(3.237.178.91) 您好!臺灣時間:2021/03/02 22:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃富美
研究生(外文):Fu-Meei Huang
論文名稱:重金屬污染土壤對作物生長與根圈土壤低分子量有機酸之影響
論文名稱(外文):Effect of Heavy Metal Polluted Soils on Crop Growth and Low Molecular Weight Organic Acids in Rhizosphere Soil
指導教授:陳明義陳明義引用關係王敏昭王敏昭引用關係
指導教授(外文):Ming-Yih ChenMin-Chao Wang
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生命科學院碩士在職專班
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:93
中文關鍵詞:低分子量有機酸根圈土壤
外文關鍵詞:Low Molecular Weight Organic AcidsRhizosphere Soil
相關次數:
  • 被引用被引用:7
  • 點閱點閱:1685
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:453
  • 收藏至我的研究室書目清單書目收藏:2
摘要
近十幾年來,隨著經濟的發展,工業廢棄物、下水道污泥、農業及肥料施用所造成的重金屬污染日趨嚴重。 重金屬危害作物生長,並可能隨著食物鏈累積在人體內,將對人體造成嚴重的影響。 作物根所分泌的低分子量有機酸(LMWOAs),會影響離子在根圈土壤中的吸附和溶解度。 本試驗選取莧菜和蕹菜兩種作物,以銅、鋅和鉻重金屬污染的三個地區土壤,分別進行污染區、混合土壤區及未污染區三種濃度的盆栽試驗,於溫室培育50天,以探討重金屬對作物生長和根圈土壤中低分子有機酸的影響。 土壤和植體內的重金屬,以感應耦合電漿原子放射光譜儀分析;11種低分子量有機酸,包含乳酸、羥基二酸、草酸、丙二酸、乙醛酸、順-丁烯二酸、琥珀酸、反丁烯二酸、蘋果酸、草醋酸、右旋-酒石酸、烏頭酸、檸檬酸、醋酸、丁酸、異丁酸及丙酸,則是以氣相層析法來測定。 銅會累積在作物根部,並且降低作物產量,同時亦會使作物部分葉片黃化。 鋅反而會促進作物生長及根部發育,尤其是在蕹菜上。 鉻的影響在莧菜上並不顯著。 11種低分子量有機酸,在土壤中含量為2.7 µg 10 g-1 soil — 443.9 µg 10 g-1soil之間。 低分子量有機酸在根圈土壤中的含量比在總體土壤中要來得高。 除了莧菜根圈土壤中的乳酸和蕹菜根圈土壤中的琥珀酸、反丁烯二酸與草醋酸之外,低分子量有機酸之含量會隨著銅及鋅重金屬在土壤中的含量增加而減少,鉻的試驗反而呈現增加之趨勢。 重金屬污染土壤對作物生長的影響,因重金屬的種類、作物的品種及作物對重金屬的忍受度而異。 這些因素亦會影響重金屬在植體內的運輸和分佈,同時也會影響作物根圈土壤中低分子量有機酸的種類和含量。
Abstract
As the development of economy, the soil heavy metals polluted by industrial waste, urban sewage, agriculture and fertilizer, have been more and more seriously in Taiwan in these few decades. Crop growth damage increases with the increase of heavy metal content in soil. Through food chain pathway, heavy metals are accumulated in human bodies and result in harmful effects on humans. Low molecular weight organic acids (LMWOAs), which secret from plant roots, may affect the adsorption and solubility of ions in the rhizosphere soil, and their behaviors in soil are affected by the heavy metals. The effects of heavy metals on crop growth and LMWOAs in rhizosphere soil have been investigated. Two crops, amaranth and water spinach, were growing for in greenhouse 50 days in pots, filled with unpolluted soil, polluted soil containing Cu, Zn or Cr, and mixture of polluted and unpolluted soils, separately. The soil and plant heavy metals were analyzed by ICP-AES. 11 LMWOAs, lactic acid, glycolic acid, oxalic acid, malonic acid, glyoxylic acid, maleic acid, succinic acid, fumaric acid, malic acid, oxalacetic acid, D-tartaric acid, trans-aconitic acid, citric acid, acetic acid, propionic acid, iso-butyric acid and butyric acid were analyzed by GC. Cu accumulated in crop roots and reduced crop yields, also turned some leaves from green to yellow. On the contrast, Zn promoted growth and root development, especially in water spinach. For amaranth, effects of Cr were not obvious. Contents of 11 LMWOAs in soils were 2.7µg 10 g-1soil — 443.9µg 10 g-1soil. LMWOAs were higher in rhizosphere than in bulk soil. Except the acetic acid in amaranth, and the succinic acid, fumaric acid and oxalacetic acid in water spinach rhizosphere, LMWOAs were decreased as Cu and Zn contents increased in soil, but increased with Cr content. Effects of heavy metal polluted soil on crop growth varied with kinds and availability of heavy metals, sorts of crops and crop tolerance to heavy metals. These factors affected the transportation and distribution of heavy metals in plants, as well as the kinds and contents of LMWOAs in the rhizosphere soil.
