跳到主要內容

臺灣博碩士論文加值系統

(3.81.172.77) 您好!臺灣時間:2022/01/21 18:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪健哲
研究生(外文):ChenChiHorng
論文名稱:豬周邊血液吞噬細胞與沙氏桿菌致病性之探討
論文名稱(外文):The Role of Porcine Peripheral Blood Phagocytes on The Pathogenicity of Salmonella spp.
指導教授:簡茂盛簡茂盛引用關係
指導教授(外文):Chien Maw-Sheng
學位類別:碩士
校院名稱:國立中興大學
系所名稱:獸醫病理學研究所
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:沙氏桿菌吞噬呼吸爆炸豬瘟吞噬細胞嗜中性球單核球
外文關鍵詞:SalmonellaPhagocytosisRespiratory BurstClassic Swine FeverPhagocytesNeutrophilsMonocytes
相關次數:
  • 被引用被引用:10
  • 點閱點閱:726
  • 評分評分:
  • 下載下載:110
  • 收藏至我的研究室書目清單書目收藏:0
沙氏桿菌症為豬隻嚴重且最常見之細菌性疾病,主要病原為S. choleraesuis與S. typhimurium,並常造成豬隻全身性敗血症及腸炎。為深入探討沙氏桿菌形成敗血症之相關機制,本實驗利用流式細胞儀技術,嘗試建立一全血模式分析法,比較此二種沙氏桿菌感染豬隻周邊血液吞噬細胞與誘導吞噬細胞respiratory burst能力之差異。結果顯示S. choleraesuis不論於感染嗜中性球或單核球之能力皆較S. typhimurium為高,但被吞噬後反而不及S. typhimurium誘導嗜中性球產生respiratory burst之強度。此外,現場上豬之沙氏桿菌症多發生於保育期至肥育前期豬隻,且多數病例為S. choleraesuis 所引起,本實驗亦針對S. choleraesuis與S. typhimurium感染不同年齡層豬隻之周邊血液吞噬細胞吞噬及誘導respiratory burst能力進行比較。結果顯示在5週齡及8週齡健康豬隻S. choleraesuis有較強之的感染周邊血液吞噬細胞之能力,且二菌種間約有2倍左右之差異,而於3週齡及12週齡健康豬隻則無明顯之區別。但在誘導吞噬細胞產生respiratory burst方面,則於各年齡豬隻結果均相似,結果顯示S. typhimurium 較S. choleraesuis容易誘導嗜中性球產生respiratory burst反應,且二者約有1.75-2.17倍左右之差異,但在誘導單核球之能力上則無明顯差異。
此外,現場上常見豬瘟併發沙氏桿菌症之病例,為進一步探討豬瘟感染後宿主防禦細胞對沙氏桿菌吞噬能力與誘導respiratory burst之影響,本實驗利用豬瘟病毒(Ping-Tnug strain)以人工感染方式,評估其對宿主防禦細胞吞噬與清除沙氏桿菌能力之影響。結果顯示,在病毒感染後第3天起白血球總數上呈現明顯減少的趨勢,並於感染後第18-21天白血球總數僅存約正常豬隻的20-30%,而數目減少之細胞族群則以淋巴球及單核球為主。而在吞噬功能的影響上,病毒感染後血液吞噬細胞吞噬S. choleraesuis及S. typhimurium之能力明顯降低,其中單核球及嗜中性球分別於感染後第3天與第7天其吞噬能力開始呈現顯著的下降,而於感染後的18-21天吞噬細胞吞噬S. choleraesuis及S. typhimurium的能力僅存正常豬隻吞噬能力的20-30%。在respiratoy burst之影響方面,當感染3-7天後吞噬細胞其respiratoy burst能力下降至正常值之70-80%,而於第10-14 天雖有短暫回昇之現象,但於第18-21天respiratoy burst能力僅存正常值的10-30%。故由上述結果推論,豬瘟感染後除了會造成白血球總數迅速減少之外,亦會導致血液中各種吞噬細胞無法有效清除外來病原,且其吞噬後之殺菌能力亦明顯降低,而致使二次性沙氏桿菌感染的機會大幅增加。
Salmonellosis is among the most important bacterial diseases in swine worldwide, and the causative agents S. choleraesuis and S. typhimurium can induce systemic septicemia and gastroenteritis. The purpose of this study is to evaluate the phagocytic activity and respiratory burst in peripheral blood phagocytes (PBP) against S. choleraesuis and S. typhimurium via a whole blood model using flow cytometric analysis. The results demonstrated that S. choleraesuis possessed a higher invasive activity and induced less respiratory burst reaction than S. typhimurium in neutrophils and monocytes. Moreover, the age variation were also analyzed and the invasive activity of S. choleraesuis showed 2 fold higher than S. thyphimurim in 5-week and 8-week old pigs, but there were no differences in 3-week and 12-week old pigs. The respiratory burst reaction induced by S. choleraesuis in neutrophils was 1.75-2.17 fold less than S. typhimurium, but no significant variation was noticed in monocyte. That results revealed thst S. choleraesuis has better ability to survive in phagocytic cells during infection and this may explain why S. choleraesuis always dominate in cultivated rate from outbreak cases in the field.
