(3.238.186.43) 您好!臺灣時間:2021/02/28 11:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:周古舜
論文名稱:以Saccharomycescerevisiae之b-glucan調控豬隻免疫狀態及其對豬瘟病毒感染之影響
論文名稱(外文):Modulation of B-glucan of saccharomyces cerevisiae on swine immune competence against classical swine fever virus infection
指導教授:李維誠李維誠引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:獸醫學研究所
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2001
畢業學年度:90
語文別:中文
中文關鍵詞:豬瘟免疫促進免疫抑制
相關次數:
  • 被引用被引用:1
  • 點閱點閱:435
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
病毒感染後因毒力及與宿主抵抗力交互關係間之消長或平衡,導致宿主恢復、死亡或持續性感染之現象,所牽涉之因子複雜,其中宿主的免疫狀態扮演一重要之角色。本實驗利用免疫調節劑 b-glucan調控宿主之免疫系統,探討其對豬瘟中間毒(S-59)感染之影響。選取15頭健康、三品種(LYD)六週齡豬隻供實驗用,在免疫促進組係以口服酵母菌(Saccharomyces cerevisiae)之細胞壁,做為免疫誘發物;在免疫抑制組則以肌肉注射合成葡萄糖性類固醇-dexamethasone(1mg / kg體重),以模擬臨床緊迫因子對宿主免疫系統之影響。連續25天處置後,以S-59中間毒2 x 106 PFU肌肉注射攻毒,於攻毒後第0、7、14、21、28、42及56天抽血檢測,計算白血球總數、以流式細胞儀分析淋巴次族群之變化、並利用抗原ELISA、reverse transcriptase-polymerase chain reaction (RT-PCR)方法偵測病毒血症及以END法檢測豬瘟中和抗體產生情形。而於攻毒後第14、28、56天分三次淘汰豬隻,進行病理學檢查及利用RT-PCR偵測各實質臟器病毒抗原,以確認病毒分佈之情形。結果顯示:與對照組比較,以S. cerevisiae長期給予可增加豬隻白血球總數、淋巴細胞總數,CD4+ 淋巴細胞族群絕對值上昇,並減輕豬瘟感染所造成之臨床症狀及病理病變。以dexamethasone處理,則使CD4+ 淋巴細胞族群絕對值下降,且加重豬瘟感染之臨床症狀及病理病變。故利用免疫促進劑及良好的飼養管理,以減少豬隻產生緊迫,可降低疾病對宿主之傷害。
The immune status of the host defense system plays an important role in classical swine fever infection. The experiment was aimed to evaluate the immunomodulator, b-glucan, in the regulation of porcine immune system against CSF virus (S-59 strain) infection. Fifteen 6-week-old, healthy, LYD piglets were grouped as(1)immune-promoting group, pigs fed with the cell wall of Saccharomyces cerevisiae as immune inducer ; (2) immune-inhibiting group, piglets were subsequently injected with dexamethasone ( 1 mg/kg b.w., IM ) to mimic the stress effect on immune system, and (3) control. Virus challenge (S-59, 2 x 106 PFU, IM ) was conducted after 25 days of treatment with S. cerevisiae or dexamethasone . On 0, 7, 14, 21, 28, 42, and 56 days post infection (d.p.i.), blood samples were collected for WBC count and phenotypic changes in subpopulation of lymphocyte that was analyzed by flow cytometry. Moreover, antigen ELISA and reverse transcriptase-polymerase chain reaction (RT-PCR) were performed to detect the presence of viremia, while the neutralization antibody of experimental pigs after CSF virus challenge was assayed by END method. On 14, 28, and 56 d.p.i., piglets were sacrificed for pathological examination and viral loading and distribution. The results showed that comparing to the control group, the numbers of WBC, lymphocyte, particular in CD4+ lymphocytes in long term treatment of S. cerevisiae was increased. Meanwhile, clinical signs and pathological lesions immune-promoting group were mild and restricted after CSF virus challenge. In contrast, dexamethasone decreased the absolute numbers of CD4+ lymphocytes and aggravated the clinical signs and pathological lesions pigs after CSF virus challenge. These results indicated that proper management along with the application of immunomodulator would enhance host defense and thereby reduce the injury of infectious.
