跳到主要內容

臺灣博碩士論文加值系統

(35.153.100.128) 您好!臺灣時間:2022/01/19 04:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱士榮
研究生(外文):Shih-Jung Chiu
論文名稱:因溫度效應引致之複合圓錐層殼挫曲與動態不穩定分析
指導教授:吳致平
指導教授(外文):Chih-Ping Wu
學位類別:博士
校院名稱:國立成功大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:90
語文別:中文
論文頁數:96
中文關鍵詞:複合圓錐層殼熱挫曲動態不穩定分析微擾法三維漸近解析理論Mathieu—Hill方程式古典殼理論一階剪力變形理論
相關次數:
  • 被引用被引用:0
  • 點閱點閱:422
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文根據三維彈性理論,藉由微擾法,進行異向性複合圓錐層殼受熱場作用下之挫曲與動態不穩定分析。文中利用三維漸近解析理論,對基本方程作適當的無因次化並對場量變數漸近展開,可將三維彈性方程式分離出不同階數、層次分明且具遞迴特性之微分方程組;利用遞迴方程式沿厚度方向進行連續積分,引入外表面之應力為零的條件,其臨界熱挫曲荷重可由每一階層方程組得到之對應矩陣,求解特徵值問題而得之。而對於層殼受週期性動態熱場作用下之動態不穩定分析,可由求解Mathieu—Hill方程式獲得,應用Bolotin所建議之求解程序,可解得熱荷重頻率之不穩定區間。而古典理論即為此漸近理論之首階近似解。
文中利用微分數值法,引用正規化條件,將中曲面模態位移場正規化,使所求得之各階場量皆為唯一解。利用已正規化位移場量求得較高階運動方程式之非齊性項,並藉由可解條件求出較高階未知模態函數之修正量,進而求得較高階之靜態臨界熱挫曲荷重與動態熱荷重頻率不穩定區間;並由三維漸近解評估各式古典殼理論與一階剪力變形理論在複合圓錐層殼熱挫曲分析之適用性。
目 錄
摘 要 I
誌 謝 II
目 錄 III
表目錄 VI
圖目錄 VII
第一章 緒論 1
1.1 研究動機 1
1.2 本文內容 2
第二章 複合圓錐層殼熱挫曲分析 3
2.1 文獻回顧與研究動機 3
2.2 三維彈性方程式 4
2.3 無因次化及漸近展開 6
2.4 熱挫曲漸近公式 10
2.4.1 首階方程式 10
2.4.2 高階方程式 13
2.5 應用問題解析 14
2.6 微分數值法 19
2.6.1 節點座標之選取 19
2.6.2 權係數之求法 20
2.7 數值範例 21
2.8 小結 26
第三章 因溫度效應引致之複合圓錐層殼動態不穩定分析 27
3.1文獻回顧與研究動機 27
3.2 三維彈性方程式 28
3.3 無因次化及漸近展開 30
3.4 漸近方程式 34
3.4.1 首階方程式 34
3.4.2 高階方程式 36
3.5 溫度效應動態不穩定分析 38
3.5.1 傅立葉級數展開法 39
3.5.2 微分數值法 40
3.5.3 Bolotin法 41
3.5.3.1 主要不穩定區間 41
3.5.3.2 次要不穩定區間 43
3.6 正規化與可解條件 45
3.7 數值範例 48
3.7.1 自由振動分析 49
3.7.2 動態不穩定分析 50
3.8 小結 53
第四章 各式複合圓錐層殼古典理論之熱挫曲分析評估 54
4.1 文獻回顧與研究動機 54
4.2 基本公式推導 57
4.2.1 古典殼理論之基本方程式 58
4.2.2 一階剪力變形理論之基本方程式 62
4.3 微分數值法求解臨界熱挫曲荷重 63
4.3.1 各式之CST 64
4.3.2 各式之 FSDT 65
4.4 數值範例 66
4.5 小結 74
第五章 總結 75
參考文獻 77
附錄A 82
附錄B 84
附錄C 87
附錄D 89
附錄E 92
Agrento, A. and Scott, R. A., Dynamic instability of layered anisotropic circular cylindrical shells, part I: theoretical development. J. Sound Vibr., vol. 162, pp. 311—322, 1993a.
Agrento, A. and Scott, R. A., Dynamic instability of layered anisotropic circular cylindrical shells, part II: numerical results. J. Sound Vibr., vol. 162, pp. 323—332, 1993b.
Argento, A., Dynamic stability of a composite circular cylindrical shell subjected to combined axial and torsional loading. J. Comp. Mater., vol. 27, pp. 1722—1738, 1993.
Beliaev, N. M., Stability of prismatic rods subjected to variable longitudinal forces. Collection of Papers: Engineering Constructions and Structural Mechanics. Leningrad, 149—167, 1924.