In addition, the outbreak of classical swine fever virus (CSFV) infection is almost accompanied with salmonellosis in the field, but the mechanism and relationship between both diseases still remain unclear. The new invaded strain (Ping-Tung isolate) of CSFV was used to investigate the influence of CSFV on the clearance activity of PBP against Salmonella. The results verified that the total amounts of peripheral blood leukocytes decreased significantly to 20-30% in comparison with the control group, and both lymphocytes and monocytes were the major target cells during CSFV infection. Moreover, the phagocytic ability of neutrophils and monocytes against S. choleraesuis and S. typhimurium during CSFV infection declined at 3 and 7 days post infection (DPI) respectively, and even dropped to 20-30% at 18-21 DPI. In addition, the respiratory burst of PBP was dropped to 70-80% at 3-7 DPI and slightly recovered at 10-14 DPI, however it dramatically dropped to 10-30% at 18-21 DPI. These results suggest that CSFV infection not only induces leucopenia but also impairs the phagocytic and respiratory burst activity of PBP against Salmonella spp. in swine.
目錄-------------------------------------------------- Ⅰ
圖次-------------------------------------------------- Ⅲ
表次-------------------------------------------------- Ⅴ
中文摘要---------------------------------------------- Ⅵ
英文摘要---------------------------------------------- Ⅷ
第一章 前言------------------------------------------- 1
第二章 文獻探討--------------------------------------- 3
第一節 沙氏桿菌之型態學及生化特性---------- 3
第二節 血清學分類及抗原結構---------------- 4
第三節 豬沙氏桿菌症------------------------ 6
第四節 流行病學---------------------------- 7
第五節 沙氏桿菌之分子致病機制-------------- 7
第六節 吞噬細胞對抗沙氏桿菌機致------------17
第七節 豬瘟併發沙氏桿菌感染關係之探討------18
第三章 材料與方法-------------------------------------24
第一節 實驗菌株及菌株之保存----------------24
第二節 菌株之螢光標示與調理----------------25
第三節 以全血模式建立豬血液吞噬細胞吞噬沙氏桿菌與
誘導respiratory burst分析法-------- 26
第四節 不同年齡層豬隻血液吞噬細胞對沙氏桿菌之吞噬
能力及誘導respiratory burst試驗-----29
第五節 豬瘟感染豬之血液吞噬細胞對沙氏桿菌之吞噬能
力及誘導respiratory burst試驗-------30
第四章 結果-------------------------------------------33
第一節 健康豬隻周邊血液吞噬細胞吞噬沙氏桿菌之吞噬
與誘導respiratory burst實驗---------33
第二節 不同年齡豬隻血液吞噬細胞於吞噬
S. chloeraesuis及S. typhimurium能力及誘導
respiratory burst 能力之比較--------45
第三節 豬瘟感染豬於血液吞噬細胞吞噬沙氏桿菌及誘導
respiratory burst之比較-------------51
第五章 討論-------------------------------------------67
參考文獻----------------------------------------------77
附錄--------------------------------------------------87
王金順。1997。豬瘟病毒之免疫抑制現象。碩士論文。國立中興大學獸醫學研究所。台中市。中華民國。
呂濟洋。1998。豬瘟病毒持續污染場之監控及豬瘟病毒感染對血液中淋巴次族群之影響。碩士論文。國立中興大學獸醫學研究所。台中市。中華民國。
黃振鋒。2000。S. choleraesuis與S. typhimurium於豬血液吞噬細胞內存活存活能力之比較。碩士論文。國立中興大學獸醫病理學研究所。台中市。中華民國。
廖志明。1998。Salmonella choleraesuis 與Salmonella typhimurium在巨噬細胞內存活能力及誘導細胞計畫性死亡之比較。國立中興大學獸醫學研究所。台中市。中華民國。
廖偉莉。1998。豬肺泡巨噬細胞之表現型和功能及假性狂犬病病毒對其之影響。碩士論文。國立中興大學獸醫學研究所。台中市。中華民國
Abbas, A. K., A. H. Lichtman, and J. S. Pober. 2000. Cellular and molecular immunology, 3nd ed., W. B. Saunders Company, Philadelphia, Pennsylvania, U.S.A.
Abshire, K. Z., and F. C. Neidhardt. 1993. Growth rate paradox of Salmonella typhimurium within host macrophages. J. Bacteriol. 175: 3744 -3748.
Aizawa, S.I. 1996. Flagellar assembly in Salmonella typhimurium. Mol Microbiol. 19:1-5.