目 錄
頁次
中文摘要 -------------------------------------------------------------- I
英文摘要 -------------------------------------------------------------- II
目錄 -------------------------------------------------------------------- III
表次 -------------------------------------------------------------------- Ⅳ
圖次 -------------------------------------------------------------------- Ⅴ
第一章 緒言 -------------------------------------------------------- 1
第二章 文獻探討 -------------------------------------------------- 3
第一節 b-glucan ------------------------------------------------- 3
第二節 豬瘟 ----------------------------------------------------- 12
第三章 材料與方法 ----------------------------------------------- 28
第四章 結果 -------------------------------------------------------- 35
第五章 討論 -------------------------------------------------------- 55
參考文獻 -------------------------------------------------------------- 64
表 次
頁次
Table 1 The components of the reagent of RT-PCR reaction. ---- 40
Table 2 Piglets were sacrificed for pathological examinationafter CSFV inoculation. -------------------------------------- 41
圖 次
頁次
Figure 1 The variation in total amount of WBC. ----------------- 42
Figure 2 Dot plot of leukocyte ( A ) and leukocyte stained with monoclon antibody 74-22-15 ( B ). ---------------- 43
Figure 3 The change in absolute value of lymphocyte after CSFV(S-59) challenge. ------------------------------- 44
Figure 4 The change in absolute value of granulocyte after CSFV(S-59) challenge. ------------------------------- 45
Figure 5 The change in absolute value of monocyte after CSFV(S-59) challenge. ------------------------------- 46
Figure 6 The change in subpopulation of lymphocyte(CD4+)after CSFV(S-59) challenge. ------------------------- 47
Figure 7 The change in subpopulation of lymphocyte(IgM+)after CSFV(S-59) challenge. ------------------------- 48
Figure 8 The change in subpopulation of lymphocyte(CD8+)after CSFV(S-59) challenge. ------------------------- 49
Figure 9 Piglets were examined the gross lesion after 14 days of CSFV inoculation. -------------------------------- 50
Figure 10 CSF viremia detected by antigen ELISA. -------------- 51
Figure 11 Using RT-PCR to detect CSF viremia. ------------------ 52
Figure 12 Using RT-PCR to detect the distribution of viral nucleic acid within organs. ------------------------------- 53
Figure 13 Using END to detect the production of neutralizating antibody after CSFV inoculation. ------ 54
參考文獻
王金順。1997。豬瘟病毒之免疫抑制現象。碩士論文。國立中興大學獸醫學研究所。台中市。中華民國。
呂濟洋。1998。豬瘟病毒持續污染場之監控及豬瘟病毒感染對血液中淋巴次族群之影響。碩士論文。國立中興大學獸醫學研究所。台中市。中華民國。
李維誠、劉正義、王吉德。1986。感染假性狂犬病豬隻之類淋巴組織病變及免疫抑制。中華民國獸醫學會雜誌。12: 15-23。
林永男。2001。台灣慢性豬瘟污染之調查與監控。碩士論文。國立中興大學病理學研究所。台中市。中華民國。
黃億銘。1999。利用流體細胞儀及Time-resolved fluorometer建立非放射性細胞毒殺作用分析法及豬瘟病毒感染與毒殺細胞交互關係之探討。碩士論文。國立中興大學獸醫學研究所。台中市。中華民國。
廖永剛。1992。應用聚合酵素連鎖反應檢測兔化豬瘟疫苗病毒在豬體內之持續感染。國立台灣大學獸醫學研究所。台北市。中華民國。
廖偉莉。1998。豬肺泡巨噬細胞之表現型和功能及假性狂犬病病毒對其之影響。碩士論文。國立中興大學獸醫學研究所。台中市。中華民國。
Abbas, A. K., A. H. Lichtman, and J. S. Pober. 1994. Cellular and molecular immunology, 3rd ed., W. B. Saunders Company, Philadelphia, Pennsylvania, USA.
Abel, G. and J. K. Czop. 1992. Stimulation of human monocyte b-glucan receptors by glucan particles induces production of TNF-a and IL-1b.In. Sci. Immunopharmac.14: 1363-1373.
Akbar, A. N. and M. Salmon. 1997. Cellular environments and apoptosis: tissue microenvironments control activated T-cell death. Immunol. Today. 18:72-76.
Aynaud, J. M., C. Galicher, J. Lombard, C. Bibard, and M. Mierzejewska. 1972. Peste porcine classique: des facteures d,idenitification in vitro du virus en relation avec le pouvoir pathogen pour le pore. Ann. Rech. Vet. 3: 209-235.
Baker, J. A. 1946. Serial passage of hog cholera virus in rabbits. Proc. Soc. Exp. Biol. Med. 63: 183-187.
Baker, J. A. and E. Sheffy. 1960. A persistent hog cholera viremia in young pigs. Proc. Soc. Exp. Biol. Med. 105: 675-678.
Black, P. L., K. M. Mckinnon, S. L. Wooden, and M. A. Ussery. 1996. Antiviral activity of biological response modifiers in a murine model of AIDS. requirement for augmentation of natural killer cell activity and synergy with oral AZT. Int. J. Immunopharmac. 18: 633-650.
Bonyhadi, M. L., L. Rabin, S. Salimi, D. A. Brown, J. Kosek, J. M. McCune, and H. Kaneshima. 1993. HIV induces thymus depletion in vivo. Nature. 363:728-32
Boynton, W. H. 1946. Preliminary report on the propagation of hog cholera virus in vitro. Vet. Med. 41: 346-347.
Bruschke, C. J., M. M. Hulst, R. J. Moormann, P. A. van Rijn and J. T. van Oirschot. 1997. Glycoprotein Erns of pestiviruses induces apoptosis in lymphocytes of several species. J. Virol. 71: 6692-6696.