目錄
中文摘要 I
Abstract Ⅲ
前言 1
前人研究 3
一、土壤中之重金屬 3
二、重金屬對作物生長之影響 6
三、低分子量有機酸含量測定 10
四、重金屬對根圈土壤低分子量有機酸種類與含量之影響 11
材料與方法 14
一、採土地區環境概述 14
二、供試土壤及採樣 16
三、土壤pH值及重金屬含量分析 16
四、盆栽試驗 16
五、植物生長與乾重測定 17
六、植體分析 17
七、土壤低分子量有機酸之測定 20
結果與討論 24
一、土壤樣品pH值及重金屬含量 24
二、重金屬對作物生長之影響 25
三、作物對重金屬之吸收分佈 40
四、總體土壤與根圈土壤中低分子量有機酸種類與含量比較 44
五、重金屬對作物根圈土壤低分子量有機酸含量之影響 51
結論 56
參考文獻 57
表目錄
表一、土壤pH值及重金屬含量 18
表二、台灣地區土壤重金屬含量等級區分表 19
表三、東門里土壤中作物之生長 26
表四、東門里土壤中作物之乾重 28
表五、東信里土壤中作物之生長 31
表六、東信里土壤中作物之乾重 33
表七、文山里土壤中作物之生長 36
表八、文山里土壤中作物之乾重 38
表九、東門里土壤中作物之銅吸收及分佈情形 41
表十、東信里土壤中作物之鋅吸收及分佈情形 42
表十一、文山里土壤中作物之鉻吸收及分佈情形 43
表十二、東門里土壤中莧菜總體及根圈土壤低分子量有機酸之種類與含量 45
表十三、東門里土壤中蕹菜總體及根圈土壤低分子量有機酸之種類與含量 46
表十四、東信里土壤中莧菜總體及根圈土壤低分子量有機酸之種類與含量 47
表十五、東信里土壤中蕹菜總體及根圈土壤低分子量有機酸之種類與含量 48
表十六、文山里土壤中莧菜總體及根圈土壤低分子量有機酸之種類與含量 49
表十七、文山里土壤中蕹菜總體及根圈土壤低分子量有機酸之種類與含量 50
圖目錄
圖一、土壤取樣分佈圖 15
圖二、東門里土壤中作物之生長情形 27
圖三、東門里土壤中作物之根部發育情形 29
圖四、.東信里土壤中作物之生長情形 32
圖五、東信里土壤中作物之根部發育情形 35
圖六、文山里土壤中作物之生長情形 37
圖七、文山里土壤中作物之根部發育情形 39
圖八、東門里土壤中作物根圈土壤低分子量有機酸含量之影響 52
圖九、東信里土壤中作物根圈土壤低分子量有機酸含量之影響 53
圖十、文山里土壤中作物根圈土壤低分子量有機酸含量之影響 54
附錄
附錄一、各種低分子量有機酸標準品滯留時間及方法偵測極限 70
附錄二、作物之生長分析數據資料表 71
附錄三、作物之重金屬分析數據資料表 77
附錄四、土壤低分子量有機酸之分析數據資料表 80
附錄五、低分子量有機酸氣相層析圖譜 92
參考文獻
台中市環境保護局。 1998。 八十七年度台中市土壤污染防治工作計畫成果報告。台中市環境保護局。
台中市環境保護局。 1999。 八十八年度台中市土壤污染防治工作計畫成果報告。台中市環境保護局。
台中市環境保護局。 2000。 八十八年下半年度及八十九年度台中市土壤污染防治工作計畫成果報告。 台中市環境保護局。
