跳到主要內容

臺灣博碩士論文加值系統

(54.80.249.22) 您好!臺灣時間:2022/01/20 07:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林文賓
研究生(外文):Lin Wen-Pin
論文名稱:纖維複材疊層板在單軸及雙軸張力載重下之非線性破壞分析
論文名稱(外文):NONLINEAR FAILURE ANALYSIS MODEL FOR FIBER-REINFORCED COMPOSITE LAMINATE UNDER UNIAXIAL AND BIAXIAL TENSILE LOADS
指導教授:胡宣德
指導教授(外文):Hu Hsuan-Teh
學位類別:博士
校院名稱:國立成功大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:90
語文別:英文
論文頁數:145
中文關鍵詞:纖維複材疊層板非線性組成率混和破壞準則後破壞模式剪力參數單軸及雙軸載重
外文關鍵詞:fiber-reinforced composite laminatenonlinear constitutive lawmixed failure criterionpost failure modeshear parameteruniaxial and biaxial tensile loads
相關次數:
  • 被引用被引用:15
  • 點閱點閱:1219
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究提出一個非線性破壞分析模式,用來預測纖維複材疊層板在荷重作用下之反應.此分析模式包含非線性組成率,混合破壞準則,及後破壞模式.當複材單層在損傷前,其力學行為由非線性組成率來描述,其中纖維及母材假設為彈塑性行為,而平面剪應力由可變的的剪力參數來描述其非線性行為.在受力過程中,個別複材單層的損傷時機由混合破壞準則來決定,此準則乃是由Tsai-Wu破壞準則及最大應力準則所組成.在後破壞過程中,假設纖維和剪應力為脆性破壞模式,而母材為逐漸破壞模式.
本研究所建議的分析模之預測結果與其他分析模式之預測結果及可靠的實驗值比較,發現本分析模式針對纖維複材疊層板在單軸及雙軸張力載重作用下之非線性破壞行為可得較佳之預測結果.
ABSTRACT
In this study, a nonlinear failure analysis model, which includes nonlinear constitutive law, mixed failure criterion and post failure mode, is developed for predicting the response of fiber-reinforced composite laminate under loading. As the composite lamina being in the pre-damage region, the response of an individual lamina within the laminate is described by the nonlinear constitutive law, in which the fiber and matrix are assumed to have elastic-plastic behavior and the in-plane shear is assumed to behave nonlinearly with a variable shear parameter. The damage onset for individual lamina is detected by the mixed failure criterion, which is composed of Tsai-Wu failure criterion and maximum stress criterion. In the post-failure process, the fiber and in-plane shear are assumed to exhibit brittle behavior but the matrix is assumed to exhibit degrading behavior.
The proposed nonlinear failure analysis model has been tested against the experimental results and compared with the predictions by other criteria. And it is demonstrated that the proposed model is a suitable analysis model to predict the response of fiber-reinforced composite laminates under uniaxial and biaxial tensile loads.