Carbrey, E. A., W. C. Stewart, J. I. Kresse, and M. L. Snyder. 1980. Persitent hog cholera infection detected during virulence typing of 135 field isolates. Am. J. Vet. Res. 41: 946-949.
Charley, B., G. Corthier, M. Houdayer, and P. Rouze. 1980. Modifications des reactions immunitaires au cours de la peste porcine classique. Ann. Rech. Vet. 11: 27-33.
Cheville, N. F. and W. L. Mengeling. 1969. The pathogenesis of chronic hog cholera (Swine fever). Histologic, immunofluorescent, and electron microscopic studies. Lab. Invest. 20: 261-274.
Crawford, J. G., T. R. Dayhuft, and M. J. Callian. 1968. Hog cholera: replication of hog cholera virus in tissue culture with cytopathic effect. Am. J. Vet. Res. 29: 1733-1739.
Cross, C. E. and G. J. Bancroft. 1995. Ingestion of acapsular Cryptococcus neoformans occurs via mannose and b-glucan receptors, resulting in cytokine production and increased phagocytosis of the encapsulated form. Am. Soci. Microbiol. 63: 2604-2611.
Cunliffe, H. R. and P. A. Rebers. 1968. The purification and concentration of hog cholera virus. Can. J. Comp. Med. 32: 486-492.
Cutler, T. J., R. J. MacKay, P. E. Ginn, K. Gillis, S. M. Tanhauser, E. V. LeRay, J. B. Dame, and E. C. Greiner. 2001. Immunoconversion against Sarcocystis neurona in normal and dexamethasone-treated horses challenged with S. neurona sporocysts. Vet. Parasitol. 95: 197-210.
Czop, J. K. and J. Kay. 1991. Isolation and characterization of b-glucan receptors on human mononuclear phagocytes. J. Exp. Med. 173:1511-1520.
Dale, C. N. and B. A. Songer. 1957. In vitro propagation of hog cholera virus. I. Method of cultivation and observation on color changes in the medium. Am. J. Vet. Res. 18: 362-368.
Doita, M., L. T. Rasmussen, R. Seljelid, and P. E. Lipsky. 1991. Effect of soluble animated beta-1,3-D-polyglucose on human monocytes: stimulation of cytokine and prostaglandin E2 production but not antigen-presenting function. J. Leukoc. Biol. 49: 342-351.
Dunne, H. W. 1975. Hog cholera. In Disease of Swine, 4th ed., A. D. Leman, B. E. Straw, W. L. Mengeling, S. D,Allaire, and D. J. Taylor (eds.), Iowa State University Press, Ames, Iowa, USA, pp. 189-255.
Dunne, H. W., A. J. Luedke, C. V. Reich, and J. F. Hokanson. 1957a. The in vitro growth of hog cholera virus in cells of peripheral blood. Am. J. Vet. Res. 18: 502-507.
Dunne, H. W., S. C. Benbrook, E. M. Smith, and R. A. Runnels. 1957b. Bone changes in pigs infected with hog cholera. J. Am. Vet. Med. Assoc. 130: 260-265.
Fenner, F. J., E. P. J. Gibbs, F. A. Murphy, R. Rott, M. J. Studdert, and D. O. White. 1993. Flaviviridae. In Veterinary virology, 2nd ed., Academic Press, Inc., San Diego, USA, pp. 441-455.
Fernelius, A. L. and L. F. Velicer. 1968. Characterization of bovine viral diarrhea virus. IV partial purification by agar gel filtration. Arch. Ges. Virusforsch 25: 227-237.
Figueras, A., M. M. Santarem, and B. Novoa. 1998. Influence of the sequence of administration of b-glucans and a Vibrio damsela vaccine on the immune response of turbot(Scophthalmus maximus L.). Vet. Immunol. Immunopath. 64: 59-68.
Gilad, N. L., N. B. Nun, and A. M. Mayer. 2001. The possible function of the glucan sheath of Botrytis cinerea : effects on the distribution of enzyme activities. FCMS Microbiol. Let. 199: 109-113.
Groux, H., G. Torpier, D. Monte, Y. Mouton, A. Capron, and J. C. Ameisen. 1992. Activation-induced death by apoptosis in CD4+ T cells from human immunodeficiency virus-infected asymptomatic individuals. J. Exp. Med. 175:331-340.
Hadden, J. W. 1993. Immunostimulants. Immunomodul. 14: 270-281.
Hanson, R. P. 1957. Oirgin of hog cholera. J. Am. Vet. Med. Assoc. 131: 211.
Hashimoto, T., N. Ohno, Y. Adachi, and T. Yadomae. 1997. Nitric oxide synthesis in murine peritoneal macrophage by fungal b-glucan. Biol. Pharm. Bull. 20: 1006-1009.
Hernandez, J., J. Reyes-Leyva, R. Zenteno, H. Ramirez, P. Hernandez-Jauregui, and E. Zenteno. 1998. Immunity to porcine rubulavirus infection in adult swine. Vet. Immunol. Immunopathol. 64:367-381.
