跳到主要內容

臺灣博碩士論文加值系統

(54.224.133.198) 您好!臺灣時間:2022/01/29 21:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:傅龍明
研究生(外文):Lung-Ming Fu
論文名稱:微晶片電滲流場之分析與應用
論文名稱(外文):Analysis and Application of Electroosmotic Flow in Microchips
指導教授:楊瑞珍楊瑞珍引用關係
指導教授(外文):Ruey-Jen Yang
學位類別:博士
校院名稱:國立成功大學
系所名稱:工程科學系
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:90
語文別:中文
論文頁數:137
中文關鍵詞:zeta 電位勢電滲流Nernst-Planck方程式Navier-Stokes方程式跑道效應bend ratio微管道
外文關鍵詞:zetta potentialelectroosmotic flowNernst-Planck equationNavier-Stokes equationrace-track effectbend ratiomicrochannel
相關次數:
  • 被引用被引用:7
  • 點閱點閱:1163
  • 評分評分:
  • 下載下載:213
  • 收藏至我的研究室書目清單書目收藏:0
本論文的研究目的主要在於微管電滲流場的理論基礎之探討,並應用於生物晶片中的檢測液注入技術及微電泳分離管道的設計方面。本文主要的研究重點分為三項,茲說明如下:
首先,在傳統微電滲流場的理論分析中,一般所使用的物理模式包括解Poisson-Boltzmann方程式來探討管壁與液相流體間之交互效應,‚解驅動電壓之Laplace方程式,求流場內每個位置所受正負極之電位勢,ƒ解 Navier-Stokes方程式內含驅動電壓與 zeta 電位勢所造成的物體力之綜合影響,而微管道內之流場狀態對電滲分離效應有極大之影響,因此對於微管內流場之了解,有極大助益於微電滲管道系統之設計與操作。在文獻上對於微管流場的壓力降大部分是不考慮的,但經由數值模擬的證實,沿著兩平行板方向確實有極小的壓力差的存在。在微管內部橫截面的壓力分佈也非常數的分佈。當雷諾數較大時微管內部橫截面的速度分佈呈現內凹的現象。而在 的彎管中可以發現分離泡(separation bubble)的存在,證明對流效應對微管流場是有影響的。而在應用方面以控制驅動電壓方式對於微管流場的混合與流場流動方向的控制也提出操作步驟。
其次,本論文提出更完整的Nernst-Planck方程式來解電荷密度場,如此可以呈現更真實電荷密度的分佈情況,使流場的模擬能更趨近於真實,而其物理模式包括解流體電荷之濃度方程式來探討流體電荷分佈情況及入口區效應對濃度場之影響,‚解電場之Poisson方程式,其包含壁面效應之zeta 電位勢及驅動電壓之電場分佈,將zeta 電位勢與驅動電壓場合成單一電場來計算,ƒ解 Navier-Stokes方程式內含流體電荷之濃度及電場所造成的物體力之綜合影響。如此讓我們了解電滲流場的入口長比傳統的壓力驅動流場大。在入口區電雙層的厚度比完全展開區薄。電雙層的重疊現象可用Nernst-Planck方程式表現出來。在應用方面用於檢測液的注入模擬與實驗結果相吻合,並設計出一新型的T型微管道可做為多功能連續進料之微管道。
最後,對於微電滲分離管道之幾何形狀和流場狀態對帶寬分佈效應的影響作探討。本論文以簡單的方形彎管為設計的概要,並以數值模擬及實驗方式來解決因跑道效應(race-track effect)所造成的帶寬擴大的現象,而影響分離管道的設計因素包含分離管道的幾何形狀、 彎角截面的速度分佈、彎管的bend ratio等性質將被討論,而在這結果當中folded square U-shaped turn channel對於微小化(Miniaturization)是最好的選擇,當bend ratio取4:1時對於消除跑道效應是最有效果的,在檢測時間上數值模擬與實驗結果是相吻合的。本文同時提出控制邊界zeta 電位勢的方法,應用於single square U-shaped channel中改善檢測液的帶寬分佈也得到很好的效果。
A theoretical study of electroosmotic microchannel flows foundation is investigated in this dissertation. The main focus is to find the optimum design and operation conditions, geometry effects on the band distribution of sample in microchannels. Our research consists of three main parts as expressed in the following.
