|
1. Behar, O., K. Mizuno, S. Neumann, and C. J. Woolf. 2000. Putting the spinal cord together again. Neuron 26:291-293. 2. Fawcett, J. W., and R. A. Asher. 1999. The glial scar and central nervous system repair. Brain Res. Bull. 49:377-391. 3. Fawcet, J.W. 1998. Spinal cord repair: from experimental models to human application. Spinal cord 36:811-817. 4. Li, Y., and G. Raisman. 1994. Schwann cells induce sprouting in motor and sensory axon in the adult rat spinal cord. J. Neurosci. 14(7):4045-4063. 5. Ramon-Cueto, A., G. E. Plant, J. Avila, M. B. Bunge. 1998. Long-distance axonal regeneration in the transected adult rat spinal cord is promoted by olfactory ensheathing glia transplants. J. Neurosci. 18(10):3803-3815. 6. Blesch, A., P. Lu, and M. H. Tuszynski. 2002. Neurotrophic factors, gene therapy, and neural stem cells for spinal cord repair. Brain Res. Bull. 57(6):833-838. 7. Hintenlang, D. E. 1993. Synergistic effects of ionizing radiation and 60 Hz magnetic fields. Bioelectromagnetics 14:545-551. 8. Tofani, S., A. Ferrara, L. Anglesio, and G. Gilli. 1995. Evidence for genotoxic effects of resonant ELF magnetic fields. Bioelectrochem. Bioenerg. 36:9-13. 9. Mevissen, M., A. Stamm, S. Buntenkotter, R. Zwingelberg, U. Wahnshaffe, and W. Loscher. 1993. Effects of magnetic fields on mammary tumor development induced by 7, 12-dimethylbenz (a) anthracene in rats. Bioelectromagnetics 14:131-144. 10. Tabrah, F. L., H. F. Mower, S. Batkin, and P. B. Greenwood. 1994. Enhanced mutagenic effect of a 60 Hz time-varying magnetic field on numbers of azide-induced TA100 revertant colonies. Bioelectromagnetics 15:85-93. 11. Conti, P., G. E. Gigante, M. G. Cifone, E. Alesse, G. Ianni, M. Reale, and P. U. Angeletti. 1983. Reduced mutagenic stimulation of human lymphocytes by extremely low frequency electromagnetic fields. FEEB Lett. 162:156-160. 12. Wertheimer, N., and E. Leper. 1979. Electrical wiring configurations and children cancer. Am. J. Epidemiol. 109:273-384. 13. Feychting, M., and A. Ahlbom. 1993. Magnetic fields and cancer in children residing near Swedish high-voltage power lines. Am. J. Epidemiol. 138:467-481. 14. Verksalo, P. K., E. Pukala, M. Hongisto, J. E. Valjus, P. J. Jarvinen, K. V. Heikkila, and M. Koskenvuo. 1993. Risk of cancer in Finnish children living close to power line. B. M. J. 307:895-899. 15. Olsen, J. H., A. Nielsen, and G. Schulgen. 1993. Residence near high voltage facilities and risk of cancer in children. B. M. J. 307:891-894. 16. Lacy-Hulbert, A., C. M. James, and H. Robin. 1998. Biologic response to electromagnetic fields. FASEB J. 12:395-420. 17. Goodman, R., C. Bassett, and A. S. Henderson. 1983. Pulsing electromagnetic fields induce cellular transcription. Science 220:1283-1285. 18. Phillips, J. L., and L. McChesney. 1991. Effects of 72 Hz pulsed magnetic field exposure on macromolecular synthesis in CCRF-CEM cells. Cancer Biochem. Biophys. 12:1-7. 19. Cantini, M., A. Cossarizza, F. Bersani, R. Cadossi, G. Ceccherelli, R. Tenconi, C. Catti, and R. Franceschi. 1986. Enhancing effect of low frequency pulsing electromagnetic fields on lectin induced human lymphocyte proliferation. J. Bioelect. 5:91-104. 20. Cardossi, R., V. R. Hentz, J. Kipp, R. Eiverson, G. Ceccherelli, P. Zucchini, G. Emilia, R. Franceschi, and A. Cossarizza. 1989. Effect of low frequency low energy pulsing electromagnetic fields (PEMF) on X-ray-irradiated mice. Exp. Hematology 17:88-95. 21. Fitzsimmons, R. J., J. R. Farley, W. R. Adey, and D. J. Baylink. 