Ho, W. C., N. J. Li, and S. S. Lai. 1987. Purification and electron microscopic observation of hog cholera virus. J. Chinese Soc. Vet. Sci. 13: 89-98.
Hoffman, O. A., J. E. Standing, and A. H. Limper. 1993. Pneumocystis carinii stimulates tumor necrosis factor-a release from alveolar macrophages through a b-glucan mediated mechanism. J. Immunol. 150: 3932-3940.
Homey, B., H. C. Schuppe, T. Assmann, H. W. Vohr, A. I. Lauerma, T. Ruzicka, and P. Lehmann. 1997. A local lymph node assay to analyse immunosuppressive effects of topically applied drugs. Europ. J. Immunopharmac. 325: 199-207.
Hulst, M. M., D. F. Westra, G. Wensvoort, and R. J. M. Moormann. 1993. Glycoprotein E1 of hog cholera virus expressed in insect cells protects swine from hog cholera. J. Virol. 67: 5435-5442.
Hulst, M. M., F. E. Panoto, A. Hoekman, H. G. van Gennip and R. J. Moormann. 1998. Inactivation of the RNase activity of glycoprotein Erns of classical swine fever virus results in a cytopathogenic virus. J. Virol. 72: 151-157.
Hwang, E. K., J. H. Kim, S. S. Yoon, B. H. Kim, and Y. O. Yoon. 1994. Lynphocyte subpopulations of the peripherial blood of pigs experimentally inoculated with swine fever virus. RDA J. Agricul. Sci., Vet. 36: 576-586.
Jondal M., G. Klein, M. B. Oldstone, V. Bokish and E. Yefenof. 1976. Surface markers on human B and T lymphocytes. VIII. Association between complement and Epstein-Barr virus receptors on human lymphoid cells. Scand. J. Immunol. 5: 401-410.
Karre, K. and R. M. Welsh. 1997. Immunology: viral decoy vetoes killer cell. Nature. 386:446-447.
Kim, Y. T., E. H. Kim, C. Cheong, D. L. Williams, C. W. Kim, and S. T. Lim. 2000. Structural characterization of b-D-(1®3,1®6)-linked glucans using NMR spectroscopy. Carbohy. Res. 328: 331-341.
Kimman, T. G., A. T. J. Bianchi, T. G. M. De Bruin, W. A. M. Mulder, J. Priem, and J. J. M. Voermans. 1995. Interaction of pseudorabies virus with immortalized porcine B cell: influence on surface class I and class II major histocompatibility complex and immunoglobulin M expression. Vet. Immunol. Immonopathol. 45:253-263.
Konig, M., T. Lengsfeld, T. Pauly, R. Stark, and H. J. Thiel. 1995. Classical swine fever virus: Induction of protective immunity by two structural glycoproteins. J. Virol. 69: 6479-6486.
Konopski, Z., R. Seljelid, and T. Eskeland. 1993. Cytokines and PGE2 modulate the phagocytic function of the b-glucan receptor in macrophage. Scand. J. Immunol. 37: 587-592.
Konopski, Z., R. Seljelid, and T. Eskeland. 1994. IFN-g inhibits internalization of soluble aminated b-1,3-D-glucan by macrophage and thereby down-regulates the glucan induced release of TNF-a and IL-1b. Scand. J. Immunol. 40: 57-63.
Kresse, J. I., W. C. Stewart, E. A. Carbrey, and M. L. Snyder. 1976. Sensitivity of swine buffy coat culture to infection with hog cholera virus. Am. J. Vet. Res. 37: 1315-1318.
Kubin, G. 1967. In vitro merkmale des schweine-pestivirus. Zbl. Vet. Med. B. 14: 543-552.
Kumagai, T., T. Shimizu, and M. Matumoto. 1958. Detection of hog cholera virus by its effect on Newcatle disease virus in swine tissue culture. Science. 128: 336.
Lan, H. C., P. G. Reddy, M. A. Chambers, G. Walker, K. K. Srivastava, and J. A. Ferguson. 1995. Effect of stress on interleukin-2 receptor expression by bovine mononuclear leukocytes. Vet. Immunol. Immunopharmac. 49: 241-249.
Lee, W. C., C. S. Wang, and M. S. Chien. 1999. Virus antigen expression and alteration in peripheral blood mononucluer cell subpopulation after classical swine fever virus infection. V.micr. 67: 17-29.
Liang, J., D. Melican, L. Cafro, G. Palace, L. Fisette, R. Armstrong, and M. L. Patchen. 1998. Enhanced clearance of a multiple antibiotic resistant Staphylococcus aureus in rats treatd with PGG-glucan is associated with increased leukocyte counts and increased neutrophil oxidative burst activity. Int. J. Immunopharmac. 20:595-614.
Liess, B., H. R. Frey, D. Prager, S. M. Hafet, and B. Roeder. 1976. The course of the natural swine fever virus infection in individual swine and investigations on the development of inapparent swine fever infections. In Diagnosis and epizootology of CSF, Comm. of the European Communities, EUR5486, pp. 99-113.