Bellman, R. and Casti, J., Differential quadrature and long-term integration, J. Math. Anal. Appl., vol. 34, pp. 235—238, 1971.
Bellman, R. B., Kashef, G. and Casti, J., Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations, J. Comp. Physics, vol. 10, pp. 40—52, 1972.
Bert , C. W. and Malik, M., Differential quadrature method in computational mechanics: A Review, Appl. Mech. Rev., ASME, vol. 49, pp. 1—27, 1996.
Bert, C. W. and Birman, V., Parametric instability of thick orthotropic circular cylindrical shells. Acta Mech., vol. 71, pp. 61—76, 1988.
Bert, C. W. and Malik, M., Differential quadrature: a powerful new technique for analysis of composite structures, Compos. Struct., vol. 39, pp. 179—189, 1997.
Birman, V. and Bert, C. W., Dynamic stability of reinforced composite cylindrical shells in thermal fields. J. Sound Vibr., vol. 142, pp. 183—190, 1990.
Bolotin, V. V., The Dynamic Stability of Elastic Systems. Holden—Day, San Francisco, 1964.
Brush, D. O. and Almroth, B. O., Buckling of Bars, Plates, and Shell, McGraw-Hill, New York, USA, 1975.
Chandrashekhara, K. and Kumar, B. S., Static analysis of thick laminated circular cylindrical shells, J. Pressure Vessel Tech., vol. 115, pp. 193—200, 1993.
Chandrashekhara, K. and Kumar, D. V. T. G. P., Assessment of shell theories for the static analysis of cross-ply laminated circular cylindrical shells, Thin-Walled Struct., vol. 22, pp. 291—315, 1995.
Chang, J. S. and Chiu, W. C., Thermal buckling analysis of antisymmetric laminated cylindrical shell panels, Int. J. Solids Struct., vol. 27, pp. 1295—1309, 1991.
Chern, Y. C. and Chao,C. C., Comparison of netural frequencies of laminates by 3-d theory, part ii: curved panels, J. Sound Vibr., vol. 230, pp. 1009—1030, 2000.
Donnell, L. H., Beams, Plates and Shells, McGraw-Hill, New York, 1976.
Du, H., Lim, M. K. and Lin, R. M., Application of generalized differential quadrature method to structural problems. Int. J. Numer. Meth. Eng., vol. 37, pp. 1881—1896, 1994.
Eslami, M. R., Ziaii, A. R. and Ghorbanpour, A., Thermoelastic buckling of thin cylindrical shells based on improved stability equations, J. Thermal Stresses, vol. 22, pp. 527—545, 1999.
Etitum P. and Dong, S. B., A comparative study of stability of laminated anisotropic cylinders under axial compression and torsion, Int. J. Solids Struct., vol. 32, pp. 1231—1246, 1995.
Flügge, W., Stresses in Shells, Springer-Verlag, New York, 1973.
Ganapathi, M. and Touratier, M., Dynamic instability of laminates subjected to temperature field. J. Engrg. Mech. ASCE , vol. 124, pp. 1166—1168, 1998.
Hyer, M. W., Stress Analysis of Fiber-Reinforced Composite Materials, McGraw-Hill, New York, 1997.
Jaunky, N. and Knight, N. F., An assessment of shell theories for buckling of circular cylindrical laminated composite panels loaded in axial compression, Int. J. Solids Struct., vol. 36, pp. 3799—3820, 1999.
Jones, R. M., Mechanics of Composite Materials, McGraw-Hill, New York, USA, 1975.
Kadi, A. S., A Study and Comparison of the Equations of Thin Shell Theories, Ph. D. Thesis, The Ohio State University, Columbus, 1970.
Kapania, R. K., A review on the analysis of laminated shells, J. Pressure Vessel Tech., vol. 111, pp. 88—96, 1989.
Kayran, A., Vinson, J. R. and Ardic, E. S., A method for the calculation of natural frequencies of orthotropic axisymmetrically loaded shells of revolution, J. Vibr. Acous., ASME, vol. 116, pp.16—25, 1994.
Koval, L. R., Effect of longitudinal resonance on the parametric instability of an axially excited cylindrical shell. J. Acoust. Soc. Amer., vol. 55, pp. 91—97, 1974.
Kraus, H., Thin Elastic Shells, Wiley, New York, 1967.
Leissa, A. W., Buckling and postbuckling theory for laminated composite plates. Turvey, G. J. and Marshall, I. H. (ed.) Buckling and Postbuckling of Composite Plates, Chapman and Hall, UK, 1995.
Love, A. E. H., A Treatise on the Mathematical Theory of Elasticity, Dover, New York, 1944.
Nagdi, P. M. and Berry, J. C., On the equations of motion of cylindrical shells, J. Appl. Mech., vol. 21, pp. 160—166, 1964.