1986. Embryonic bone matrix formation is increased after exposure to a low-amplitude; low-frequency capacitive coupled electric fields, in vitro. Biochim. Biophys. Acta 882:51-56. 22. Fitzsimmons, R. J., D. D. Strong, S. Mohan, and D. J. Baylink. 1992. Low-amplitude, low-frequency electric fields-stimulated bone cell proliferation may in part be mediated by increase IGF-Ⅱ release. J. Cell. Physiol. 150:84-89. 23. Goodman, R., L. X. Wei, J. C. Xu, and A. Henderson. 1989. Exposure of human cells to low-frequency electromagnetic fields results in quantitative change in transcripts. Biochim. Biophys. Acta 1009:216-220. 24. Goodman, R., and A. Shirly-Henderson. 1991. Transcription and translation in cells exposured to extremely low frequency electromagnetic fields. Bioelectrochem. Bioenerg. 25:335-355. 25. Phillips, J. L., W. Haggren, W. J. Thomas, T. Ishida-Jones, and W. R. Adey. 1992. Magnetic fields-induced change in specific gene transcription. Biochim. Biophys. Acta 1132:140-144. 26. Lindquist, S., and E. Craig. 1988. The heat shock proteins. Annu. Rev. Genet 22:631-677. 27. Welch, W. J., and C. R. Brown. 1996. Influence of molecular and chemical chaperones on protein folding. Cell Stress Chaperon 1:109-115. 28. Han, L., H. Lin, M. Head, M. Jin, M. Blank, and R. Goodman.1998. Application of magnetic field-induced heat shock protein 70 for presurgical cytoprotection. J. Cell. Biochem. 71:577-583. 29. Tuinstra, R., B. Greenebaum, and E. M. Goodman. 1997. Effects of magnetic fields on cell-free transcription in E. coli and HeLa extracts. Bioelectrochem. Bioenerg. 43:7-12. 30. Blank, M., and L. Soo. 1998a. Enhancement of cytochrome oxidase activity in 60Hz magnetic fields. Bioelectrochem. Bioenerg. 45:253-259. 31. Blank, M., and L. Soo. 1998b. Frequency dependence of cytochrome oxidase activity in magnetic fields. Bioelectrochem. Bioenerg. 46:139-143. 32. Lin, H., L. Han, M. Blank, M. Head, and R. M. Goodman. 1998. Magnetic field activation of protein-DNA binding. J. Cell. Biochem. 70:297-303. 33. Lai, H., and N. P. Singh. 1997. Acute exposure to a 60 Hz magnetic field increase DNA strand breaks in rat brain cells. Bioelectromagnetic 18:156-165. 34. Blank, M. 1995. Na/K-adenosine-triphosphatase. Advances in Chemistry 250:339-348. 35. Blank, M., and L. Soo. 1996. The threshold for Na-K-ATPase stimulation by electromagnetic fields. Bioelectrochem. Bioenerg. 33:109-114. 36. Blank, M., and L. Soo. 2001. Electromagnetic acceleration of electron transfer reactions. J. Cell. Biochem. 81:278-283. 37. Blackman, C. F., S. G. Benane, D. E. House, and M. M. Pollock. 1993. Action of 50 Hz magnetic fields on neurite outgrowth in pheochromocytoma cells. Bioelectromagnetics 14(3):273-286. 38. Greenebaum, B., C. H. Sutton, M. S. Vadula, J. H. Battocletti, T. Swiontek, J. DeKeyser, and B. F. Sisken. 1996. Effects of pulsed magnetic fields on neurite outgrowth from chick embryo dorsal root ganglia. Bioelectromagnetics 17(4):293-302. 39. Macias, M. Y., J. H. Battocletti, C. H. Sutton, F. A. Pintar, and D. J. Maiman. 2000. Directed and enhanced neurite growth with pulsed magnetic field stimulation. Bioelectromagnetics 21(4):272-286. 40. Blackman, C. F., S. G. Benane, and D. E. House. 1993. Evidence for direct effect of magnetic fields on neurite outgrowth. FASEB J. 7(9):801-806. 41. McFarlane, E. H., G. S. Dawe, M. Marks, and I. C. Campbell. 2000. Changes in neurite outgrowth but not in cell division induced by low EMF exposure: influence of field strength and culture conditions on responses in rat PC12 pheochromocytoma cells. Bioelectrochemistry 52(1):23-28. 