Alpuche-Aranda, C. M., E. P. Berthiaume, B. Mock, J. A. Swanson, and S. I. Miller. 1995. Spacious phagosome formation within mouse macrophages correlates with Salmonella serotype pathogenicity and host susceptibility. Infect. Immun. 63:4456-4462.
Alpuche-Aranda, C. M., J. A. Swanson, W. P. Loomis, and S. I. Miller. 1992. Salmonella typhimurium activates virulence gene transcription within acidified macrophage phagosomes. Proc. Natl. Acad. Sci. U.S.A. 89:10079-10083.
Bäumler, A. J., J. G. Kusters, I. Stojiljkovic, and F. Heffron. 1994. Salmonella typhimurium loci involved in survival within macrophages. Infect. Immun. 62:1623-1630.
Bajaj, V., R. L. Lucas, C. Hwang, and C. A. Lee. 1996. Coordinate regulation of Salmonella typhimurium invasion genes by environment and regulatory factors is mediated by environmental and regulatory factors is mediated by control of hilA expression. Mol. Microbiol. 22:703-714.
Baumler, A.J., R.M. Tsolis, and F. Heffron. 1996. The lpf fimbrial operon mediates adhesion of Salmonella typhimurium to murine Peyer''s patches. Proc. Natl. Acad. Sci. U.S.A. 93:279-83.
Blanc Potard, A. B. and E. A. Groisman. 1997. The Salmonella selC locus contains a pathogenicity island mediating intramacrophage survival. EMBO. J. 16:5376-5385.
Brennan, M.A., and B.T. Cookson. 2000. Salmonella induces macrophage death by caspase-1-dependent necrosis. Mol. Microbiol. 38:31-40.
Bruschke, C.J., M.M. Hulst, R.J. Moormann, P.A. van Rijn, and J.T. van Oirschot. 1997. Glycoprotein Erns of pestiviruses induces apoptosis in lymphocytes of several species. J. Virol. 71:6692-6.
Buchmeier, N.A., S.J. Libby, Y. Xu, P.C. Loewen, J. Switala, D.G. Guiney, and F.C. Fang. 1995. DNA repair is more important than catalase for Salmonella virulence in mice. J. Clin. Invest. 95:1047-53.
Buja, L.M., M.L. Eigenbrodt, and E.H. Eigenbrodt. 1993. Apoptosis and necrosis. Basic types and mechanisms of cell death. Arch. Pathol. Lab. Med. 117:1208-14.
Castedo, M., T. Hirsch, S.A. Susin, N. Zamzami, P. Marchetti, A. Macho, and G. Kroemer. 1996. Sequential acquisition of mitochondrial and plasma membrane alterations during early lymphocyte apoptosis. J. Immunol. 157:512-21.
Chaubal, L. H. and P. S. Holt. 1999. Characterization of swimming motility and identification of flagellar proteins in Salmonella pullorum isolates. Am. J. Vet. Res. 60: 1322-1327.
Chiou, M.T., C.R. Jeng, L.L. Chueh, C.H. Cheng, and V.F. Pang. 2000. Effects of porcine reproductive and respiratory syndrome virus (isolate tw91) on porcine alveolar macrophages in vitro. Vet. Microbiol. 71:9-25.
Chiu, C. H., T. L. Wu, L. H. Su, C. Chu, J. H. Chia, A. J. Kuo, M. S. Chien, and T. Y. Lin. 2002. The emergence in Taiwan of Fluroquinolone resistance in Salmonella enterica serotype choleraesuis. N. Engl. J. Med. 346:413-419.
Clerc, P. L., A. Ryter, J. Mounier, and P. Sansonetti. 1987. Plasmid-mediated early killing of eucaryotic cells by Shigella flexneri as studies by infection of J774 macrophages. Infect. Immun. 55:521-527.
Collins, J. A., C. A. Schandle., K. K. Young, J. Vesely, and M. C. Willingham. 1997. Major DNA fragmentation is late event in apoptosis. Cytometry 45:924-934.
Dahlgren, C . and A. Karlsson. 1999. Respiratory burst in human neutrophil. J. Immunol. Methods 232:3-14.
Darwin, K.H., and V.L. Miller. 1999. Molecular basis of the interaction of Salmonella with the intestinal mucosa. Clin. Microbiol. Rev. 12:405-28.
Deiwick, J., T. Nikolaus, S. Erdogen, and M. Hensel. 1999. Environmental regulation of Salmonella Pathogenicity Island 2 gene expression . Mol. Microbiol. 31:1759-1754.
del Moral M, G., E. Ortuno, P. Fernandez-Zapatero, F. Alonoso, C. Alonso, A. Ezquerra, and J. Dominguez. 1999. African swine fever virus infection induced tumor necrosis factor alpha production : implications in pathogenesis. J. Virol. 73:2173-2180.
