73: 2803-2318.
Babic N., T. C. Mettenleiter, G. Ugolini, A. Flamand, and P. Coulon. 1994. Propagation of pseudorabies virus in the Nervous system of the mouse after intranasal inoculation. Virology 204: 616-625.
Babic, N., B. Klupp, A. Brack, T. C. Mettenleiteter, G. Ugolini, and A. Flamand. 1996. Deletion of glycoprotein gE reduces the propagation of pseudorabies virus in the nervous system of mice after intranasal inoculation. Virology 219: 279-284.
Bahr, B. A., R. L. Neve, J. Sharp, A. I. Geller, and G. Lynch. 1994. Rapid and stable gene expression in hippocampal slice cultures from a defective HSV-1 vector. Mol. Brain Res. 26: 277-285.
Bechtel, J. T. and T. Shenk. 2002. Human cytomegalovirus UL47 tagument protein functions after entry and before immediate-early gene expression. J. Virol. 76: 1043-1050.
Ben-Porat, T. and A. S. Kaplan. 1985. Molecular biology of pseudorabies virus. p.105-173. In B. Roizman (ed.), the Herpesviruses, Vol.III, Pleum press, New York.
Billinton, N. and A. W. Knight. 2001. Seeing the wood through the tree: A review of techniques for distiqushing green fluorescent protein from endogenous autofluorescence. Anal. Biochem. 291: 175-197.
Boldogkoi, Z., A. Braun, and I. Fodor. 2000. Replication and virulence of early protein 0 and long latency transcript deficient mutants of the Aujeszkey,s disease ( Pseudorabies) virus. Microbes. Infect. 2: 1321-1328.
Bowers, W. J., D. F. Howard, and H. J. Federoff. 1997. Gene therapeutic strategies for neuroprotection: implications for Parkinson,s disease. Exp. Neurol. 144: 58-68.
Bresnahan, W. A., and T. E. Shenk. 2000. UL82 virion protein activates expression of immediate early viral gene in human cytomegalovirus-infected cells. PNAS 97: 14506-14511.
Chen, X. P., J. Li, M. Mata, J. Goss, D. Wolfe, J. C. Glorioso, and D. J. Fink. 2000. Herpes simplex virus type 1 ICP0 protein does not accumulate in the nucleus of primary neurons in culture. J. Virol. 74: 10132-10141.
Ciacci-Zanella, J., M. Stone, G. Henderson, and C. Jones. 1999. The latency-related gene of bovine herpesvirus 1 inhibits programmed cell death. J. Virol. 73: 9734-9740.
Cromlish, W., S. Abmayr, J. Workman, M. Horikoshi, and R. Roeder. 1989. Transcriptionally active immediate-early protein of pseudorabies virus binds to specific sites on class II gene promoters. J. Virol. 63: 1869-1876.
Efstathiou S., and Minson A. 1995. Herpes virus-based vectors. Br. Med. Bull. 51: 45-55.
Ferrari, M., T. C. Mettenleiter, M. G. Romanelli, E. Cabassi, A. Corradi, N. D. Mas, and R. Silini. 2000. A comparative study of pseudorabies virus ( PRV ) strain with defects in thymidine kinase and glycoprotein genes. J. Comp. Pathol. 123: 152-163.
Glazenburg,K. L., B. P. H. Peeters, J. M. A. Pol, A. L. J. Gielkens, and R. J. Moormann. 1995. Construction and properties of pseudorabies virus recombinants with altered control of immediate-early gene expression. J. Virol. 69: 189-197.
Goins, W. F., D. Krisky, P. Marconi, T. Oligino, R. Ramakrishnan, P. L. Poliani, D. J. Fink, and J. C. Glorioso. 1997. Herpes simplex virus vectors for gene transfer to the nervous system. J. Neurovirol. 3: S80-S88.
Goins, W. F., K. A. Lee, J. D. Cavalcoli, M. E. O’malley, S. T. Dekosky, D. J. Fink, and J. C. Glorioso. 1999. Herpes simplex virus type 1 vector-mediated expression of nerve growth factor protects dorsal root ganglion neurons from peroxide toxicity. J. Virol. 73: 519-532.