行政院環境保護署。 1989。 臺灣地區土壤重金屬含量調查報告 (一) (二) (三) (四)。 行政院環境保護署。
行政院環境保護署 1999. 八十八年版環境白皮書。
行政院環境保護署環境檢驗所。 1997。 土壤檢驗方法。 行政院環境保護署環境檢驗所。
農林水產技術會議事務局。 1972。 土壤及作物體中重金屬之分析法。 日本土肥誌 43:264-270, 305-311, 349-356, 390-395。
王銀波。 1985。 重金屬鉻、銅、鋅、鎘、鉛對作物毒性之研究。 公害對農業生產之影響研討會論文集。 p.105-118。
王銀波。1988。 台灣農田重金屬污染。 中國農業工程學會77年度學術研討會農業環境污染與管理論文集。 p.1-8。
王淵欽。 1981。 灌溉水之銅汙染對作物生長與土壤之影響。 國立中興大學土壤學研究所碩士論文。
田中明、但野利秋、早川修。 1980。 重金屬適應性作物種間差。 日本土肥誌 51:113-118。
田中明、但野利秋、海老根愛夫。 1978。 重金屬適應性作物種間差。 日本土肥誌 49:314-320。
田中明、但野利秋、藤山英保。 1975。 重金屬適應性作物種間差。 日本土肥誌 46:425-430。
朱德民。 1990。 植物與環境逆境。 國立編譯館。
何念祖、孟賜福。 1987。 植物營養原理。 上海科學技術出版社。
但野利秋。 1987。 北海道農業土壤肥料。 p.132-145。
李豔琪。 1989。 銅、鉛污染不同土類對作物之影響。 國立中興大學土壤學研究所碩士論文。
李承玹。 2000。 重金屬污染土壤中植物根分泌之低分子量雙羧基有機酸及對土壤中鎘與鋅的影響。國立台灣大學農業化學研究所碩士論文。
林浩潭。 1991。 以植物中重金屬容許含量推算土壤中重金屬容許含量之探討。 國立中興大學土壤學研究所碩士論文。
直原毅。 1985。 日本土壤肥料演講要旨集(35集)。220 pp。
凌永健。 1998。 儀器偵測極限及方法偵測極限之測定規定。 八十八年度環保署委託計畫,檢測數據品保查核期中研習會。 行政院環保署環境檢驗所。 p.5-6 〜 5-10。
高橋英一、吉野實、前田正男。 1987。 新版原色作物之要素欠乏過剩症。 日本農山漁村文化協會出版。
莊作權。 1978。 臺灣蔗田土壤之鋅吸附作用II.土壤pH、溫度與水份含量對鋅吸附之影響。 中國農業化學會誌 16:1-80。
許永瑜。 1990。 鋅鉻對水稻與蔬菜在台灣主要土類中毒害臨界濃度之探討。 國立中興大學土壤學研究所碩士論文。
陳尊賢。 1988。 桃園基力化工廠北方之水田區稻榖粒中重金屬含量調查。 行政院農委會委託計畫(計畫編號:77-農建-4.1-源-57(31)。
陳尊賢、黃東亮。 1992。 台灣地區各主要土類中重金屬含量之等級劃分。 行政院環境保護署研究計畫報告(計畫編號:EPA-81-H105-09-02)(報告編號:EPA-044810029)。 90頁。
陳尊賢、鄭雙福、鄭榮賢。 1999。 土壤、灌溉水中重金屬含量對農作物之影響。 農作物中重金屬監測基準資料之建立。 p.7-14.