First, in the classical electroosmotic microchannel flows, the physical models were based on (1) the Poisson-Boltzmann equation for the EDL (electrical double layer) potential, (2) the Laplace equation for the applied electrostatic field, and (3) the Navier-Stokes equations modified to include effects of the body force by the interaction between electrical and zeta potential. The flowfield conditions in the microchannel flows may have important impact on an electrophoresis performance. Understanding the flowfield physics in the microchannel is beneficial to the design or operation of an electrophoresis system. A small pressure difference along the parallel plates is detected, although it is always neglected in the literature. Pressure is not a constant across the channel height. The axial velocity profile is no longer flat across the channel height when the Reynolds number is large. A separation bubble is detected near the junction when the Reynolds number is large. By adequately changing operational electrical potential, the electroosmotic flow can be applicable to flow mixing and control.
Next, the entry flow induced by an applied electrical potential through microchannels between two parallel plates are analyzed in this dissertation. A nonlinear, two-dimensional Poisson equation governing the applied electrical potential and the zeta potential of solid-liquid boundary and the Nernst-Planck equation governing the ionic concentration distribution are numerically solved using a finite-difference method. The applied electrical potential and zeta potential are unified in the Poisson equation without using linear superposition. A body force caused by the interaction between the charge density and the applied electrical potential field is included in the full Navier-Stokes equations. The effects of the entrance region on the fluid velocity distribution, charge density boundary layer, entrance length and shear stress are discussed. The entrance length of the electroosmotic flow is longer than classical pressure-driven flow. The thickness of EDL in the entry region is thinner than that in fully developed region. The change of velocity profile is apparent in the entrance region and the axial velocity profile is no longer flat across the channel height when the Reynolds number is large.
Finally, the study is focus on the geometry and the flowfield conditions in the separation microchannel of an electrophoresis chip system, which may have important impact on the system’s separation efficiency. Understanding the geometry effect on the flow field physics in the separation microchannel is beneficial to the design or operation of an electrophoresis system. The turns in a microfabricated separation microchannel generally results in degraded separation quality. To avoid this limitation, channels are constructed with different types of turns to determine the optimum design that minimizes turn-induced band broadening. We have designed and tested various geometric bend ratios to greatly reduces this so-called “race-track” effect. The effects of the separation channel geometry, fluid velocity profile and bend ratio on the band distribution in the detection area are discussed. Results show that the folded square U-shaped channel is better for miniaturization and simplification. The band tilting was corrected and the race-track effect reduced in the detection area when the bend ratio is 4:1. The detection time obtained from the present numerical solution matches very well with the experimental data.
第一章、序論1
1-1、前言1
1-2、微機電系統1
1-3、微電泳效應的應用歷史2
1-4、電雙層(electrical double layer, EDL)的形成4
1-5、電雙層內部之離子濃度分佈5
1-6、微管流之速度場的形成6
1-7、研究動機7
1-8、本文架構8
第二章、電雙層分佈由Boltzmann 假設之流場方程式10
2-1、序論10
2-2、基本假設10
2-3、管壁與液相流體界面交互作用效應之Poisson-Boltzmann方程式11
2-4、解電壓場之Laplace 方程式13
2-5、解流場之Navier-Stokes方程式13
2-6、邊界條件17
2-7、程式驗證17
第三章、用Nernst-Planck方程式解電荷濃度場之流場方程式20
3-1、序論20
3-2、基本假設20
3-3、解電位勢 之Poisson 方程式21
3-4、解離子濃度場 和 之Nernst-Planck方程式22
3-5、解流場之Navier-Stokes方程式23
3-6、解帶寬分佈之濃度方程式27
3-7、邊界條件29
3-8、程式驗證30
第四章、微管流場之理論分析與應用32
4-1、序論32
4-2、參數定義33
4-3、壁面之zeta 電位勢33
4-4、微管流之速度場分析36
4-5、微管流之驅動力與壓力降39
4-6、微管流之體積流率與表面剪應力42
4-7、微管流之慣性效應45
4-8、流體流經 之彎管45
4-9、微管道之應用49
4-9-1、T型微管道之應用49
4-9-2、十字型微管道之應用52
4-10、結論58
第五章、微管流場之入口效應60
5-1、序論60
5-2、參數定義61
5-3、微電滲流場之形成61
5-4、微電滲流之入口區速度場分析63
5-5、微電滲流之電荷密度邊界層效應67
5-6、微電滲流之表面剪應力69
5-7、微管流之高強度壁面效應70
5-8、微管流之電荷密度場的重疊現象72
5-9、結論75
第六章、微流體晶片之檢測液的注射系統76
6-1、序論76
6-2、十字型微管道之注射系統76
6-3、T型微管道之注射系統82
6-4、多功能可控制進料式之T型微管道87
6-5、結論93
第七章、微管道幾何形狀對帶寬分佈之影響94
7-1、序論94
7-2、參數定義95
7-3、L-shaped channel97
7-4、Single square U-shaped channel102
7-5、Folded square U-shaped channel105
7-6、控制邊界zeta 電位勢效應改善檢測液的帶寬分佈112
7-7、結論117
第八章、總結118
8-1、數學模式118
8-2、理論分析118
8-3、實際應用119
參考文獻121
附錄A128
附錄B130
[1]Bao, M., Wang, W., “Future of Microelectromechanical Systems (MEMS),” Ssensors and Actuators A56, pp.135-141 (1996).