42. Wilson, D. H., and P. Jagadeesh. 1976. Experimental regeneration in peripheral nerves and the spinal cord in laboratory animals exposed to a pulsed electromagnetic field. Paraplegia 14(1):12-20. 43. Sisken, B. F., M. Kanje, G. Lundborg, E. Herbst, and W. Kurtz. 1989. Stimulation of rat sciatic nerve regeneration with pulsed electromagnetic fields. Brain Res. 485(2):309-316. 44. Rusovan, A., and M. Kanje. 1991. Stimulation of regeneration of the rat sciatic nerve by 50 Hz sinusoidal magnetic fields. Exp. Neurol. 112(3):312-316. 45. Rusovan, A., and M. Kanje. 1992. Magnetic fields stimulate peripheral nerve regeneration in hypophysectiomized rats. NeuroReport 3(12):1039-1041. 46. Kanje, M., A. Rusovan, B. S. Sisken, and G. Lundborg. 1993. Pretreatment of rats with pulsed electromagnetic fields enhances regeneration of the sciatic nerve. Bioelectromagnetics 14(4):353-359. 47. Walker, J. L., J. M. Evans, P. Resig, S. Guarnieri, P. Meade, and B. S. Sisken. 1994. Enhancement of functional recovery following a crush lesion to the rat sciatic nerve by exposure to pulsed electromagnetic fields. Exp. Neurol. 125(2):302-305. 48. Kolosova, L. I., G. N. Akoev, V. D. Avelev, O. V. Riabchikova, and K. S. Babu. 1996. Effect of low-intensity millimeter wave electromagnetic radiation on regeneration of the sciatic nerve in rats. Bioelectromagnetics 17(1):44-47. 49. Byers, J. M., K. F. Clark, and G. C. Thompson. 1998. Effect of pulsed electromagnetic stimulation on facial nerve regeneration. Arch. Otolaryngol. Head Neck Surg.124(4):383-389. 50. Rusovan, A., M. Kanje, and K. H. Mild. 1992. The stimulatory effect of magnetic fields on regeneration of the rat sciatic nerve is frequency dependent. Exp. Neurol. 117(1):81-84. 51. Longo, F. M., T. Yang, S. Hamilton, J. F. Hyde, J. Walker, L. Jennes, R. Stach, and B. F. Sisken. 1999. Electromagnetic fields influence NGF activity and levels following sciatic nerve transection. J. Neurosci. Res. 55(2):230-237. 52. Kunkel-Bagden, E., and B. S. Bregman. 1990. Spinal cord transplants enhance the recovery of locomotor function after spinal cord injury at birth. Exp. Brain Res. 81:25-34. 53. Miya, D., S. Giszter, F. Mori, V. Adipudi, A. Tessler, and M. Murray. 1997. Fetal transplants alter the development of function fetal spinal cord transection in newborn rats. J. Neurosci. 17(12):4856-4872. 54. Mori, F., T. Himes, M. Kowada, M. Murrar, and A. Tessler. 1997. Fetal spinal cord transplant rescue some axotomized rubrospinal neurons from retrograde cell death in adult Rats. Exp. Neurol. 143:45-60. 55. Diener, P. S., and B. S. Bregman. 1998a. Fetal spinal cord transplantation support the development of target reaching and coordination postural adjustment after neonatal cervical spinal cord injury. J. Neurosci. 18(2):763-778. 56. Diener, P. S., and B. S. Bregman. 1998b. Fetal spinal cord transplants support growth of supra-spinal and segmental projection after cervical spinal cord hemisection in the neonatal rat. J. Neurosci. 18(2):779-793. 57. Bregman, B. S., E. Broude, M. Mctee, and M. S. Kelley. 1998. Transplants and neurotrophic factors prevent atrophy of mature CNS neurons after spinal cord injury. Exp. Neurol. 149:13-27. 58. Broude, E., M. McAtee, M. S. Kelly, and B. S. Bregman. 1999. Fetal spinal cord transplants and exogenous neurotrophic support enhance c-Jun expression in mature axotomized neurons after spinal cord injury. Exp. Neurol. 155:65-78. 59. Hunt, S. P., A. Pini, and G. Evan. 1987. Induction of c-fos-like protein in spinal cord neuron following sensory stimulation. Nature 328:632-634. 