陳孟君、王明光、邱智郁。 1999。 塔塔加鞍部鐵杉林及玉山箭竹之根圈與總體土壤低分子量有機酸含量和有機碳官能基之測定。土壤與環境 p.159-170.
陸杰人。 1986。 環工科學導論。 新學識設文教出版中心。
詹益村、陳庭昱、王裕民、葉桂君。 1997。 IDC-7重金屬、污染場址整治。 p.307-322。 第五屆土壤污染防治研討會論文集。 1997年6月18日,中國農業化學會主辦,台北市。
劉玉雪、徐玉標。 1985。 鎳鉻對水稻生長之影響。 公害對農業生產之影響研討會論文集。 p.91-104。
劉黔蘭、王銀波。 1992。 鎳污染臺灣各類土壤與作物生長關係之研究。 第二屆土壤污染防治研討會論文集。p.243-256。
駱尚廉主編。 1997。 環境保護辭典。 241p。 茂昌圖書有限公司。 台北市。
Allen, H. E., R. H. Hall, and T. D. Brishbin. 1980. Metal speciation effects on aquatic toxicity. Environ. Sci. Technol. 14:441-443.
Alloway, B. J., and E. Steinnes. 1997. Anthropogenic additions of cadmium to soil: A review. p. 663-664. In I. K. Iskandar, S. E. Hardy, A. C. Chang, and G. M. Pierzynski (ed. ) Proceedings of extended abstracts from the fourth international conference on the biogeochemistry of trace elements. June 23-26, 1997. Clark Kerr Camps, Berkeley.
Alloway, B.J. 1990. Nickle. p. 125-146. In B. J. Alloway (ed.) Heavy metals in soils. John Wiley & Sons, New York.
Alloway, B.J. 1995. Heavy metals in soils. Blackie Academic and Professional, Glasgow.
Angelone, M., and C. Bini. 1992. Trace elements concentrations in soils and plants of western Europe. p. 19-60. In D.C. Adriano (ed.) Biogeochemistry of trace metals. Lewis Publishers, Boca Raton.
Barber, D. A., and J. K. Martin. 1976. The release of organic substances by cereal roots into soil. New Phytol. 76:69-80.
Bartlett, R. J., and B. R. James. 1979. Behavior of chromium in soil: III. Oxition. J. Environ. Qual. 8:31-35.
Bartlett, R. J., and J. M. Kimble. 1976. Behavior of chromium in soil: II. Hexavalent forms. J. Environ. Qual. 5:383-386.
Bingham, F. T., A. L. Page,. and J. R. Sims. 1964. Retention of Cu and Zn by H-montmorillonite. Soil Sci. Soc. Am. Proc. 28:351-354.
Bingham, F. T., G. Sposito, and J. E. Strong. 1984. The effect of chloride on the availability of cadmium. J. Environ. Qual. 13:71-74.
Bjerre, G. K., and H. H. Schierup. 1985. Uptake of six heavy metals by oats as influenced by soil type and additions of cadmium, lead, zinc and copper. Pl. Soil. 88:57-69.
Bowen, H. J. M. 1979. Environmental Chemistry of the Element. Academic Press New York.
Browne, C. L., Y. M. Wong, and D.R. Buhler. 1984. A predictive model for the accumulation of cadmium by container-grown plants. J. Environ. Qual. 13:184-188.
Chaney, R. L., and P. M. Giordano. 1977. Microelements as related to plant deficiencies and toxicities. p. 235-279. In L. F. Elliott and F. J. Stevenson (eds.) Soils for management of organic wastes and waste waters. American Society of Agronomy Madison, WI.
Cary, E. E., W. H. Allaway, and O. E. Olson. 1977. Control of chromium concentrations in food plants: II. Chemistry of chromium in soils and its availability to plants. J. Agric. Food Chem. 25:305-309.