Loan, R. W. 1964. Studies on the nucleic acid type and essential lipid content of hog cholera virus. Am. J. Vet. Res. 25: 1366-1370.
Loan, R. W. and D. E. Rodabaugh. 1966. Serological studies of hog cholera immunization. Am. J. Vet. Res. 27: 1333-1338.
Loan, R. W. and D. P. Gustafson. 1961. Cultivation of hog cholera virus in subculturable swine buffy coat cells. Am. J. Vet. Res. 22: 741-745.
Loan, R. W. and M. M. Storm. 1968. Propagation and transmission of hog cholera virus in non-porcine hosts. Am. J. Vet. Res. 29: 807-811.
Lowe, E., P. Rice, T. Ha, C. Li, J. Kelley, H. Ensley, J. L. Perez, J. Kalbfleisch, D. Lowman, P. Margl, W. Browder, and D. Williams. 2001. A(1®3)-b-D-linked heptasaccharide is the unit ligand for glucan pattern recognition receptors on human monocytes. Micro. Infect. 3: 789-797.
Lynch, D. H., F. Ramsdell, and M. R. Alderson. 1995. Fas and FasL in the homeostatic regulation of immune responses. Immunol. Today. 16:569-574.
Male, D., A. Cooke, M. Owen, J. Trowsdale, and B. Champion. 1996. Advanced immunology, 3th ed., Times Mirror International publishers Limited, UK.
Masihi, K. N., K. Madaj, H. Hintelmann, G. Gast, and Y. Kaneko. 1997. Down-regulation of tumor necrosis factor-a, but not interleukin-6 or interleukin-10, by glucan immunomodulators curdlan sulfate and lentinan. Int. J. Immunopharmac. 19: 463-468.
Mattews, R. E. F. 1982. Togaviridae. In Classification and nomenclature of virus. Fourth report of the international committee on taxonomy of virus. Intervirology 17: 1-109.
Matthaeus, W. and G. Korn. 1967. Die neutralisierenden autikorper im Schwein nach experimentaller infection mit Schweinepestvirus. Zbl. Vet. Med. B. 13: 173-180.
McGlone, J. J., J. L. Salak, E. A. Lumpkin, R. I. Nicholson, M. Gibson, and R. L. Norman. 1993. Shipping stress and social status effects on pig performance, plasma cortisol, natural killer cell activity, and leukocyte numbers. J. Anim. Sci. 71:888-896.
McGoldrick, A., E. Bensaude, G. Ibata, G. Sharp, and D. J. Paton. 1999. Closed one-tube reverse transcription nested polymerase chain reaction for the detection of pestiviral RNA with fluorescent probes. J. Virol. Meth. 79:85-95.
Mckissick, G. E. and D. P. Gustafson. 1967. In vivo demostration of lability of hog cholera virus to lipolytic agents. Am. J. Vet. Res. 28: 909-941.
Mengeling, M. L. and N. F. Cheville. 1969. Host response to persistent infection with hog cholera virus. In Proc. 72nd. Annual Meeting of the United States Animal Health Association. pp. 238-296.
Mengeling, W. L. and R. A. Packer. 1969. Pathogenesis of chronic hog cholera: host response. Am. J. Vet. Res. 30: 409-417.
Meyers, G., T. Rumenapf, and H. J. Thiel. 1989. Molecular cloning and nucleotide sequence of the genome of hog cholera virus. Virology 171: 555-567.
Miedema, F., M. Tersmette, and R. A. W. Van Lier. 1991. AIDS pathogenesis: a dynamic interaction between HIV and the immune system. In HIV and the immune system, R. B. Gallagher (ed.), Elsevier Science Publishers Ltd, Cambridge, England, pp. 89-97.
Miura, T., N. Ohno, N. N. Miura , S. Shimada, and T. Yadomae. 1997. Inactivation of a particle b-glucan by proteins in plasma and serum. Biol. Pharm. Bull. 20: 1103-1107.
Moormann, R. M., P. A. M. Warmerdam, B. van der Meer, W. M. M. Schaaper, G. Wensvoort, and M. M. Hulst. 1990. Molecular cloning and nucleotide sequence of hog cholera virus strain Brescia and mapping of the genomic region encoding envelope protein E1. Virology 177: 184-198.
Mork, A. C., R. J. Helmke, J. R. Martinez, M. T. Michalek, M. L. Patchen, and G. H. Zhang. 1998. Effect of particulate soluble (1-3)-b-glucans on Ca2+ influx in NR8383 alveolar macrophages. Immunopharmac.40: 77-89.
Narayan, O. and J. E. Clements. 1989. Biology and pathogenesis of lentivirus. J. Gen. Virology. 70:1617-1639.
Narita, M., K. Kawashima, and M. Shimizu. 1996. Viral antigen and B and T lymphocytes in lymphoid tissues of gnotobiotic piglets infected with hog cholera virus. J. Comp. Path. 114: 257-263.