[2]Gravesen, P., Branebjerg, O. J. and Jensen, S. “Microfluidics — a Review,” Journal of Micromechanics And Microengineering, Vol. 3, pp. 168-182 (1993).
[3]Shoji, S., “Microfabrication Technologies and Micro-flow Devices for Chemical and Bio-chemical Micro Flow Systems, ”Microprocesses and Nanotechnology ''99, pp.72 —73 (1999).
[4]Harrison, D. J. and Berg, A., “Micro Total Analysis Systems ’98,” Kluwer Academic Publishers, Netherlands ( 1998).
[5]Tiselius, A., ”A New Apparatus for Electrophoretic Analysis of Colloidal Mixtures, “ Trans. Faraday Soc. 33, 524 (1937).
[6]Hjerten, S., Chromatogr. Rev., 9, 122 (1967).
[7]Virtanen, R., Acta Polytech. Scand., 123, 1 (1974).
[8]Jongenson, J. W. and Lukacs, K. D., “Zone Electrophoreisis in Open-Tubular Glass Capillaries,” Analytical Chemistry, 53, 1298-1302 (1981).
[9]Jongenson, J. W. and Lukacs, K. D., Analytical Chemistry, 27, 1551 (1981).
[10]Terabe, S., Otsuka, K., Tsuchiya, A. and Ando, T., “Electrokinetic Separations with Micellar Solutions and Open-Tubular Capillaries,” Analytical Chemistry, 567, 111-113 (1984).
[11]Hjerten, S., Liao. J. and Yao, K., J. Chromatographia, 387, 127. (1987).
[12]Cohen, A. and Karger, B., J. Chromatographia, 397, 409. (1987)
[13]Rose, D. J. and Jorgenson, J. W., “Characterization and Automation of Sample Introduction Methods for Capillary Zone Electrophoresis,” Analytical Chemistry, 60, 642 (1988).
[14]Harrison, D. J., Manz, A., Fan, Z. and Ludi, H., “Capillary Electrophoresis and Sample Injection Ssystems Integrated on a Planar Glass Chip,” Analytical Chemistry, 64, pp. 1926-1932 (1992).
[15]Seiler, K., Harrison, D. J. and Manz, A., ”Planar Glass Chips for Capillary Electrophoresis : Repetitive Sample Injection, Quantitation, Separation Efficiecy,” Analytical Chemistry, 65, pp. 1481-1488 (1993).
[16]Effenhauser, C. S. and Manz, A., “Glass Chip for High-Speed Capillary Electrophoresis Separations with Submicrometer Plate Heights,” Analytical Chemistry, 65, pp. 2637-2642 (1993).
[17]Effenhauser, C. S. and Manz, A., “Manipulation of Sample Fraction on a Capillary Electrophoresis Chip,” Analytical Chemistry, 67, pp. 2284-2287 (1995).
[18]Jacobson, S. C. and Hergenroden, R., “Effects of Injection Schemes and Column Geometry on the Performance of Microchip Electrophoresis Devices,” Analytical Chemistry, 66, pp. 1107-1113 (1994).
[19]Culbertson, C. T. and Jacobson, S. C., “Dispersion Sources for Compact Geometries on Microchips,” Analytical Chemistry, 70, pp. 3781-3789 (1998).
[20]Paegel, B. M. and Mathies, R. A., “Turn Geometry for Minimizing Band Broadening in Microfabricated Capillary Electrophoresis Channels,” Analytical Chemistry, 72, pp. 3030-30737 (2000).
[21]Hunter, R. J., “Zeta Potential in Colloid Science: Principles and Applications,” Academic Press, New York, (1981).