Chino, M. 1981. Uptake-transport of toxic metals in rice plants. p. 81-104. In K. Kakuzo and I . Yamane (eds.) Heavy metal pollution in soil of Japan. Japan Scientific Societies Press, Tokyo.
Christensen, T. H. 1984. Cadmium soil sorption at low concentrations: II. Reversibility effect of changes in solute composition and effect of soil aging. Water, Air & Soil Pollution. 21:114-125.
Cieslinski, G., K.C. J. van Rees, A.M. Szmigielska, and P.M. Huang. 1997. Low molecular weight organic acids released from root of drum wheat and flax into sterile nutrient solutions. J. Plant Nutr. 20: 753-764.
Cieslinski, G., K.C.J. van Rees, A.M. Szmigielska, G.S.R. Krishnamurti, and P.M. Huang. 1998. Low-molecular-weight organic acids in rhizosphere soils of drum wheat and their effect on cadmium bioaccumulation. Plant and Soil. 203:109-177.
Cushuman, J. H. 1982. Nutrient transport inside and outside the rhizosphere: Theory. Soil Sci. Soc. Am. J. 46:704-709.
Curl, E. A. and B. Truelove. 1986. The Rhizosphere. Springer-Verlag, New York.
Davies, B. E. 1990. Lead. p. 177-196. In B. J. Alloway (ed.) Heavy metals in soils. John Wiley & Sons, New York.
Epstein, E., and R. L. Chaney. 1978. Land disposal of toxic substances and water-related problem. J. WPCF: 2037-2042.
Fox, T. R. and N. B. Comerford. 1990. Low molecular weight organic acids in selected forest soils of the southwestern USA. Soil Sci. Soc. Am. J. 54:139-144.
Foy, C.D., E. H. Lee, C. C. Coradetti, and G. J. Taylor. 1990. Organic acids related to differential aluminium tolerance in wheat (Triticum aestivum) cultivars. p. 381-389. In M.L. van Beusichem (ed.) Plant nutrition-physiology and applications, Kluwer Academic Publishers, Boston.
Gerritse, R. G., and W. van Driel. 1984. The relationship between adsorption of trace metals, organic matter, and pH in temperate soils. J. Environ. Qual. 13: 197-204.
Grifferty. A. and S. Barrington. 2000. Zinc uptake by young wheat plants under two transpiration regions. J. Environ. Qual. 29:443-446.
Grove, J. H., and B. G. Ellis. 1980. Extractable chromium as related to soil pH and applied chromium. Soil Sci. Soc.Am. J. 44:238-242.
Hodgson, J. F. 1963. Chemistry of the micronutrient elements in soils. Agronomy. 15:119-159.
Hosoda, K. 1942. Studies on the improvement of metal polluted soil (part 5). The effect of Cu, As, Zn, Pb and Fe ect. on the yield of rice. J. Sci. Soil Manure. Jpn. 16:459-466.
Huffman, E. W. D., and W. H. Alloway. 1973. Growth of plants in solution culture containing low levels of chromium. Plant Physoil. 52:72-75
Iimura, K. 1981. Heavy metal problems in paddy soils. p. 73-44. In K. Kakuzo and I. Yamane (eds.) Heavy metal pollution in soils of Japan. Japan Scientific Societies Press, Tokyo.
John, M .K., and C. V. Laerhoven. 1972. Lead uptake by lettuce and oats as affected by lime, nitrogen, and sources of lead. J. Environ. Qual. 1:169-171.
Jones, J. B. Jr., and V. W. Case. 1990. Sampling, handling, and analyzing plant tissue samples. p. 389-427. In R. L. Westerman (ed.) Soil testing and plant analysis. 3rd ed. Soil Science Society of America, book series No. 3.
Kabata-Pendias, A., and H. Pendias. 1986. Trace elements in soil and plants. CRC Press. Boca Raton, Florida.
Kastori, R., M. Petrovic, and N. Petrovic. 1992. Effect of excess Pb, Cd, Cu and Zn on water reations in sunflower. J. Plant Nutr. 15:2427-2439.