Nemoto, J., N. Ohno, K. Saito, Y. Adachi, and T. Yadomae. 1994. Analysis of cytokine mRNAs induced by the administration of a highly branched (1®3)-b-D-glucan, OL-2. Biol. Pharm. Bull. 17: 948-954.
Ober, B. T., A. Summerfield, C. Mattlinger, K. H. Wiesmuller, G. Jung, E. Pfaff, A. Saalmuller, and H. J. Rziha. 1998. Vaccine-induced, pseudorabies virus-specific, extrathymic CD4+CD8+ memory T-helper cells in swine. J. Virol. 72:4866-4873.
Okazaki, M., Y. Adachi, N. Ohno, and T. Yadomae. 1995. Structure-activity relationship of (1→3)-b-D-glucans in the induction of cytokine production from macrophages, in viro. Biol. Pharm. Bull. 18: 1320-1327.
Olson, E., J. E. Standing, N. G. Harper, O. A. Hoffman, and A. H. Limper. 1996. Fungal b-glucan interacts with vitronectin and stimulates tumor necrosis factor alpha release from macrophage. Am. Soci. Microbiol. 64: 3548-3554.
Onderdonk, A., R. L. Cisneros, P. Hinkson, and G. Ostroff. 1992. Anti-infective effect of poly-b 1-6-glucotriosyl-b1-3-glucopyranose in vivo. Infect. Immun. 60: 1642-1647.
Oshimi, Y., S. Oda, Y. Honda, S. Nagata, and S. Miyazaki. 1996. Involvement of Fas ligand and Fas-mediated pathway in the cytotoxicity of human natural killer cells. J. Immunol. 157:2909-2915.
Pauly, T., K. Elbers, M. Konig, T. Lengsfeld, A. Saalmuller, and H. J. Thiel. 1995. Classical swine fever virus-specific cytotoxic T lymphocytes and identification of a T cell epitope. J. Gen. Virol. 76: 3039-3049.
Pauly, T., M. Konig, H. J. Thiel and Saalmuller A. 1998. Infection with classical swine fever virus: effects on phenotype and immune responsiveness of porcine T lymphocytes. J. Gen. Virol. 79: 31-40.
Pescovitz, M. D., A. G. Sakopoulos, J. A. Gaddy, R. J. Husmann and F. A. Zuckermann. Porcine peripheral blood CD4+/CD8+ dual expressing T-cells. 1994. Vet. Immunol. Immunopathol. 43: 53-62.
Pirtle, E. C. and A. J. Kniazeff. 1968. Susceptibility of cultured mammalian cells to infection with virulent and modified hog cholera virus. Am. J. Vet. Res. 29: 1033-1040.
Plateau, E., P. Vannier, and J. P. Tillon. 1980. Atypical hog cholera infection: Viral isolation and clinical study of in utero transmission. Am. J. Vet. Res. 41: 2012-2015.
Robertson, A., A. S. Greig , M. Appel, A. Girard, G. L. Bannister, and P. Boulanger. 1965a. Hog cholera. IV. Detection of the virus in tissue culture preparations by the fluorescent antibody technique. Can. J. Comp. Med. Vet. Sci. 29: 234-241.
Robertson, A., G. L. Bannister, P. Boulanger, M. Appel., and D. P. Gray. 1965b. Hog cholera. V. Demostration of the antigen in swine tissues by the fluorescent antibody technique. Can. J. Comp. Med. Vet. Sci. 29: 299-305.
Ressang, A. A. 1973a. Studies on the pathogensis of hog cholera. I. Demonstration of hog cholera virus subsequent to oral exposure. Zbl. Vet. Med. B. 20: 256-271.
Ressang, A. A. 1973b. Studies on the pathogenesis of hog chloera. II. Virus distribution in tissue and morphology of the immune response. Zbl. Vet. Med. B. 20: 272-288.
Ritchie, A. E. and A. L. Fernelius. 1967. Electron microscopy of hog cholera virus and its antigen-antibody complex. Vet. Rec. 81: 417-418.
Roitt, I.M., J. Brostoff, and D. K. Male. 1998. Immunology, 5th ed., Mosby Company, Tavistock Square, London, UK.
Rook, A. H., J. J. Hooks, G. V. Quinnan, H. C. Lane, J. F. Manischewitz, A. M. Macher, H. Masur, A. S. Fauci, and J. Y. Djeu. 1985. Interleukin 2 enhances the natural killer cell activity of acquired immunodeficiency syndrome patients through a g-interferon-independent mechanism. J. Immunol. 134: 1503-1507.
Rose, D. M., V. A. Fadok, D. W. H. Riches, K. L. Clay, and P. M. Henson. 1995. Autocrine / paracrine involvement of platelet-activating factor and transforming growth factor-b in the induction of phosphatidylserine recognition by murine macrophages. J. Immunol. 155: 5819-5825.
Rumenapf, T., G. Meyers, R. Stark, and H. J. Thiel. 1989. Hog cholera virus: characterization of specific antiserum and identification of cDNA clones. Virology 171: 18-27.