Densen, P., R. A. Clark, and W. M. Nauseef. 1990. Granulocytic phagocytes, In Principles and practice of infection disease , 3rd ed, vol. 1, G. L. Mandell, R. G. Douglas, and J. E. Bennett (ed.), Churchill Livingstone, New York. U.S.A., pp. 78-101.
Donnenberg, M., 1999. Salmonella strikes a balance. Nature 401:218-219.
Eckmann, L. and M. F. Kagnoff. 2001. Cytokines in host defense against Salmonella. Microb. Infect. 3:1191-1200.
Eckmann, L., M. F. Kagnoff, and J. Fierer. 1993. Epithelial cells secrete the chemokine interleukin-8 in response to bacterial entry. Infect. Immun. 61:4569-4574.
Eckmann, L., M. T. Rudolf, A. Ptasnik, C. Schultz, T. Jiang, N. Wolfson, R. Tsien, J. Fierer, S. B. Shears, M. F. Kagnoff, and A. E. Traynor-Kaplan. 1997. D-myo-Inositol 1,4,5,6-tetrakisphosphate produced in human intesti-nal epithelial cells in response to Salmonella invasion inhibits phosphoino-sitide 3-kinase signaling pathways. Proc. Natl. Acad. Sci. U.S.A. 94:14456-14460.
Ernst, R. K., T. Guina, and S. I. Miller. 1999. How intracellular bacteria survive: surface modification that promote resistance to host innate immune responses. J. Infect. Dis. 179:326-330.
Fantuzzi, G., and C.A. Dinarello. 1999. Interleukin-18 and interleukin-1 beta: two cytokine substrates for ICE (caspase-1). J. Clin. Immunol. 19:1-11.
Farr, S. B. and T. Kogoma. 1991. Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol. Rev. 55:561-585.
Fedorka-Gray, P. J., L. C. Kelly, T. J .Stabel, J. T.Gray, and J. A. Laufer. 1995. Alternate routes of invasion may affect pathogenesis of Salmonella typhimurium in swine. Infect. Immun. 63:2658-2644.
Fields, P. I., R. V. Swanson, C. G. Haidaris, and F. Heffron. 1986. Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc. Natl. Acad. Sci. U.S.A. 83: 5189-5193.
Fu, Y. and J. E. Galan. 1999. A Salmonella protein antagonizes Rac-1 and Cdc42 to mediated host-cell recovery after bacterial invasion. Nature 401:293-297.
Galan, J.E., and R. Curtiss, 3rd. 1989. Virulence and vaccine potential of phoP mutants of Salmonella typhimurium. Microb. Pathog. 6:433-43.
Giannella, R. A. 1979. Importance of the intestinal inflammatory reaction in Salmonella-mediated intestinal secretion. Infect. Immun. 23:140-145.
Giannella, R. A., R. E. Gots, A. N. Charney, W. B. Greenough, and S. B. Formal. 1975. Pathogenesis of Salmonella-mediated intestinal fluid secretion: activation of adenylate cyclase and inhibition by indomethacin. Gastroenterology 69:1238-1245.
Giannella, R. A., S. B. Formal, G. J. Dammin, and H. Collins. 1973. Pathogenesis of salmonellosis. Studies of fluid secretion, mucosal invasion, and morphologic reaction in the rabbit ileum. J. Clin. Investig. 52:441-453.
Gots, R. E., S. B. Formal, and R. A. Giannella. 1974. Indomethacin inhibition of Salmonella typhimurium, Shigella flexneri, and cholera-mediated rabbit ileal secretion. J. Infect. Dis. 130:280-284.
Gougerot-Podicalo, M. A., C. Elbim, and S. C. Nartin. 1996. Modulation of the oxidative burst of human neutrophils by pro- and anti-inflammatory cytokines. Pathol. Biol. 44:36-4.
Gray, J. T., P. J. Fedorka-Cray, T. J. Stabel, and T. T. Kramer. 1996. Natural transmission of Salmonella choleraesuis in swine. Appl. Environ. Microbiol. 62:141-146.
Groisman, E. A. 2001., The pleiotroptic two component regulatory system PhoP-PhoQ. J. Bacteriol. 183:1835-1842.
Guiney, D. G. 1997. Regulation of bacterial virulence gene expression by the host environment. J. Clin. Invest. 99:565-569.
Hashim, S., K. Mukherjee, M. Raje, S.K. Basu, and A. Mukhopadhyay. 2000. Live Salmonella modulate expression of Rab proteins to persist in a specialized compartment and escape transport to lysosomes. J. Biol. Chem. 275:16281-8.
Hathaway, J. H. and J. P. Kraehenbuhl. 2000. The role of M cells in mucosal immunity. Cell. Mol. Life Sci. 57:323-332.