Hermens,W., and J. Verhaagen. 1998. Viral vectors, tools for gene transfer in the nervous system. Prog. Neurobiol. 55: 399-432.
Ho, D. Y., J. R. McLaughlin, and R. M. Sapolsky. 1996. Inducible gene expression from defective herpes simplex vectors using the tetracycline-responsive promoter system. Mol. Brain Res. 41: 200-209.
Howell, J. M. 1999. Is there a furture for gene therapy? Neuromuscul disord. 9: 102-107.
Huang, C. and J. W. Cheng. 1999. Expression and functional analysis of a pseudorabies virus immediate-early protein IE180. Taiwan J. Vet. Med. Anim. Husb. 69:37-47.
Hummel, M., Z. Zhang, S. Yan, I. Deplaen, P. Golia, T. Varghese, G. Thomas, and M. I. Abecassis. 2001. Allogeneic transplantation induces expression of cytomegalovirus immediate-early gene in vivo: a model for reactivation from latency. J. Virol. 75: 4814-4822.
Ihara, S., L. Feldman, S. Watanabe, and T. Ben-Poart. 1983. Characterization of the immediate-early gene functions of pseudorabies virus. Virology 131: 437-454.
Jarman, R. G., E. K. Wagner, and D. C. Bloom. 1999. LAT expression during an acute HSV infection in the mouse. Virology 262: 384-397.
John Stephenson. 1998. Defective adenoviruses as novel vaccines for the Flaviviridae. Clin. Diagn. Virol. 10: 187-194.
Jons, A. and T. C. Mettenleiter. 1997. Green fluorescent protein expressed by recombinant pseudorabies virus as an in vivo marker for viral replication. J. Virol. Methods 66: 283-292.
Kain, S. R. 1999. Green fluorescent protein (GFP): applications in cell-based assays for drug discovery. Drug Discov. Today 4: 304-312.
Kaplitt, M. G. and H. Makimura. 1997. Defective viral vectors as agents for gene transfer in nervous system. J. Neurosci. Methods 71: 125-132.
Kost, T. A. 1999. Expression vectors and delivery systems tools for for determining gene function and gene therapy. Curr. Opin. Biotechnol. 10: 409-410.
Kutinova, L., P. Hainz, V. Ludvikova, L. Maresova, and S. Nemckova. 2001. Immune response to vaccinia virus recombinants expressing glycoproteins gE, gB, gH, and gL of Varicella-Zoater virus. Virology 280: 211-220.
Lachmann, R. H., M. Sadarangani, H. R. Atkinson, and S. Efstathiou. 1999. An analysis of herpes simplex virus gene expression during latency establishment and reactivation. J. Gen. Virol. 80: 1271-1282.
Lilley, C. E., F. Groutsi, Z. Han, J. A. Palmer, P. N. Anderson, D. S. Latchman, and R. S. Coffin. 2001. Multiple immediate-early gene-dificient herpes simplex virus vector allowing efficient gene delivery to neurons in culture and widespread gene delivery to the central nervous system in vivo. J. Virol. 75: 4343-4356.
Lock, M., C. Miller, and N. W. Fraser. 2001. Analysis of protein expression from within the region encoding the 2.0-kilobase latency-associated transcript of herpes simplex virus type1. J. Virol. 75: 3413-3426.
Loiacono, C. M., R. Myers, and W. J. Mitchell. 2002. Neurons differentially activate the herpes simplex virus type 1 immediate-early gene ICP0 and ICP27 promoters in transgenic mice. J. Virol. 76: 2449-2459.
Mador, N., D. Goldenberg, O. Cohen, and A. Panet. 1998. Herpes simplex virus type 1 latency-associated transcripts suppress viral replication and reduce immediate-early gene mRNA levels in neuronal cell line. J. Virol. 72: 5067-5075.
Maeda, K., S. Hayashi, Y. Tanioka, Y. Matsumoto, and H. Otsuka. 2002. Pseudorabies virus (PRV) is protected from complement attack by cellular factors and glycoprotein C (gC). Virus Res. 84: 79-87.
Maes, R., M. D. Sussman, A. Vilnis, and B. J. Thacker. 1997. Recent developments in latency and recombination of Aujeszky’s disease (pesudorabies ) virus. Vet. Microbiol. 55: 13-27.