Rumenapf, T., R. Stark, G. Meyers, and H. J. Thiel. 1991. Structural proteins of hog cholera virus expressed by vaccinia virus: further characterization and induction of protective immunity. J. Virol. 65: 589-597.
Saalmuller, A., M. J. Reddehase, H. J. Buhring, and S. Jonjic, and U. H. Koszinowski. 1987. Simultaneous expression of CD4 and CD8 antigens by a substantial proportion of resting porcine T lymphocytes. Eur. J. Immunol. 17:1297-1301.
Sakoda, Y., M. Hikawa, T. Tamura, and A. Fukusho. 1998. Establishment of a serum-free culture cell line, CPK-NS, which is useful for assays of classical swine fever virus. J. Virol. Meth. 75: 59-68.
Sakurai, T., K. Hashimoto, I. Suzuki, N. Ohno, S. Oikawa, A. Masuda, and T. Yadomae. 1992. Enhancement of murine alveolar macrophage functions by orally administered b-glucan. In. Sci. Immunopharmac. 14: 821-830.
Sakurai, T., N. Ohno, I. Suzuki, and T. Yadomae. 1995. Effect of soluble fungal (1→3)b-D-glucan obtained from Sclerotinia sclerotiorum on alveolar macrophage activation. Immunopharmac. 30: 157-166.
Santarem, M. M., B. Novoa, and A. Figueras. 1997. Effects of b-glucans in the non specific immune responses of turbot(Scophthalmus maximus L.). F. Shell. Immunol. 7:429-437.
Scheppler, J. A., J. K. A. Nicholson, D. C. Swan, A. Abmed-Ansari, and J. S. McDougal. 1989. Down-regulation of MHC-I in a CD4+ T cell line, CEM-E5, after HIV-1 infection. J. Immunol. 143:2858-2866.
Sharma, J. M. 1997. The structure and function of the avian immune system. Acta. Vet. Hung. 45(3):229-238.
Shimizu, M., S. Yamada, and T. Nishimori. 1995. Cytocidal infection of hog cholera virus in porcine bone marrow stroma cell cultures. Vet. Microbiol. 47:395-400.
Soltys, J. and M. T. Quinn. 1999. Modulation of endotoxin- and enterotoxin- induced cytokine release by in vivo treatment with b-(1,6)-branched b-(1,3)-glucan. Am. Sci. Microbiol. 67: 244-252.
Spagnuolo, M., S. Kennedy, J. C. Foster, D. A. Moffett, and B. M. Adair. 1997. Bovine viral diarrhoea virus infection in bone marrow of experimentally infected calves. J. Comp. Path. 116:97-100.
Stark, R., T. Rumenapf, G. Meyers, and H. J. Thiel. 1990. Genomic localization of hog cholera virus glygoproteins. Virology 174: 286-289.
Summerfield, A., F. McNeilly, I. Walker, G. Allan, S. M. Knoetig, and K. C. McCullough. 2001. Depletion of CD4+ and CD8high+ T-cells before the onset of viraemia during classical swine fever. Vet. Immunol. Immunopathol. 78: 3-19.
Summerfield, A., H. J. Rziha, and A. Saalmuller. 1996. Functional characterization of porcine CD4+CD8+ extrathymic T lymphocytes. Cell. Immunol. 168:291-296.
Summerfield, A., S. M. Knotig, and K. C. McCullough. 1998. Lymphocyte apoptosis during classical swine fever: implication of activation-induced cell death. J. Virol 72: 1853-1861.
Susa, M., M. Koenig, A. Saalmuller, M. J. Reddehase, and H. J. Thiel. 1992. Pathogenesis of classical swine fever: B-lymphocyte deficiency caused by hog cholera virus. J. Virol. 66: 1171-1175.
Suzuki, I., H. Tanaka, A. Kinoshita, S. Oikawa, M. Osawa, and T. Yadomae. 1990. Effect of orally administered b-glucan on macrophage function in mice. Int. J. Immuno. 12: 675-684.
Thiel, H. J., R. Stark, E. Weiland, T. Rumenapf, and G. Meyers. 1991. Hog cholera virus: molecular composition of virions from a pestivirus. J. Virol. 65: 4705-4712.
Thurley, D. C. 1966. Disturbances in enchondral ossification associated with acute swine fever infection. Brit. Vet. J. 122: 177-180.
Tizard, I. 1992. Veterinary immunology, 4th ed., W. B. Saunders Company, Philadelphia, Pennsylvania, USA.
Trautwein, G. 1988. Pathology and pathogenesis of the disease. In Classical swine fever and related viral infections, B. Liess (ed.), Martinus Nijhoff Publishing, Boston, USA, pp. 27-54.
Tsiapali, E., S. Whaley, J. Kalbfleisch, H. E. Ensley, I. W. Browder, and D. L. Williams. 2001. Glucans exhibit weak antioxidant activity, but stimulant macrophage free radical activity. F. Rad. Biol. Med. 30: 393-402.