Hensel, M. 2000. Salmonella Pathogenicity Island 2. Mol. Microbiol. 36:1015-1023.
Hersh, D., D. M. Monack, M. R. Smith, N. Chori, S. FalKow, and A. Zychlinsky. 1999. Salmonella invasin SipB induced macrophage apoptosis by binding to caspase-1. Proc. Natl. Acad. Sci. U.S.A. 96:2396-2404.
Hilbi, H. Chen, K. Thirumalai, A. Zychlinsky. The interleukin 1 beta- converting enzyme, capase 1, is activated during Shigella flexneri-induced apoptosis in human monocyte-derived macrophages. Infect. Immun. 65:5165-5170.
Hueck, C. J. 1998. Type III secretion systems in bacterial pathogens of animals and plant. Microbiol. Mol. Bio. Rev. 62:379-433.
Hwang, E. K., J. H. Kim, S. S. Yoon, B. H. Kim, and Y. O. Yoon. 1994. Lymphocyte subpopulations of the peripheral blood of pigs experimentally inoculated with swine fever virus. J. Agricul. Sci. Vet. 36:576-586.
Ishibashi, Y. and T. Arai. 1996. A possible mechanism for host pathgenesis of Salmonella serovars. Microb. Pathol. 21:435-446.
Jepson. M. A. and M. A. Clark. 2001. The role of M cells in Salmonella infection. Microbes Infect. 3:1183-1190.
Jesenberger, V., K. J. Procyk, J. Yuan, S. Reipert, and M. Baccarin. 2000. Salmonella-induced caspase-2 activation in macrophages : a novel mechanism in pathogen-mediated apoptosis. J. Exp. Med. 192:1035-1045.
Karre, K. and R. M. Welsh. 1997. Immunology: viral decoy vetoes killer cell. Nature 386:446-447.
Kaufmann, S. H. E., B. Raupach, and B. B. Finlay. Introduction : microbiology and immunology : lessons learned from Salmonella. Microb. Infect. 3:1177-1181.
Kimberg, D. V., M. Field, J. Johnson, A. Henderson, and E. Gershon. 1971. Stimulation of intestinal mucosal adenylate cyclase by cholera enterotoxin and prostaglandins. J. Clin. Investig. 50:1218-1230.
Kroemer, G., N. Zamzami, and S.A. Susin. 1997. Mitochondrial control of apoptosis. Immunol. Today 18:44-51.
Kroemer, G., P. Petit, N. Zamzami, J.L. Vayssiere, and B. Mignotte. 1995. The biochemistry of programmed cell death. Faseb J. 9:1277-87.
Kubori, T., A. Sukhan, S.I. Aizawa, and J. E. Galan. 2000. Molecular characterization and assembly of the needle complex of Salmonella typhimurium type III protein secretion system. Proc. Natl. Acad. Sci. U.S.A. 97:10225-10230.
Kubori, T., Y. Mastsushima, D. Nakamura, J. Uralil, M. Lara-Tejero, A. Sukhan, J. E. Galan, and S. I. Aizawa. 1998. Supramolecular structure of Salmonella typhimurium type III protein secretion system. Science 24:602-605.
Lee, C. A. 1997. Type III secretion systems : machines to deliver bacterial proteins into eukaryotic cells. Trends. Microbiol. 5: 148-156.
Leung, K. Y. and B. B. Finlay. 1991. Intracellular replication is essential for the virulence of Salmonella typhimurium. Proc. Natl. Acad. Sci. U.S.A. 88: 11470-11474.
Lundberg, U., U. Vinatzer, D. Berdink, A. von Geabain, and M. Baccarini. 1999. Growth phase-regulated induction of Salmonella-induced macrophage apoptosis correlates with transient expression of SPI-1 genes. J. Bacteriol. 181:3433-3437.
Male, D., A. Cooke, M. Owen, J. Trowsdale, and B. Champion. 1996. Advanced immunology, 3th ed., Times Mirror International publishers Limited, UK.
Mastroeni, P., A. Vazquez-Torres, F.C. Fang, Y. Xu, S. Khan, C.E. Hormaeche, and G. Dougan. 2000. Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. II. Effects on microbial proliferation and host survival in vivo. J. Exp. Med. 192:237-48.
Mattews, R. E. F. 1982. Togaviridae. In Classification and nomenclature of virus. Fourth report of the international committee on taxonomy of virus. Intervirology 17:1-109.
McClugage, S. G., F. N. Low, and M. L. Zimny. 1986. Porosity of the basement membrane overlying Peyer’s patches in rats and monkeys. Gastroenterolgy 91:1128-1133.
McCormick, B. A., C. A. Parkos, S. P. Colgan, D. K. Carnes, and J. L. Madara. 1998. Apical secretion of a pathogen-elicited epithelial chemoattractant activity in response to surface colonization of intestinal epithelia by Salmonella typhimurium. J. Immunol. 160:455-466.