Kelly, J. J., and R. L. Tate. 1998. Effects of heavy metal contamination and remediation on soil microbial communities in the vicinity of a zinc smelter. J. Environ. Qual. 27:609-617.
Kofoed, A. D. 1980. Copper and its utilization in Danish agriculture. Fertilizer Research. 1:63-71.
Kuo, S., P. E. Heilman, and A. S. Baker. 1983. Distribution and forms of copper, zinc, cadmium, and manganese in soil near a copper smelter. Soil Sci. 135:101-109
Labauve, J. M., J. Kotuby-Amacher, and R. P. Gambrell. 1988. The effect of soil properties and a synthetic municipial landfill leachate on the retention of Cd, Ni, Pb, and Zn in soil and sediment materials. J. WPCF. 60:379-385.
Lagerwerff, J. V. 1972. Lead, mercury, and cadmium as environmental contaminants. p. 583-646. In Micronutrients in Agriculture. Soil Sci. Soc Am. Madison. WI.
Lindsay, W. L. 1979. Chemical equilibria in soils. John Wiley & Sons, New York.
Lund, L. J., E. E. Betty. A. L. Page, and R. A. Elliot. 1981. Occurrence of naturally high cadmium levels in soils and its accumulation by vegetation. J. Environ. Qual. 10:551-556.
Mahler, R. J., F. T. Bingham, A .L. Page, and J. A. Ryan. 1982. Cadmium-enriched sewage sludge application to acid and calcareous soils: effect on soil and nutrition of lettuce, corn, tomato and Swiss chard. J. Environ. Qual. 11:694-700
Mahler. R. J., F. T. Bingham, G. Sposito, and A. L. Page. 1980. Cadmium-enriched sewage sluge application to acid and calcareous soil: relation between treatment, cadmium in saturation extracts and cadmium treatment. J.Environ. Qual. 9:359-364.
Marschner, H. 1995. Mineral nutrition of higher plants. Academic Press, London, UK.
Marschner, H., M. Treeby, and V. Romheld. 1989. Role of root-induced changes in the rhizosphere for iron acquisition in higher plants. Z. Pflanzenernahr. Bodenk. 152:197-204.
McBride, M. B. 1994. Environmental chemistry of soils. Oxford University Press, New York.
McBride, M. B., and J. J. Blasiak. 1979. Zinc and copper solubility as a function of pH in an acid soil. Soil Sci. Soc. Am. J. 43:866-870.
McBride, M. B., L. D. Tyler, and D. A. Houde. 1981. Cadmium adsorption by soil and uptake by plants as affected by soil chemical properties. Soil Sci. Soc. Am. J. 45:739-744.
McLean, E. O. 1982. Soil pH and lime requirement. In A. L. Page et al. (ed. ). Methods of soil analysis, Part 2. 2nd ed. Agronomy. 9:199-244.
Mench, M., and E. Martin. 1991. Mobilization of cadmium and other metals from two soils by root exudates of Zea may L., Nicotiana tabacum L. and Nicotiana rustica L. Plant Soil. 132:187-196.
Mench, M., J. L. Morel, A. Guckert, and B. Guillet. 1988. Metal binding with root exudates of low molecular weight. J. Soil Sci. 39:521-527.
Mertz, W. 1969. Chromium occurrence and function in biological systems. Physiol. Rev. 49:163-239.
Merry, R. H., and K. G. Tiller. 1986a. The effect of soil contamination with copper, lead and arsenic on the growth and composition of plants. I. effects of season, genotype, soil temperature and fertilizer. Pl. Soil. 91:115-128.
Merry, R. H., and K. G. Tiller. 1986b. The effects of soil contamination with copper, lead and arsenic on the growth and composition of plants. II. effects of source of contamination, varying soil pH, and prior weaterlogging. Pl. Soil. 95:225-269.
Mortuedt, J .J. 1985. Plant uptake of heavy metals in zinc fertilizers made from industrial by-products. J. Environ. Oual. 14:424-427.