Nayfeh, A. H., Introduction to Perturbation Techniques, John Wiley & Sons Inc., New York, USA, 1993.
Ng, T. Y. and Lam, K. Y., Dynamic stability analysis of cross-ply laminated cylindrical shells using different thin shell theories. Acta Mech., vol. 134, pp. 147—167, 1999.
Ng, T. Y., Lam, K. Y. and Reddy, J. N., Dynamic stability of cross-ply laminated composite cylindrical shells. Int. J. Mech. Sci., vol. 40, pp. 805—823, 1998.
Ng, T. Y., Lam, K. Y. and Reddy, J. N., Dynamic stability of cylindrical panels with transverse shear effects. Int. J. Solids Struct., vol. 36, pp. 3483—3496, 1999.
Noor, A. K. and Burton, W. S., Assessment of computational models for multilayered composite shells, Appl. Mech. Rev., vol. 43, pp. 67—97, 1990.
Noor, A. K. and Burton, W. S., Computational models for high-temperature multilayered composite plates and shells, Appl. Mech. Rev., ASME, vol. 45, pp. 419—446, 1992.
Noor, A. K. and Burton, W. S., Three-dimensional solutions for thermal buckling of multilayered anisotropic plates, J. Engng. Mech., ASCE, vol. 118, pp. 683—701, 1992.
Reddy, J. N., A review of refined theories of laminated composite plates, Shock Vibration Digest, vol. 22, pp. 3—17, 1990.
Reissner, E., A new derivation of the equations of the deformation of elastic shells, Amer. J. Math., vol. 63, pp. 177—184, 1941.
Saada, A. S., Elasticity Theory and Application, Pergamon Press, New York, USA, 1974.
Sanders, J. L., An improved first approximation theory for thin shells, NASA-TR-R24, 1959.
Shu, C. and Du, H., Free Vibration Analysis of Laminated Composite Cylindrical Shells by DQM, Comp. Part B, vol. 28, pp. 267—274.
Shu, C. and Richards, B. E., Application of generalized differential quadrature to solve two-dimensional incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 15, 791—798, 1992.
Shu, C., Free vibration analysis of composite laminated conical shells by generalized differential quadrature, J. Sound Vibr., vol. 194, pp. 587—604, 1996.
Soedel, W., Vibrations of Shells and Plates, Marcel Dekker, Inc., New York, USA, 1993.
Soldatos, K. P., A comparison of some shell theories used for the dynamic analysis of cross-ply laminated circular cylindrical panels, J. Sound Vibr., vol. 97, pp. 305—319, 1984.
Soldatos, K. P., Review of three dimensional dynamic analyses of circular cylinders and cylindrical shells, Appl. Mech. Rev., ASME, vol. 47, pp. 501—516, 1994.
Tani, J., Buckling of truncated conical shells under combined pressure and heating, J. Thermal Stresses, vol. 7, pp. 307—316, 1984.
Tauchert, T. R., Thermal buckling of thick antisymmetric angle-ply laminates, J. Thermal Stresses, vol. 10, pp. 113—124, 1987.
Tauchert, T. R., Thermally induced flexure, buckling, and vibration of plates, Appl. Mech. Rev., ASME, vol. 44, pp. 347—360, 1991.
Thangaratnam, R. K., Palaninathan, R. and Ramachandran, J., Thermal buckling of laminated composite shells, AIAA J., vol. 28, pp. 859—860, 1990.
Thornton, E. A., Thermal buckling of plates and shells, Appl. Mech. Rev., ASME, vol. 46, pp. 485—506, 1993.
Timarci, T. and Soldatos, K. P., Comparative dynamic studies for symmetric cross-ply circular cylindrical shells on the basis of a unified shear deformable shell theory, J. Sound Vibr., vol. 187, pp. 609—624, 1995.
Tong, L. and Wang, T. K., Simple solutions for buckling of laminated conical shells, Int. J. Mech. Sci., vol. 34, pp. 93—111, 1992.
Tong, L., Free vibration of laminated conical shells including transverse shear deformation. Int. J. Solids. Struct. 31, 443—456, 1994.
Vlasov, V. Z., Basic differential equations in the general theory of elastic shells, NACA-TM-1241, 1941.
Wu , C. P. and Chiu, S. J., Thermoelastic buckling of laminated composite conical shells, J. Thermal Stresses, vol. 24, pp. 881—901, 2001.
Wu, C. P. and Hung, Y. C., Asymptotic theory of laminated circular conical shells, Int. J. Engng. Sci., vol. 37, pp. 977—1005, 1999.
Wu, C. P. and Wu, C. H., Asymptotic differential quadrature solutions for the free vibration of laminated conical shells. Comput. Mech., vol. 25, pp. 346—357, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top