McNeilly, F. G. M. Allan, J. C. Foster, B. M. Adair, M. S. McNulty, and J. Pollock. 1996. Effect of porcine circovirus infection on porcine alveolar macrophage function. Vet. Immunol. Immunpathol. 49:295-306.
Miller, S. I. 1991. PhoP/PhoQ: macrophage -specific modulators of Salmonella virulence? Mol. Microbiol. 5:2073-2078.
Miller, S. I. and J. J. Mekalanos. 1990. Constitutive expression of the PhoP regulon attenuates Salmonella virulence and survival within macrophages. J. Bacteriol. 172: 2485-2490.
Miller, S. I., A. M. Kukral, and J. J. Mekalanos. 1989. A two component regulatory system (phoP/phoQ) controls Salmonella typhimurium virulence. Proc. Natl. Acad. Sci. U.S.A. 86:5054-5058.
Mills, M. D., V. Bajaj, and C. A. Lee. 1995. A 40 kb chromosomal fragment encoding Salmonella typhimurium invasion genes is absent from the corresponding region of the Escherichia coli K-12 chromosome. Mol. Microbiol. 15:749-759.
Minor, L. L. 1988. Facultatively anaerobic gram-negative Rods.. In. J. G. Holt (editor), Bergey’s Manual of Systematic Bacteriology, 1st ed, Williams and Wilkins, Baltomore, U.S.A., pp. 427-458.
Molbak, K., D. L. Baggesen, F. M. Aarestrup, J. M. Ebbesen, J. Engberg, K. Frydendahl, P. Gerner-Smidt, A. M. Petersen, and H. C. Wegener. 1999. An outbreak of mutidrug-resistant, quinolone-resistant Salmonella enterica serotype typhimurium DT 104. N. Engl. J. Med. 342:661-667.
Monack, D. M., D. Hersh., N. Ghori, D. Bouley, A. Zychilnsky, and S. Falkow. 2000. Salmonella exploits caspase-1 to colonized peyer’s patches in a murine typhoid model. J. Exp. Med. 192:249-258.
Monack, D. M., W. W. Navarre, and S. Falkow. 2001. Salmonella-induced macrophage death : the role of caspase-1 in death and inflammation. Microb. Infect. 3:1201-1212.
Moulder, J. W. 1985. Comparative biology of intracellular parasitism. Microbiol. Rev. 49: 298-337.
Narita, M., K. Kawashima, and M. Shimizu. 1996. Viral antigen and B and T Lymphocytes in lymphoid tissue of gnotobiotic piglets infected with hog cholera Virus. J. Comp. Pathol. 114:257-263.
Neidergang, F., J. C. Sirard, C. T. Blanc, and J. P. Kraehenbuhl. 2000. Entry and survival of Salmonella typhimurium in dendritic cells and presentation of recombinant antigens do not required macrophage-specific virulence factors. Proc. Natl. Acad. Sci. U.S.A. 97:14650-14655.
Ochman, H. and E. A. Geoisman. 1996. Distribution of pathogenicity island in Salmonella spp. Infect. Immun. 64:5410-5412.
Ochman, H., F. C. Soncini, F. Solomon, and E. A. Groisman. 1996. Identification of a pathogenicity island required for Salmonella survival in host cells. Proc. Natl. Acad. Sci. U.S.A. 93:7800-7804.
Owen, R.L. 1994. M cells--entryways of opportunity for enteropathogens. J. Exp. Med. 180:7-9.
Paton, D.J. 1995. Pestivirus diversity. J. Comp. Pathol. 112:215-36.
Pauly, T., M. Konig, H. J. Thiel, and A Saalmuller. 1998. Infection with classical swine fever virus: effects on phenotype and immune responsiveness of porcine T lymphocytes. J. Gen. Virol. 79:31-40.
Rathman, M., M. D. Sjaastad, and S. Falkow. 1996. Acidification of phagosomes containing Salmonella typhimurium in murine macrophages. Infect. Immun. 64:2765-2773.
Riber, U., and P. Lind. 1999. Interaction between Salmonella typhimurium and phagocytic cells in pigs. Phagocytosis, oxidative burst and killing in polymorphonuclear leukocytes and monocytes. Vet. Immunol. Immunopathol. 67:259-70.
Richardson, M.P., M. J. Ayliffe, M .Herlbert, E. G. Davies. A simple flow cytometry assay using dihydrorhodamine for the measurement of neutrophil respiratory burst in whole blood : comparison with quantitative nitroblueterazolium test. J. Immunol. Methods 1998:187-193.
Robertson, A., A. S. Greig , M. Appel, A. Girard, G. L. Bannister, and P. Boulanger. 1965. Hog cholera. IV. Detection of the virus in tissue culture preparations by the fluorescent antibody technique. Can. J. Comp. Med. Vet. Sci. 29:234-241.