Umemoto, M., E. Azuma, M. Hirayama, M. Nagai, S. Hiratake, J. Qi, T. Kumamoto, M. Sakurai, Y. Komada. 1997. Two cytotoxic pathways of natural killer cells in human cord blood: implications in cord blood transplantation. Br. J. Haematol. 98: 1037-1040.
Van Oirschot, J. T. 1979. Experimental production of congenital persistent swine fever infections. I. Clincal, pathological and virological observations. Vet. Microbiol. 4: 117-132.
Van Oirschot, J. T. 1983. Congenital infections with nonarbo togaviruses. Vet. Microbiol. 8: 321-361.
Van Oirschot, J. T. 1988. Description of the virus infection. In Classical swine fever and related viral infections, B. Liess (ed.), Martinus Nijhoff Publishing, Boston, USA, pp. 1-25.
Van Oirschot, J. T. 1992. Hog cholera. In Disease of Swine, 7th ed., A. D. Leman, B. E. Straw, W. L. Mengeling, S. D,Allaire, and D. J. Taylor (eds.), Iowa State University Press, Ames, Iowa, USA, pp. 274-292.
Van Oirschot, J. T. and C. Terpstra. 1977. A congenital persistent swine fever infection. I. Clinical and virological observations. Vet. Microbiol. 2: 121-132.
Van Oirschot, J. T., D. de Jong, and N. D. N. H. J. Huffels. 1983. Effect of infections with swine fever virus on immune functions. II. Lymphocyte response to mitogens and enumeration of lymphocyte subpopulations. Vet. Microbiol. 8: 81-95.
Van Rijn, P. A., G. K. W. Miedema, G. Wensvoort, H. G. P. van Gennip, and R. J. M. Moormann. 1994. Antigenic structure of envelope glygoprotein E1 of hog cholera virus. J. Virol. 68: 3934-3942.
Van Rijn, P. A., H. G. van Gennip, E. J. de Meijer, and R. J. M. Moormann. 1993. Epitope mapping of envelope glycoprotein E1 of hog cholera virus strain Brescia. J. Gen. Virol. 74: 2053-2060.
Van Zijl, M., G. Wensvoort, E. de Kluyver, M. Hulst, H. van der Gulden, A. Gielkens, A. Berns, and R. Moormann. 1991. Live attenuated pseudorabies virus expressing envelope glycoprotein E1 of hog cholera virus protects swine against both pseudorabies and hog cholera. J. Virol. 65: 2761-2765.
Vannier P, E. Plateau and J. P. Tillon. 1981. Congenital tremor in pigs farrowed from sows given hog cholera virus during pregnancy. Am. J. Vet. Res. 42: 135-137.
Walker, P. R., P. Saas, and P. Y. Dietrich. 1997. Role of Fas ligand (CD95L) in immune escape: the tumor cell strikes back. J. Immunol. 158:4521-4524.
Wardley, R. C., P. J. Wilkinson and F. Hamilton. 1977. African swine fever virus replication in porcine lymphocytes. J. Gen. Virol. 37: 425-427.
Warren, A. P., D. H. Ducroq, P. J. Lehner, and L. K. Borysiewicz. 1994. Human cytomegalovirus-infected cells have unstable assembly of major histocompatibility complex class I complexes and are resistant to lysis by cytotoxic T lymphocytes. J. Virol. 68:2822-2829.
Weide, K. D., G. L. Waxler, C. K. Whitehair, and C. C. Morrill. 1962. Hog cholera in gnotobiotic pigs. Clinical signs and gross pathologic findings in germ free and monocontaminated pigs. J. Am. Vet. Med. Assoc. 140: 1956-1961.
Weiland, E., R. Ahl, R. Stark, F. Weiland, and H. J. Thiel. 1992. A second envelope glycoprotein mediate neutralization of a pestivirus, hog cholera virus. J. Virol. 66: 3677-3682.
Wengler, G. 1991. Flaviviridae. In Classification and nomenclature of virus. Fifth report of the international committee on taxonomy of virus. Arch. Virol. Suppl. 2: 223-233.
Wengler, G and E. Wengler. 1993. The NS3 nonstructural proteins of flaviviruses contains an RNA triphosphatase activity. Virology 197: 265-273.
Wensvoort, G., J. Boonstra, and B. G. Bodzinga. 1990. Immunoaffinity purification and characterization of the envelope protein E1 of hog cholera virus. J. Gen. Virol. 71: 531-540.
Yun, C. H., A. Estrada, A. V. Kessel, A. A. Gajadhar, M. J. Redmond, and B. Laarveld. 1997. b(1→3, 1→4)oat glucan enhances resistance to Eimeria vermiformis infection in immunosuppressed mice. Int. J. Paraistol. 27: 329-337.
Zhang, G., S. Aldridge, M. C. Clarke, and J. W. McCauley. 1996. Cell death induced by cytopathic bovine viral diarrhoea virus is mediated by apoptosis. J. Gen. Virol. 77:1677-81.
Zichis, J. 1939. Studies on hog cholera virus. J. Am. Vet. Med. Assoc. 95: 272-277.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