[22]Russel, W. B., Saville, D. A. and Schowalter, W. R., “Colloidal Dispersion,” New York, (1989).
[23]Knox, J. H., J. Chromatographia, 26, 329. (1989).
[24]Knox, J. H. and Grant, I. H., J. Chromatographia, 24, 135. (1987).
[25]Bianchi, F., Ferrigno, R. and Girault, H. H., “ Finite Element Simulation of an Electroosmotic-Driven Flow Division at a T-Junction of Microscale Dimensions,” Analytical Chemistry, 72, 1987-1993. (2000).
[26]Mala, G. M., Li, D., Werner, C., Jacobasch, H. -J., and Ning, Y. B., “Flow Characteristics of Water through a Microchannel between two Parallel Plates with Electrokinetic Effects,” Int. J. Heat and Fluid Flow, 18, 489-496 (1997).
[27]Mala, G. M., Li, D. and Dale, J. D., “Heat Transfer and Fluid Flow in Microchannels,” Int. J. Heat Mass Transfer, Vol. 40, No. 13, 3079-3088 (1997).
[28]Yang, C. and Li, D., “Electrokinetic Effects on Pressure-Driven Liquid Flows in Rectangular Microchannels,” J. of Colloid and Interface Science, 194, 95-107 (1997).
[29]Patankar, N. A., and Hu, H. H., “Numerical Simulation of Electroosmotic Flow,” Analytical Chemistry, Vol. 70, 1870-1881 (1998).
[30]Qiu, X. C., Hu, L., Masliyah, J. H. and Harrison, D. J., “Understanding Fluid Mechanics Within Electrokinetcally Pumped Microfluidic Chips,” I. Conference on Solid-State Sensors and Actuators, 16-19 (1997).
[31]Andreev, V. P., Dubrovsky, S. G. and Stepanov, Y. V., “Mathematical Modeling of Capillary Electrophoresis in Rectangular Channels,” J. Micro. Sep., 443-450 (1997).
[32]Yang, C., Li, D. and Masliyah, J. H., “Modeling Forced Liquid Convection in Rectangular Microchannels with Electrokinetic Effects,“ Int. J. Heat and Mass Transfer, 41, 4229-4249 (1998).
[33]Hu, L., Harrison, J. D. and Masliyah, J. H., “Numerical Model of Electrokinetic Flow for Capillary Electrophoresis,” J. of Colloid and Interface Science, 215, 300-312 (1999).
[34]Arulanandam, S., and Li, D., “Liquid Transport in Retangular Microchannels by Eletroosmotic pumping,” Colloids and Sufaces A: Physicochemical and Engineering Aspects, 161, 89-102 (2000).
[35]Ren, L. and Li, D., “Electroosmotic Flow in Heterogeneous Microchannels,” J. of Colloid and Interface Science, (accepted to appear in 2001)
[36]Dutta, p. and Beskok, A., “Analytical Solution of Combined Electroosmotic/ Pressure Driven Flows in Two-dimensional Straight Channels: Finite Debye Layer Effects,” Analytical Chemistry, 73, 1979-1986 (2001).
[37]Griffiths, S. and Nilson R. H., “Low-Dispersion Turns and Junctions for Microchannel Systems,” Analytical Chemistry, 73, 272-278 (2001).
[38]Yang, R. —J., Fu, L. —M and Lin, Y. —C., “Electroosmotic Flow in Microchannels,” J. of Colloid and Interface Science, Vol. 239, 98-105, (2001).
[39]Hoffmann, K. A. and Chiang, S. T., “Computational Fluid Dynamics for Engineers-Volume 1,” Wichita, Ks, USA, (1993).
[40]Chorin, A. J., “ A Numerical Method for Solving Incompressible Viscous Flow Problems,” J. Comput. Phys., 2, 12-26 (1967).
[41]Yang, R. —J., Jeng, Y. —R. and Fu, L. —M., “A Study on Eliminating Factorization and Linearization Errors,” Computational Fluid Dynamics Journal, 7, 397-404 (1999).
[42]Yang, R. —J., Fu, L. —M. and Hwang, C. —C., “Electroosmotic Entry Flow in a Microchannel,” J. of Colloid and Interface Science, 244, 173-179 (2001).
[43]Fu, L. —M., Yang, R. —J. and Lee, G. —B., “Analysis of Geometry Effects on Band Spreading of Microchip Electrophoresis,” Electrophoresis. (accepted to appear).