Sansonetti, P. J., A. Phalipon, J. Arondel, K. Thirumalai, S. Banerjee, S. Akira, K. Takeda, and A. Zychlinsky. 2000. Caspase-1 activation of IL-1 beta and IL-18 are essential for Shigella flexneri-induced inflammation. Immunity 12:581-590.
Sansonetti, P. J., A. Ryter, P. Clerc, A. T. Maurelli, and J. Mounier. 1986. Multiplication of Shigella flexneri within HeLa cells: lysis of the phagocytic vacuole and plasmid-mediated contact hemolysis. Infect. Immun. 51: 461-469.
Scheppler, J. A., J. K. A. Nicholson, D. C. Swan, A. Abmed-Ansari, and J. S. McDougal. 1989. Down-regulation of MHC-I in a CD4+ T cell line, CEM-E5, after HIV-1 infection. J. Immunol. 143:2858-2866.
Schwartz, K. J. 1999. Salmonellosis. In Diseases of swine, Vol. 39, BarBara E. S., D. A. Sylvie, W. L. Mengeling, and D. J. Taylor(ed.), Iowa State University Press, Iowa, U.S.A., pp. 536-551.
Sgaguolo, M., S. Kennedy, J. C.Foster, D.A. Moffett, and B. M. Adair. 1997. Bovine viral diarrhea virus infection in bone marrow of experimental infection calves. J. Comp. Pathol. 116:97-100.
Sims. L. D., 1996. The liver. In Pathology of the pig, Sims. L. D., and J. R. W. Glastonbury(ed.), The Pig Research and Development Corporation and Agriculture Victoria, Barton, Australia. pp. 109-125.
Smith, N. H. and R. K. Selander. 1991. Molecular genetic basis for complex flagellar antigen expression in triphasic serovar of Salmonella. Proc. Natl. Acad. Sci. U.S.A. 88: 956-960.
Solano, G. I., E. Bautista, T. W. Molitor, J. Segales, and C. Pijoan. 1998. Effect of porcine reproductive and respiratory syndrome virus infection on the clearance of Haemophilus parasuis by porcine alveolar macrophages. Can. J. Vet. Res. 62:251-6.
Stock, A. M., J. M. Mottonen, J. B. Stock and C. E. Schutt. 1989. Three-dimensional structure of CheY, the response regulator of bacterial chemotaxis. Nature 337: 745-749.
Sukupolvi, S., R.G. Lorenz, J.I. Gordon, Z. Bian, J.D. Pfeifer, S.J. Normark, and M. Rhen. 1997. Expression of thin aggregative fimbriae promotes interaction of Salmonella typhimurium SR-11 with mouse small intestinal epithelial cells. Infect. Immun. 65:5320-5.
Summerfield, A., K. Zingle, S. Inumaru, and K. C. McCullough. 2001. Induction of apoptosis in bone marrow neutrophil-lineage cells by classical swine fever virus. J. Gen. Virol. 82:1390-1318.
Summerfield, A., M. A. Hofmann, and K. C. McCullough. 1998a. Low density blood granulocytic cells induced during classical swine fever are targets for virus infection. Vet. Immunol. Immunopathol. 68:289-301.
Summerfield, A., S. M. Knotig, and K. C. Mc.Cullough. 1998b. Lymphocyte apoptosis of during classical seine fever : implication a activation-induced cell death. J. Virol. 72:1853-1861
Summerfield, A., S. M. Kontig, R. T. Tschudin, and K. C. Mc Cullough. 2000. Pathogenesis of granulocytopenia and bone marrow atrophy during classical swine fever Involves apoptosis and necrosis of uninfected cells. Virology 272:50-60
Susa, M., M. Koenig, A. Saalmuller, M. J. Reddehase, and H. J. Thiel. 1992. Pathogenesis of classical swine fever : B-lymphocyte deficiency caused by hog cholera virus. J. Virol. 66:1171-1175.
Svensson, M., B. Stockinger, and M. J. Wick. 1997. Bone marrow-derived dentritic cells can process bacteria for MHC-I and MHC-II presentation to T cells. J. Immunol. 158:4229-4236.
Thanawongnuwech, R. E. L. Thacker, and P. G. Halbur. 1997. Effect of porcine reproductive and respiratory syndrome virus (PRRSV) (isolate ATCC VR-2385) infection on bactericidal activity of porcine pulmonary alveolar macrophages (PAMs). Vet. Immunol. Immunopathol. 59:323-35.
Tsolis, R. M., A. J. Baumler, I. Stojiljkovic, and F. Heffron. 1995. Fur regulon of Salmonella typhimurium: identification of new iron-regulated genes. J. Bacteriol. 177:4628-4637.
Van Oirschot, J. T. 1979. Experimental production of congenital persistent swine fever infections. I. Clincal, pathological and virological observations. Vet. Microbiol. 4:117-132.