60. Morgan, J. I., D. R. Cohem, J. L. Hempstead, and T. Curran. 1987. Mapping patterns of c-fos expression in the central nervous system after seizure. Science 237:192-196. 61. Sagar, S. M., E. R. Sharp, and T. Curran. 1988. Expression of c-fos protein in brain:metabolic mapping at the cellular level. Science 240:1328-1331. 62. Wisden, W., M. L. Errington, S. Williams, S. B. Dunnett, C. Waters, D. Hitchcock, G. Evans, T. V. Bliss, and S. P. Hunt. 1990. Differential expression of immediate early genes in the hippocampus and spinal cord. Neuron 4:603-614. 63. Herdegen, T., J. Leah, and R. Bravo. 1991. Specific temporal and spatial distribution of JUN, FOS and KROX-24 proteins in spinal neurons following noxious transynaptic stimulation. J. Comp. Neurol. 313:178-191. 64. Herdegen, T., M. Kiessling, R. Bravo, M. Zimmermann, and P. Gass. 1993a. The KROX-20 transection factor in the adult brain: novel expression pattern of an immediate-early gene encoded protein. Neuroscience 57: 42-53. 65. Herdegen, T., and M. Zimmermann. 1994. Expression of c-Jun and JunD transcription factors represent specific changes in neuronal gene expression following axotomy. Neurosci. Lett. 178:39-42. 66. Angel, P., E. A. Allergretto, S. T. Okino, K. Hattori, W. J. Boyle, T. Hunter, and M. Karin. 1988. Oncogene jun encodes a sequence-specific transactived similar to AP-1. Nature 332:166-171. 67. Bohmann, D., T. J. Bos, A. Admon, T, Nishimura, P. K. Vogt, and R. Tjian. 1987. Human proto-oncogene c-jun encodes a DNA binding with structure and functional properties of transcription factor AP-1. Science 238:1386-1392. 68. Herdegen, T., K. Kovary, A. Buhl, R. Bravo, M. Zimmermann, and P. Gass. 1995. Basal expression of the inducible transcription factors c-Jun, JunB, JunD, c-Fos, FosB, and Krox-24 in the adult rat brain. J. Comp. Neurol. 354(1):39-56. 69. Ferrer, I., S. Barron, E. Rodriquez-Farre, and A. M. Planas. 1995. Ionizing radiation-induced apoptosis is associated with c-Jun expression and c-Jun/AP-1 activation in the developing cerebellum of the rat. Neurosci. Lett. 202:105-108. 70. Ferrer, I., E. Pozas, J. Ballabriga, and A. M. Planas. 1997. Strong c-Jun/Ap-1 immunoreativity is restricted to apoptotic cells following intracerebral ibotenic acid injection in developing rats. Neurosci. Res. 28: 21-31. 71. Herdegen, T., J. Sandkuhler, P. Gass, M. Kiessling, R. Bravo, and M. Zimmermann. 1993b. JUN, FOS, KROX and CREB transcription factors proteins in the rat cortex: basal expression and induction by spreading depression and epileptic seizure. J. Comp. Neurol. 333:271-288. 72. Sommer, C., P. Gass, and M. Kiessling. 1995. Selective c-JUN expression in CA1 neurons of the gerbil hippocampus during and after acquisition of an ischemia-tolerant state. Brain Pathol. 5(2):135-144. 73. Leah, J. D., T. Herdegen, and R. Bravo. 1991. Selective expression of Jun proteins following axotomy and axonal transport block in peripheral nerves in the rat: evidence for a role in the regeneration process. Brain Res. 566(1-2):198-207. 74. Leah, J. D., T. Herdegen, A. Murashov, M. Dragunow, and R. Bravo. 1993. Expression of immediate early gene proteins following axotomy and inhibition of axonal transport in the rat central nervous system. Neuroscience 57(1):53-66. 75. Jenkins, R., and Hunt S. P. 1991. Long-term increase in the levels of c-jun mRNA and Jun protein-like immunoreactivity in motor and sensory neurons following axon damage. Neurosci. Lett. 129(1):107-110. 