TABLE OF CONTENTS
CHAPTER
1INTRODUCTION
1.1General
1.2Objects and Scope
2CONSTITUTIVE MODELING COMPOSITE LAMINATE
2.1Introduction
2.2Linear Stress-Strain Relations of an Orthotropic
Lamina
2.3Nonlinear Constitutive Model of an Orthopic Lamina
2.4Nonlinear Stress-Strain Relations for a Lamina on
Arbitrary Orientation
3REVIEW OF FAILURE CRITERIA
3.1Strength of an Orthotropic Lamina
3.2Failure Criteria
3.3Limit Theories
3.3.1Maximum Stress Theory
3.3.2Maximum Strain Theory
3.4Strain Energy Theory
3.4.1von Mises Isotropic Yield Criterion
3.4.2Tsai-Hill Theory
3.5Polynomial Theories
3.5.1Hoffman Theory
3.5.2Tsai-Wu Failure Theory
3.6Direct Mode Determining Theories
3.6.1Hashin-Rotem Failure Criterion
3.6.2Hashin Failure Criterion
3.6.3Lee Failure Criterion
3.6.4Edge Failure Criterion
3.6.5Chang Failure Criterion
4NONLINEAR FAILURE ANALYSIS MODEL
4.1Descriptions of Nonlinear Failure Analysis Model
4.2Nonlinear Constitutive Law39
4.3Mixed Failure Criterion
4.4Post Failure Modes
4.5Laminate Governing Equations
4.6Normalized Failure Stresses and Failure Contribution
5NONLINEAR ANALYSIS OF FIBER-REINFORCED COMPOSITE
LAMINATES SUBJECTED TO UNIAXIAL TENSILE LOAD
5.1Introduction
5.2Numerical Calculation and Material Properties
5.3Verification of the Proposed Nonlinear Constitutive
Model
5.4Comparisons among Various Post Failure Modes
5.5Comparisons among Various Failure Criteria
5.6Comparisons Between Elastic-Plastic and Proposed
Nonlinear Constitutive Models
6PARAMETRIC STUDY ON THE FAILURE OF FIBER-REINFORCED
COMPOSITE LAMINATES UNDER BIAXIAL TENSILE LOAD
6.1Introduction
6.2General Description
6.3Validation of the Proposed Nonlinear Analysis Model
6.4Parametric Investigation
6.4.1 Laminates
6.4.2 Laminates
7CONCLUSIONS AND RECOMMENDATIONS
7.1Conclusions
7.2Recommendations for Further Research
REFERENCES
FIGURES
APPENDIX
A FORTRAN SUBROUTINE - MAXIMUM STRESS CRITERION
B FORTRAN SUBROUTINE - MIXED FAILURE CRITERION
C FORTRAN SUBROUTINE - TSAI-WU FAILURE CRITERION
D FORTRAN SUBROUTINE - CHANG FAILURE CRITERION
E ABAQUS PROGRAM INPUT FILE
[1]Azzi, V. D. and Tsai, S. W., "Anisotropic Strength of
Composite," Exp. Mech., Vol.5, pp.283-288, 1965.
[2]Allen, H., Harris, C. E. and Groves, S. E., “A
Thermomechanical Constitutive Theory for Elastic
Composites with Distributed Damage-I. Theoretical
Development”, Int. J. Solids Structures, Vol. 23,
pp.1301-1318, 1987.
[3]Al-Salehi, F. A. R., Al-Hassani, S. T. S. and Hinton,
M. J., "An Experimental Investigation into the
Strength of Angle Ply GRP Tubes under High Rate of
Loading", J. Composite Materials, Vol. 23, pp.188-303,
1989.
[4]Chang, F.-K. and Chang, K.-Y., "A Progressive Damage
Model for Laminated Composites Containing Stress
Concentrations", J. Compos. Mater., Vol. 21, pp.834-
855, 1987.
[5]Chang, F. K. and Lessard, L. B., “Damage Tolerance of
Laminated Composite Containing an Open Hole and
Subjected to Compressive Loadings: Part I-Analysis”,
Journal of Composite Materials, Vol. 25, pp.2-43, 1991.
[6]Ellyin, F., Carroll, M., Kujawski, D. and Chiu, A.
S., "The Behavior of Multidirectional Filament Wound
Fibreglass/Epoxy Tubulars under Biaxial Loading",
Composites Part A, Vol. 28A, pp.781-790, 1997.
[7]Edge, E. C., "Final Report on P.V. Funded Portion of
CFC Basic Technology Programme", Bae Report SOR(P)177,
October 1987, with Addendum 1, February, 1989.
[8]Edge, E. C., "Stress Based Grant-Sanders Method for
Predicting failure of Composite Laminates", Composites
Science and Technology, Vol. 58(7), pp.1033-1041, 1998.
[9]Eckold, G. C., "Failure Criteria for Use in the
Design Environment", Composites Science and
Technology, Vol. 58(7), pp.1095-1105, 1998.