Van Oirschot, J. T. 1988. Description of the virus infection. In Classical swine fever and related viral infections, B. Liess (ed.), Martinus Nijhoff Publishing, Boston, U.S.A., pp. 1-25.
Van Oirschot, J. T. 1992. Hog cholera. In Disease of Swine, 7th ed., A. D. Leman, B. E. Straw, W. L. Mengeling, S. D,Allaire, and D. J. Taylor (eds.), Iowa State University Press, Ames, Iowa, U.S.A., pp. 274-292.
Van Oirschot, J. T., D. de Jong, and N. D. N. H. J. Huffels. 1983. Effect of infections with swine fever virus on immune functions. II. Lymphocyte response to mitogens and enumeration of lymphocyte subpopulations. Vet. Microbiol. 8:81-95.
Van Velkinburgh, J. C., and J. S. Gunn. 1999. PhoP-PhoQ-regulated loci are required for enhanced bile resistance in Salmonella spp. Infect. Immun. 67: 1614-1622.
Vazquez-Torres, A., and F.C. Fang. 2001. Oxygen-dependent anti-Salmonella activity of macrophages. Trends Microbiol. 9:29-33.
Vazquez-Torres, A., J. Jones-Carson, A. J. Bäumler, S. Falkow, R. Valdivia, W. Brown, M. Le, R. Berggren, W. T. Parks, and F. C. Fang. 1999. Extraintestinal dissemination of Salmonella by CD18-expression phagocytes. Nature 401:804-808.
Vazquez-Torres, A., Jones-Carson, P. Mastroeni, H. Ischiropoulos, and F. C. Fang. 2000a. Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salomellosis. I. Effects on microbial killing by activated peritoneal macrophages in vitro. J. Exp. Med. 192:227-236.
Vazquez-Torres, A., Y. Xu., J. Jones-Carson, D. W. Holden, S. M. Lucia. M. C. Dinauer, P. Mastroeni, and F. C. Fang. 2000b. Salmonella Pathogenicity Island 2-dependent evasion of the phagocyte NADPH oxidase. Science 287:1655-1658.
Vermes, I., C. Haanen, H. Steffens-Nakken, and C. Reutelingsperger. 1995. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J. Immunol. Methods 184:39-51.
Vescovi, E. G., F. C. Soncini, and E. A. Groisman. 1996. Mg2+ as an extracellular signal: enviromental regulation of Salmonella virulence. Cell 84: 165-174.
Wallis, T. S., R. J. H. Hawker, D. C. A. Candy, G.-M. Ql, G. J. Clarke, K. J. Worton, M. P. Osborne, and J. Stephen. 1989. Quantification of the leu-cocyte influx into rabbit ileal loops induced by strains of Salmonella typhimurium of different virulence. J. Med. Microbiol. 30:149-156.
Wallis, T. S., T. M. Vaughan, G. J. Clarke, G.-M. Ql, K. J. Worton, D. C. A. Candy, M. P. Osborne, and J. Stephen. 1990. The role of leucocytes in the induction of fluid secretion by Salmonella typhimurium. J. Med. Microbiol. 31:27-35.
Warren, A. P., D. H. Ducroq, P. J. Lehner, and L. K. Borysiewicz. 1994. Human cytomegalovirus-infected cells have unstable assembly of major histocompatibility complex class I complexes and are resistant to lysis by cytotoxic T lymphocytes. J. Virol. 68:2822-2829.
Watson, P. R., E. E. Galyov, S. M. Paulin, P. W. Jones, and T. S. Wallis. 1998. Mutation of invH, but not stn, reduces Salmonella-induced enteritis in cattle. Infect. Immun. 66:1432-1438.
Watson, P. R., S. M. Paulin, P. Bland, P. W. Jones, and T. S. Wallis. 1995. Characterization of intestinal invasion by Salmonella typhimurium and Salmonella dublin and effect of a mutation in the invH gene. Infect. Immun. 63:2743-2754.
Welsh, M. D., B. M. Adair, and J. C. Foster. 1995. Effect of BVD virus infection on alveolar macrophage functions. Vet. Immunol. Immunopathol. 46:195-210.
Wong, K. K., M. Mccleland, L. C. Stillwell, E. C. Sisk, S. J. Thurston, and J. D. Saffer. 1998. Identification and sequence analysis of a 27-kilobase chromosomal fragment containing a Salmonella Pathogenicity Island locate at 92 minutes on the chromosomal map of Salmonella enterica serovar typhimurium LT2. Infect. Immun. 66:3365-3371.
Wood, M. W., M. A. Jones, P. R. Waston, S. Hedges, T. S. Wallis, and E. E. Galyov. 1998. Identification of a pathogenicity island required for Salmonella enteropathogenicity. Mol. Microbiol. 29:883-891.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top