76. Robinson, G. A. 1995. Axotomy-induced regulation of c-Jun expression in regenerating rat retinal ganglion cells. Brain Res. Mol. Brain Res. 30(1):61-69. 77. Novikova, L., L. Novikov, and J. O. Kellerth. 1997. Effects of neurotransplants and BDNF on the survival and regeneration of injured adult spinal motorneurons. Eur. J. Neurosci. 9(12):2774-2777. 78. Houle, J. D., P. Schramm, and T. Herdegen. 1998. Trophic factor modulation of c-Jun expression in supraspinal neurons after chronic spinal cord injury. Exp. Neurol. 154:602-611. 79. Richardson, P. M., V. M. K. Issa, and A. J. Aguayo. 1984. Regeneration of long spinal axon in the rats. J. Neurocytol. 13:165-182. 80. Jenkins, R., W. Tetzlaff, and S. P. Hunt. 1993. Differential expression of immediate early genes in rubrospinal neurons following axotomy in rat. Eur. J. Neurosci. 5:203-209. 81. Hull, M., and M. Bahr. 1994a. Differential regulation of c-jun expression in rat retinal ganglion cells after proximal and distal optic nerve transection. Neurosci. Lett. 178:39-42. 82. Broude, E., M. McAtee, M. S. Kelley, and B. S. Bregman. 1997. c-jun expression in rat adult dorsal ganglion neurons: differential response after central or peripheral axotomy. Exp. Neurol. 148:367-377. 83. Kenney, A. M., and J. D. Kocsis. 1997. Temporal variability o c-jun transcription factor levels in peripheral or centrally transected adult rat dorsal root ganglion. Mol. Brain Res. 52:53-61. 84. Schmitt, A. B., S. Breuer, M. Voell, F. W. Schwaiger, G. W. Keeutzberg, and W. Nacimiento. 1999. GAP-43(B-50) and c-jun are up-regulated in axotomy neurons of Clarke’s nucleus after spinal cord injury in the adult rat. Neurobiol. Dis. 6:122-130 85. Field, D. J., R. A. Collins, and J. C. Lee. 1984. Heterogeneity of vertebrate brain tubulins. Proc. Natl. Acad. Sci. USA 81(13):4041-4045. 86. Lee, J. C., D. J. Field, H. J. George, and J. Head. 1986. Biochemical and chemical properties of tubulin subspecies. Annals of the New York Academy of Science 466:111-128. 87. Wolff, A., P. Denoulet, and C. Jeantet.1982. High level of tubulin microheterogeneity in the mouse brain. Neurosci. Lett. 31(3):323-328. 88. Sullivan, K. F. 1988. Structure and utilization of tubulin isotypes. Annu. Rev. Cell Bio. 4:687-716. 89. Eipper, B. A. 1974. Properties of rat brain tubulin. J. Bio. Chem. 249(5): 1407-1416. 90. Forgue, S. T., and J. L. Dahl. 1979. Rat brain tubulin: subunit heterogeneity and phosphorylation. J. Neurochem. 32(3):1015-1025 91. Geisert, E., and A. Frankfurter. 1989. The neuronal response to injury as visualized by immunostaining of class III beta-tubulin in the rat. Neurosci. Lett. 102(2-3):137-141. 92. Jiang, Y. Q., and M. M. Oblinger. 1992. Differential regulation of βⅢ and other tubulin gene during peripheral and central neuron development. J. Cell Science 103:643-651. 93. Lee, M. K., J. B. Tuttle, L. I. Rebhun, D. W. Cleveland, and A. Frankfurter. 1990. The expression and posttranslational modification of a neuron-specific beta-tubulin isotype during chick embryogenesis. Cell Motil. Cytoskeleton 17(2):118-132. 94. Lee, V. M., and S. K. Pixley. 1994. Age and differentiation-related differences in neuron-specific tubulin immunostaining of olfactory sensory neurons. Brain Res. Dev. Brain Res. 83(2):209-211. 95. Joshi, H. C., and D. W. Cleveland. 1989. Differential utilization of beta-tubulin isotypes in differentiating neurites. J. Cell Bio. 109(2):663-673. 96. Aletta, J. M. 1996. Phosphorylation of type III beta-tubulin in PC12 cell neurites during NGF-induced process outgrowth. J. Neurobio. 31(4):461-475. 