[10]Griffin, O. H., Kamat, M. P. and Herakovich, C. T.,
“Three-Dimensional Inelastic Finite Element Analysis
of Laminated Composites”, Journal of Composite
Materials, Vol.15, pp.543-560, 1981.
[11]Gotsis, P. K., Chamis C. C. and Minnetyan L., "
Prediction of Composite Laminate Fracture:
Micromechanics and Progressive Fracture", Composites
Science and Technology, Vol. 58(7), pp.1137-1149, 1998.
[12]Hill, R., "The Mathematical Theory of Plasticity",
Oxford University Press, London, 1950.
[13]Hoffman, O., “The Brittle Strength of Orthotropic
Materials”, Journal of Composite Materials, Vol. 1,
pp.200-206, 1967.
[14]Hahn, H. T., “Nonlinear Behavior of Laminated
Composites”, Journal of Composite Materials, Vol.7,
pp.257-271, 1973.
[15]Hahn, H. T. and Tsai, S. W., “Nonlinear Elastic
Behavior of Unidirectional Composite Laminates”,
Journal of Composite Materials, Vol.7, pp.102-118,
1973.
[16]Hashin, Z. and Rotem, A., "A Fatigue Failure
Criterion for Fiber Reinforced Materials", J. Compos.
Mater., Vol. 7, pp.448-464, 1973.
[17]Hull, D., Legg, M. J. and Spencer, B., "Failure of
Glass/Polyester Filament Wound Pipe. Composites, Vol. 9
(1), pp.17-24, 1978.
[18]Hashin, Z., “Failure Criteria for Unidirectional
Fiber Composites”, J. Appl. Mech., Vol. 47, pp.329-
334, 1980.
[19]Hu, H.-T., “Influence of In-plane Shear Nonlinearity
on Buckling and Postbuckling Responses of Composite
Laminate Plates and Shells,” Journal of Composite
Materials, Vol. 27, pp. 138-151, 1993.
[20]Hart-Smith, L. J., "Predictions of the Original and
Truncated Maximum-Strain Failure Modes for Certain
fibrous Composite laminates", Composites Science and
Technology, Vol. 58(7), pp.1151-1178, 1998.
[21]Hibbitt, Karlsson & Sorensen, Inc., ABAQUS Theory
Manual and User Manual, Version 5.8, Providence, Rhode
Island, 2000.
[22]Kenaga, D., Doyle, J. F. and Sun, C. T., “The
Characterization of Boron/Aluminum Composite in the
Nonlinear Range as an Orthotropic Elastic-Plastic
Material”, Journal of Composite Materials, Vol.21,
pp.516-531, 1987.
[23]Lee, J. D., “Three Dimensional Finite Element
Analysis of Damage Accumulation in Composite
Laminate”, Computers & Structures, Vol. 15, 335-350,
1982.
[24]Liu, K.-S. and Tsai, S. W., "A Progressive Quadratic
Failure Criterion of a Laminate", Composites Science
and Technology, Vol. 58(7), pp.1023- 1032, 1998.
[25]Mindlin, R. D., “Influence of Rotator Inertia and
Shear Flexural Motions of Isotropic Elastic Plate”,
J. Appl. Mech., Vol.18, pp.31-38, 1951.
[26]McCartney, L. N., "Predicting Transverse Crack
Formation in Cross-Ply Laminate", Composites Science
and Technology, Vol. 58(7), pp.1069-1081, 1998.
[27]Narayanaswami, R. and Adelman, H. M., “Evaluation of
the Tensor Polynomial and Hoffman Strength Theories
for Composite Materials”, Journal of Composite
Materials, Vol.11, pp.366-377, 1977.
[28]Nanda, A. and Kuppusamy, T., “Three-Dimensional
Elastic-Plastic Analysis of Laminated Composite
Plates”, Composite Structures, Vol.17, pp.213-225,
1991.