Marchini, A., H. Liu, and H. Zhu. 2001. Human cytomegalovirus with IE-2 (UL122) express early lytic genes. J. Virol. 75: 1870-1878.
Marschall, M., M. Freitag, S. Weiler, G. Sorg, and T. Stamminger. 2000. Recombinant green fluorecent protein-expressing human cytomegalovirus as a tool for screening antiviral agents. Antimicrob. Agents Chemother. 44: 1588-1597.
Marshall, K. R., R. H. Lachmann, S. Efstathiou, A. Rinaldi, and C. M. Preston. 2000. Long-term transgene expression in mice infected with a herpes simplex virus type 1 mutant severely impaired for immediate-early gene expression. J. Virol. 74: 956-964.
Meier, J. L. and J. A. Pruessner. 2000. The human cytomegalovirus major immediate-early distal enhancer region is resuired for efficient viral replication and immediate-early gene expression. J. Virol. 74: 1602-1613.
Mettenleiter, T. C. 2000. Aujeszkey,s disease ( pseudorabies) virus: the virus and molecular pathogenesis-state of the art, June 1999. Vet. Res. 31: 99-115.
Mettenleiter, T. C. and I. Rauh. 1990. A glycoprotein gX-β-galactosidase fusion gene as insertional marker for rapid identification of pseudorabies virus mutant. J.Virol. Methods 30: 55-65.
Muller, T., F. J. Conraths, E. C. Hahn. 2000. Pseudorabies virus infection ( Aujeszky’s disease) in wild swine. Infect Dis. Rev. 2: 27-34.
Nakamichi, K., D. Kuroki, Y. Matsumoto, and H. Otsuka. 2001. Bovine herpesvirus 1 glycoprotein G is required for prevention of apoptosis and efficient viral growth in rabbit kidney cells. Virology 279: 488-498.
Nakamichi, K., Y. Matsumoto, and H. Otsuka. 2002. Bovine herpesvirus 1 glycoprotein G is necessary for maintaining cell-to-cell junctional adherence among infected cell. Virology 294: 22-30.
Ono, E., S. Taharaguchi, S. Watanabe, H. Nikami, Y. Shimizu, and H. Kida. 1998. Suppression of pseudorabies virus replication by a mutant form of immediate-early protein IE180 repressing the viral gene transcription. Vet. Microbiol. 60: 107-117.
Ono, E., T. Tasaki, T. Kobayashi, S. Taharagushi, H. Nikami, I. Miyoshi, N. Kasai, J. Arikawa, H. Kida, and Y. Shimizu. 1999. Resistance to pseudorabies virus infection in transgenic mice expressing the chimeric transgene that represses the immediate-early gene transcription. Virology 262: 72-78.
Ono, E., Y. Sakoda, S. Taharaguchi, S. Watanabe, N. Tonomura, H. Kida, and Y. Shimizu. 1995. Inhibition of pseudorabies virus replication by a chimeric trans-gene product repressing transcription of the immediate-early gene. Viology 210: 128-140.
Palu, G., R. Bonaguro, and A. Marcello. 1999. In pursuit of new developments for gene therapy of human diseases. J. Biotechnol. 68: 1-13.
Perng, G. C., C. Jones, J. Ciacci-Zanella, M. Stone, G. Hengerson, A. Yukht, S. Slanina, F. Hofman, H. Ghiasi, A. Nesburn, and S. Wechsler. 2000a. Virus-induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript. Science 287: 1500-1503.
Perng, G., S. Slanina, A. Yukht, H. Ghiasi, A. Nesburn, and S. Wechsler. 2000b. The latency-associated transcript gene enhances establishment of herpes simplex virus type 1 latency in rabbits. J. Virol. 74: 1885-1891.
Polo, J. M. and T. W. Dubensky. 2002. Virus-based vectors for human vaccine applications. Drug Discov. Today. 7: 719-727.
Preston, C. M., A. Rinaldi, and M. J. Nicholl. 1998. Herpes simplex virus type 1 immediate early gene expression is stimulated by inhibition of protein synthesis. J. Gen. Virol. 79: 117-124.