97. Hoffman, P. N., M. A. Lopata, D. F. Watson, and R. F. Luduena. 1992. Axonal transport of class II and III beta-tubulin: evidence that the slow component wave represents the movement of only a small fraction of the tubulin in mature motor axons. J. Cell Bio. 119(3):595-604. 98. Moskowitz, P. F., R. Smith, J. Pickett, A. Frankfurter, and M. M. Oblinger. 1993. Expression of the class III beta-tubulin gene during axonal regeneration of rat dorsal root ganglion neurons. J. Neurosci. Res. 34(1):129-134. 99. Wong, J., and M. M. Oblinger. 1990. A comparison of peripheral and central axotomy effects on neurofilament and tubulin gene expression in rat dorsal root ganglion neurons. J. Neurosci. 10(7):2215-2222. 100. McKerracher, L., C. Essagian, and A. J. Aguayo. 1993. Marked increase in beta-tubulin mRNA expression during regeneration of axotomized retinal ganglion cells in adult mammals. J. Neurosci. 13(12):5294-5300. 101. Jiang, Y. Q., J. Pickett, and M. M. Oblinger. 1994. Long-term effects of axotomy on beta-tubulin and NF gene expression in rat DRG neurons. J. Neural Transplant Plast. 5(2):103-114. 102. Hoffman, P. N., and R. F. Luduena. 1996. Changes in the isotype composition of beta-tubulin delivered to regenerating sensory axons by slow axonal transport. Brain Res. 742(1-2):329-333. 103. Bregman, B. S. 1987a. Development of serotonin immunoreactivity in the rat spinal cord and its plasticity after spinal cord lesions. Dev. Brain Res. 34:245-263. 104. Bregman, B. S. 1987b. Spinal cord transplants permit the growth of serotonergic axons across the site of neonatal spinal cord transaction. Dev. Brain Res. 34:265-279. 105. Cheng, H., S. Almstrom, L. Gimenez-Llort, R. Chang, S. O. Ogren, B. Hoffer, and L. Olson. 1997. Gait analysis of adult paraplegic rats after spinal cord repair. Exp. Neurol. 148:544-557. 106. Chen, A., X. M. Xu, N. Kleitman, and M. B. Bunge. 1996. Methylprednisolone administration improves axonal regeneration into Schwann cell grafts in transected adult rat thoracic spinal cord. Exp. Neurol. 138:261-276. 107. Cheng, H., Y. Cao, and L. Olson. 1996. Spinal cord repair in adult paraplegic rats:partial restoration of hind limb function. Science 273:510-513. 108. Song, H. J., and M. M. Poo. 1999. Signal transduction underlying growth cone guidance by diffusible factors. Curr. Opin. Neurobiol. 9(3):355-363. Review. 109. Gale, K., H. Kerasidis, and J. R. Wrathall. 1985. Spinal cord contusion in the rat:behavioral analysis of functional neurologic impairment. Exp. Neurol. 88:123-134. 110. Basso, D. M., S. Beattie, and J. C. Bresnahan. 1995. A sensitive and reliable locomotor rating scale for open field testing in rats. J. Neurotrauma 12:1-21. 111. Coumans, J, V., T. T. Lin, H. N. Dai, L. MacArthur, M. McAtee, C. Nash, and B. S. Bregman. 2001. Axonal regeneration and functional recovery after complete spinal cord transection in rats by delayed treatment with transplants and neurotrophins. J. Neurosci. 21(23):9334-9344. 112. Ramon-Cueto, A., M. I. Cordero, F. F. Santo-Benito, and J. Avila. 2000. Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia. Neuron 25:425-435. 113.Yasui, Y. S., Yokota, K. Ono, and T. Tsumori. 2001. Projections from the red nucleus to the parvicellular reticular formation and the cervical spinal cord in the rat, with special reference to innervation by branching axons. Brain Res. 923:187-192. 114. Rende, M., M. Morales, E. Brizi, R. Bruno, F. Bloom, and P. P. Sanna. 1999. Modulation of serotonin 5-HT3 receptor expression in injured adult rat spinal cord motoneurons. Brain Res. 823:234-240.
|