Mortvedt, J. J., and P. M. Giordano. 1975. Response of corn to zinc and chromium in municipal wastes applied to soil. J. Environ. Qual. 12:579-584.
Muhammad, S. 1986. Solubility relationships of arsenic in calcareous soil and its uptake by corn. Pl. Soil. 91:241-248.
Mulla. D.J., A.L. Page, and T.J. Ganje. 1980. Cadmium accumlation and bioavailability in soil from long-term phosphorus fertilization. J. Environ. Qual. 9:408-412.
Naidu, R., S. Rogers, V. V. S. R. Gupta, R. S. Kookana, N. S. Bolan, and D. Adriano. 1997. Bioavailability of metals in the soil-plant environment and its potential role in risk assessment : An overview. p.757-758. In I. K. Iskander, S. E. Hardy, A. C. Chang, and G. M. Pierzynski (ed.). Proceedings of extended abstracts from the fourth international conference on the biogeochemistry of trace elements. June 23-26, 1997. Clark Kerr Camps, Berkeley.
Nishizono, H., S. Suzuki, and F. Ishil. 1987. Accumulation of heavy metals in the metal-tolerant fern, Athyrium yokoscense, growing on various environments. pl. and Soil. 102:65-70.
Nye, P. H., and P. B. Tinker. 1977. Solute movement in soil-root system. In Studies in Ecology. Vol. 4. Blackwell Scientific Publ., Oxford, England.
Pickering, W. 1980. Ecological cycling. p. 365-397. In J. O. Nriagu (ed.) Cadmium in environment. John Wiley & Sons, New York.
Page,. A. L., F. T. Bingham, and A. C. Change. 1981. Cadmium. p. 77-111. In N W. Lepp (ed. ) Effect of heavy metal pollution on plants Vol. 1. Applied Science Publishers, London.
Petersen, W., and M. Bottger. 1991. Contribution of organic acids to the acidification of the rhizosphere of maize seedlings. Plant Soil 132:159-163.
Phipps, D.A. 1981. Chemistry and biochemistry of trace metals in biological systems. p. 1-54. In N. W. Lepp (ed.) Effect of heavy metal pollution on plants. Vol. 1:Effects of trace metals on plant function. Applied Science Publishers, London.
Pohlman, A. A., and J. G. McColl. 1988. Soluble organics from forest litter and their role in metal dissolution. Soil Sci. Soc. Am. J. 52:265-271.
Price, C. A., H. E. Clark, and E. A. Funkhouser. 1972. Function of micronutrients in plants. p. 231-242. In J. J. Mortvedt, P. M. Girodano, and W. L. Lindsay (ed.) Micronutrients in Agriculture. Soil Sci. Soc. Am. Madison. WI.
Rolfe, G. L. 1973. Lead uptake by selected tree seedlings. J. Environ. Qual. 2:153-157.
Robert, M., and J. Berthelin. 1994. Role of biological and biochemical factors in soil mineral weathering. p. 453-495. In P.M. Huang and M. Schnitzer (eds.) Interaction of soil minerals with natural organics and microbes. SSSA Special Publ. 17. SSSA, Madison, WI.
Rovira, A .D. 1969. Plant root exudates. Bot. Rev. 35:35-57.
Ross, D. S., R. E. Sjogren, and R. J. Baretlett. 1981. Behavior of chromium in soils: Ⅳ. Toxicity to microorganism. J. Environ. Qual. 10:145-148.
Rousos, P. A., and H. C. Harrison. 1987. Identification of differential resoponses of cabbage cultivars to copper toxicity in solution culture. J. Am. Soc. Hort. Sci. 112: 928-931.
Rovira, A. D., and B. M. McDougall. 1967. Microbiological and biochemical aspects of the rhizosphere. p. 417-463. In A. D. McLaren and G. H. Peterson (eds.) Soil Biochemical. Vol. 1. Marcel Dekker, New York.