[44]Grossman, P. D., and Colburn, J. C., “Capillary Electrophoresis-Theory and Practice,” Academic Press, Inc., (1992).
[45]Taylor, G. I., “Dispersion of Soluble Matter in Solvent Flowing Through a Tube,” Proc. Roy. Soc., A219, 186-203. (1953).
[46]Tuckermann, D. B., and Pease, R. F. W., “Optimized Convective Cooling Using Micromachined Structrues,” J. Electrochem. Soc., 129, c98. (1982).
[47]Tuckermann, D. B., and Pease, R. F. W., “High-Performance Heat Sinks for VLSI,” IEEE Electron Device Lett., 2, 126-129. (1981).
[48]Rahman, M. M., and Gui, F., Adv. Electron. Package. 4(2), 685 (1993).
[49]Urbanck, W., Zemel, J. N., and Bau, H. H., J. Micromech. Microeng. 3, 206 (1993).
[50]Peng, X. F., Peterson, G. P. and Wang, B. X., “Friction Flow Characteristics of Water Flowing through Rectangular Microchannels,” Exp. Heat Transfer, 7, 249-264. (1994).
[51]Peng, X. F., Peterson, G. P. and Wang, B. X., “Heat Transfer Characteristics of Water Flowing through Microchannels,” Exp. Heat Transfer, 7, 265-283 (1994).
[52]Weast, R., Astle, M. J. and Beyer, W. H., CRC Press, Boca Raton (1986).
[53]Culbertson, C. T., Ramsey, R. S. and Ramsey, J. M., “Electroosmotically Induced Hydraulic Pumping on Microchips: Differential Ion Transport,” Analytical Chemistry, 72, 2285-2291. (2000).
[54]Jacobson, S. C. and Ramsey, J. M., “Electrokinetic Focusing in Microfabricated Channel Structure,” Analytical Chemistry, 69, 3212-3217. (1997).
[55]Ermakov, S. V., Jacobson, S. C. and Ramsey, J. M., “Computer Simulations of Electrokinetic Transport in Microfaricated Channel Structures,” Analytical Chemistry, 70, 4494-4504. (1998).
[56]Jacobson, S. C., Ermakov, S. V. and Ramsey, J. M., “Minimizing the Number of Voltage Sources and Fluid Reservoirs for Electrokinetic Valving in Microfluidic Devices,” Analytical Chemistry, 71, 3273-3276. (1999).
[57]Ermakov, S. V., Jacobson, S. C. and Ramsey, J. M., “Computer Simulations of Electrokinetic Injection Techniques in Microfluidic Devices,” Analytical Chemistry, 72, 3512-3517. (2000).
[58]Qu, W. and Li, D., “A Model for Overlapped EDL Fields,” J. of Colloid and Interface Science, Vol. 224, 397-407, (2000).
[59]Molho, J. I., Herr, A. E., Mosier Mosier, B. P., Stantiago, J. G. and Kenny, T. W., “Designing Corner Compensation for Electrophoresis in Compact Geometries”, Micro Total Analysis Systems, 287-290. (2000).
[60]Molho, J. I., Herr, A. E., Mosier, B. P., Stantiago, J. G. and Kenny, T. W., “Optimization of Turn Geometries for Microchip Electrophoresis,” Analytical Chemistry, 73, 1350-1360. (2001).
[61]Griffiths, S. K. and Nilson, R. H., “Low-Dispersion Turns and Junctions for Microchannel Systems,” Analytical Chemistry, 73, 272-278. (2001).
[62]Lee, G. —B., private communication, (2001).
[63]Huang G.-R., “Design and Fabrication of High-throughput Microfluidic Chips and Their Applications on Bio-medical Analysis,” M. S. Thesis, National Cheng Kung University, Tainan, Taiwan, 2001.
[64]Bianchi, F., Ferrigno, R. and Girault, H. H., “Finite Element Simulation of an Electroosmotic-Driven Flow Division at a T-junction of Microscale Dimensions,” Analytical Chemistry, 72, 1987-1993. (2000).
[65]Grabtree, H. J., Cheong, C. S., Tilroe, D. A. and Backhouse, C. J., “Microchip Injection and Separation Anomalies Due to Pressure Effects,” Analytical Chemistry, 73, 4079-4086. (2001).
[66]Arundell, M., Whalley, P. D. and Manz, A., “Indirect Fluorescence Detection of Phenolic Compounds by Capillary Electrophoresis on a Glass Device,” Fresenius J. Analytical Chemistry, 367, 686-691. (2000).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