Preston, C. M. 2000. Repression of viral transcription during herpes simplex virus latency. J. Gen. Virol. 81: 1-19.
Quinn, J. P., R. A. McGregor, C. E. Fiskerstrand, C. Davey, J. Allan, and R. G. Dalziel. 1998. Identification of a novel multifunctional structural domain in the herpes simplex virus type 1 genome: implication for virus latency. J. Gen. Virol. 79: 2529-2532.
Reynolds, P., M. Feng, and D. T. Curiel. 1999. Chimeric viral vectors-the best of both worlds? Mol. Med. Today 5: 25-31.
Robbins, P. D., H. Tahara, and S. C. Ghivizzani. 1998a. Viral vectors for gene therapy. Trends Biotechnol. 16: 35-40.
Robbins, P. D. ,and S. C. Ghivizzani. 1998b. Viral vectors for gene therapy. Pharmacol. Ther. 80: 35-47.
Sams, J. M., A. S. P. Jansen, T. C. Mettenleiter, and A. D. Loewy. 1995. Pseudorabies virus mutants as transneuronal markers. Brain Res. 687: 182-190.
Shiau, A. L., C. W. Liu, S. Y. Wang, C. Y. Tsai, and C. L. Wu. 2002. A simple selection system for construction of recombinant gD-negative pseudorabies virus as a vaccine vector. Vaccine 20: 1186-1195.
Shiraki, K., J. I. Yamamura, M. Kurokawa, T. Andoh, H. Sato, Y. Yoshida, Z. Li, T. Kamiyama, and S. Kageyama. 1998. A live non-neurovirulent herpes simplex virus vector expresses β-galactosidase in the nervous system of the Wistar and Sprague-Dawley strain rat for a prolonged period . Neurosci. Letters 245: 69-72.
Simonato, M., P. Marconi, J. Glorioso, and R. Manservigi. 1999. Molecular analysis of behavior by gene transfer into neurons with herpes simplex vectors. Brain Res. 835: 37-45.
Smith, B. N., B. W. Banfield, C. A. Smeraski, C. L. Wilcox, F. E. Dudek, L. W. Enquiet, and G. E. Pickard. 2000. Pseudorabies virus expressing enhanced green fluorescent protein: a tool for in vitro electrophysiological analysis of transsynaptically labeled neurons in identified central nervous system circuits. PNAS 97: 9264-9269.
Smith, C., R. H. Lachmann, and S. Efstathiou. 2000. Expression from the herpes simplex virus type 1 latency-associated promoter in the murine central nervous system. J. Gen. Virol. 81: 649-662.
Spear, P. G., R. J. Eisenberg, and G. H. Cohen. 2000. Three classes of cell surface receptors for alphaherpesvirus entry. Virology 275: 1-8.
Stribley, J. M., K. S. Rehman, H. Niu, and G. M. Christman. 2002. Gene therapy and reproductive medicine. Fertil. Steril. 77: 645- 657.
Taharaguchi, S., and T. Kobayashi, S. Yoshino, E. Ono. 2002. Analysis of regulatory functions for the region located upstream from the latency-associated transcript (LAT) promoter of pseudorabies virus in cultured cell. Vet. Microbiol. 85: 197-208.
Thomas, S. K., G. Gough, D. S. Latchman, and R. S. Coffin. 1999. Herpes simplex virus latency-associated transcript encodes a protein which greatly enhances virus growth, can compensate for deficiencies in immediate early gene expression, and is like to function during reactivation from virus latency. J. Virol. 73: 6618-6625.
Trybala, E., T. Bergstrom, D. Spillmann, B. svennerholm, S. Olofsson, S. J. Flynn, and P. Ryan. 1996. Mode of interaction between pseudorabies virus and heparan sulfate/heparin. Virology 218: 35-42.
Wunderbaldinger, P., A. Bogdanov, and R. Weissleder. 2000. New approaches for imaging in gene therapy. Euro. J. Radiol. 34: 156-165.
Yang, N. S., W. H. Sun, and D. McCabe. 1996. Developing particle-mediated gene-transfer technology for research into gene therapy of cancer. Mol. Med. Today 2: 476-481.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