Shewery, P. R., and P. J. Peterson. 1974. The uptake and transport of chromium by barley seedling. J. Exp. Bot. 25:785-797.
Singh, S. S. 1981. Uptake of cadmium by lettuce (Lactuca sativa) as influenced by its addition to soil as inorganic from or in sewage. Can. J. Soil Sci. 61:19-28.
Sposito, G., F. T. Bingham, S. S. Yadav, and C. A. Inouye. 1982. Trace metal complexation by fulvic acid extraction form sewage sludge :II. Development of chemical models. Soil Sci. Soc. Am. J. 46: 51-56.
Stevenson, F. J., and A. Fitch. 1994. Chemistry of complexation of metal ion with soil solution organics. p. 29-58. In P. M. Huang and M. Schnitzer (eds.) Interaction of soil minerals with natural organics and microbes. SSSA Special Publ. 17. SSSA, Madison, WI.
Street, J. J., W. L. Lindsay, and B. R. Sabey. 1977. The solubility and plant uptake of cadmium in soils amended with cadmium and sewage sludge. J. Environ. Qual. 6: 72-77.
Szmigielska, A. M., K. C. J. van Rees, G. Cieslinski, and P. M. Huang. 1995. Determination of low molecular weight dicarboxylic acid in root exudates by gas chromatogphy. Agric. Food Chem. 43:956-959.
Szmigielska, A. M., K. C. J. van Rees, G. Cieslinski, and P. M. Huang. 1996. Low molecular weight dicarboxylic acids in rhizosphere soil of durum wheat. J. Agric. Food Chem. 44: 1036-1040.
Szmigielska,A.M., K. C. J. van Rees, G.Cieslinski, and P.M.Huang. 1997. Comparison of liquid and gas chromatography for analysis of low molecular weight organic acids in rhizosphere soil. Commun. Soil Sci. Plant Anal. 28: 99-111.
Tiller, K. G. 1989. Heavy metals in soils and their environmental significance. Adv. Soil Sci. 9:113-142.
Timura, K. 1981. Heavy metal problems in paddy soil. p.73-44. In K.Kakuzoand I. Yamane (eds.) Heavy metal pollution in soils of Japan. Japan Scientific Societies Press, Tokyo.
Tripathy, B. C., and P. Mohanty. 1980. Zinc-inhibited electron transport of photosynthesis in isolated barley chloroplasts. Pl. Physiol. 66:1174-1178.
Trisch, F. S., J. H. Baker, and Francis A. DiGiano. 1979. Copper and cadmium reactions with soil in land applications. J. Water Pollut. Control Fed. 51:2649-2660.
Turner, M.A., and R. H. Rust. 1974. The uptake and transport of chromium by barley seedling. J. Exp. Bot. 25:785-797.
Underwood, E. J. 1977. Trace element in human and animal nutrient. 4th. Edition. p.411-421.
Uren, N. C., and H. M. Reisenauer. 1988. The role of root exudates in nutrient aquistion. Adv. Plant Nutr. 3:79-114.
Valderes, J. M., A. S. M. Gal, V. Mingelgrin, and A.L. Page. 1983. Some heavy metals in soils treated with sewage sludge, their effects on yield and their uptake by plants. J. Environ. Qual. 12:49-57.
White. M.C., and R.L. Chaney. 1980. Zinc, cadmium and manganese uptake by soybean from two zine and cadmium amended costal plain soils. Soil Sci. Soc. Am. J. 44:308-313
Yamagami, T., Meguro. T. Mizuno. N, and Kamada. K. 1975. The effect of Cd, Cu and Zn on the growth of rice plant, 1975 Annu. Rep. Environ. Protect., Hokkaido Pref. Agric. Exp. Stn., l.
Zhang, F. S., J. Ma, and Y. P. Cao. 1997. Phosphorus deficiency enhances root exudation of low-molecular weight organic acids and utilization of sparingly soluble inorganic phosphates by radish ( Raghanus satiuvs L. ) and rape ( Brassica napus L. ) plants. Plant Soil. 196: 261-264
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