[29]Petit, P. H. and Waddoups, M. E., “A Method of
Predicting the Nonlinear Behavior of Laminated
Composites”, Journal of Composite Materials, Vol.3,
pp.2-19, 1969.
[30]Rotem, A. and Hashin, Z., "Failure Modes of Angle Ply
Laminates", J. Compos. Mater., Vol. 9, pp.191-206,
1975.
[31]Rotem, A. and Nelson, H. G., "Fatigue Behavior of
Graphite-Epoxy Laminate at Elevated Temperatures",
ASTM STP 723, pp.152-173, 1981.
[32]Rowlands, R. E., “Strength (Failure) Theories and
Their Experimental Correlation”, in: G. C. Sih and A.
M. Skudra (eds.), Failure Mechanics of Composites,
Elsevier, Amsterdam, pp.71-125, 1985.
[33]Rotem, A., "Prediction of Laminate Failure with the
Rotem Failure Criterion", Composites Science and
Technology, Vol. 58(7), pp.1083-1094, 1998.
[34]Soden, P. D., Leadbetter, D., Griggs, P. R. and
Eckold, G. C., "The Strength of a Filament Wound
Composite under Biaxial Loading", Composites, Vol. 9,
pp.247-250, 1978.
[35]Sanders, R. C. and Grant, P., "The Strength of
Laminated Plates under In-plane Loading", BAe Report
SOR(P)130, January 1982.
[36]Soden, P. D., Kitching, R. and Tse, P.
C., "Experimental Failure Stresses for Filament
Wound Glass Fibre Reinforced Plastic Tubes under
Biaxial Loads", Composites, Vol. 20(2), pp.125-135,
1989.
[37]Sun, C. T. and Chen, J. L., “A simple Flow Rule for
Characterizing Nonlinear Behavior of Fiber
Composite”, Journal of Composite Materials, Vol.23,
pp.1009-1020, 1989.
[38]Soden, P. D., Kitching, R., Tse, P. C., Tsavalas, Y.
and Hinton, M. J., "Influence of Winding Angle on the
Strength and Deformation of Filament-Wound Composite
Tubes Subjected to Uniaxial and Biaxial Loads",
Composites Science and Technology, Vol. 46, pp.363-
378, 1993.
[39]Sun, C. T. and Tao, J. X., "Prediction of failure
Envelopes and Stress/Strain Behaviour of Composite
Laminates", Composites Science and Technology, Vol. 58
(7), pp.1125-1136, 1998.
[40]Soden, P. D., Hinton, M. J. and Kaddour, A.
S., "Laminate Properties Lay-up Configurations and
Conditions for a Range of Fibre-Reinforced Composite
Laminates", Composites Science and Technology, Vol. 58
(7), pp.1011-1022, 1998.
[41]Tsai, S. W. and Wu, E. M., “A General Theory of
Strength for Anisotropic Materials”, Journal of
Composite Materials, Vol.5, pp.58-80, 1971.
[42]Vaziri, R., Olson, M. D. and Anderson, D. L., “A
Plasticity-Based Constitutive Model for Fibre-
Reinforced Composite Laminates”, Journal of Composite
Materials, Vol.25, pp.512-535, 1991.
[43]Wolfe, W. E. and Butalia, T. S., "A Strain-Energy
BasedFailure Criterion for Non-linear Analysis of
Composite Laminates Subjected to Biaxial Loading",
Composites Science and Technology, Vol. 58(7), pp.1107-
1124, 1998.
[44]Zhu, H. and Sankar, B. V., “Evaluation of Failure
Criteria for Fiber Composites Using Finite Element
Micromechanics”, Journal of Composite Materials, Vol.
32, pp.766-782, 1998.
[45]Zinoviev, P., Grigoriev, S. V., Labedeva, O. V. and
Tairova, L. R., "Strength of Multilayered Composites
under Plane Stress State", Composites Science and
Technology, Vol. 58(7), pp.1209-1223, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