跳到主要內容

臺灣博碩士論文加值系統

(54.224.117.125) 您好!臺灣時間:2022/01/28 19:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林俊男
研究生(外文):Chun-Nan Lin
論文名稱:燃燒法合成氮化鋁之製程開發
論文名稱(外文):Process Development for Combustion Synthesis of Aluminum Nitride
指導教授:鍾賢龍
指導教授(外文):Shyan-Lung Chung
學位類別:博士
校院名稱:國立成功大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:90
語文別:中文
論文頁數:108
中文關鍵詞:燃燒合成法氮化鋁製程開發
外文關鍵詞:combustion synthesisaluminum nitrideprocess development
相關次數:
  • 被引用被引用:5
  • 點閱點閱:1222
  • 評分評分:
  • 下載下載:216
  • 收藏至我的研究室書目清單書目收藏:1
本論文探討以燃燒合成法合成氮化鋁,主要研究方向為合成製程新技術之開發與反應機構探討,可分為三個階段:(1)壓錠製程;(2)石墨坩堝製程;(3)鋁製容器製程。壓錠製程係將鋁粉與不同類型添加劑以適當比例(1:1-4:1)均勻混合後,再壓錠成型。結果顯示添加NH4X(X=F、Cl、Br、I)、CO(NH2)2、CH3(CH2)16COOH、CO2H(CH2)2CO2H可成功地於低氮壓下(∼0.4 MPa)合成氮化鋁,轉化率達~95 %。此類添加劑其特性為:(1)鋁熔點以下會氣化、分解或昇華,故反應錠形成多孔結構,有利於氮氣流動;(2)在燃燒反應初期,鋁粒子表面會先形成一殼狀結構,此結構可避免鋁熔聚,此外亦發現鹵化銨鹽類具有催化氮化反應特性。催化特性、殼狀結構與其對燃燒反應之影響於文中一併探討。
石墨坩堝製程根據壓錠製程之研究結果,進行改進之新技術,係將鋁粉添加少量添加劑(如氯化銨、尿素;0.3-1.5 wt %)或鋁粉添加不同比例氮化鋁粉(10-50 wt %)置入一石墨坩堝內,並由容器底部直接通氮氣,可成功地於低氮壓下(∼0.2 MPa)合成氮化鋁,轉化率達~98 %,此製程缺點為,產物靠近坩堝處轉化率低且會有碳污染問題,如坩堝為多孔,燃燒產物會滲入坩堝孔隙內,則又有產物與坩堝不易分離問題。
鋁製容器製程為根據壓錠製程與坩堝製程之研究結果,進行改進之新技術,係將鋁粉添加少量添加劑(如氯化銨、尿素;0.3-1.5 wt %)或鋁粉添加不同比例氮化鋁粉(10-50 wt %)或純鋁粉置入一多孔鋁製容器內,且於反應物粉體與鋁製容器間置入一層氮化鋁粉(厚度∼5 mm),並由容器底部直接通氮氣,可成功地於低氮壓下(∼0.2 MPa)合成氮化鋁,轉化率達~99.9 %。此製程特性為:(1)無須壓錠之繁複動作,且鋁製容器受熱後亦反應形成氮化鋁;(2)其反應路徑係由內往外傳遞與氮氣流動方向由外往內不同。研究顯示,添加劑受熱快速氣化、分解之氣體與由容器底部流經鋁粉之氮氣,可避免鋁粉因受熱而熔化聚集堵住孔隙。此外氮化鋁粉會附著於鋁粉表面,避免鋁粉與鋁粉直接接觸,導致受熱熔聚。文中將藉由引燃溫度與燃燒溫度的量測,並系統地探討各反應現象,根據實驗結果之分析以建立合成反應之機構。
Aluminum nitride powder was synthesized by the combustion synthesis (SHS) Method. The SHS processes reported in present study were divided into three categories. In one category, the reactant powders needed to be pressed into reactant compact (refered to as compaction processes) ; in another category, the reactant powders are contained in refractory containers (e.g., graphite crucibles; referred to as crucible processes) ; and in the other category, the reactant powders are contained in aluminum containers.
In the compaction process, each additive was mixed with Al powder and the powder mixture was then pressed into a compact. The combustion reaction was ignited by heating the compact under N2 atmosphere of 0.4 MPa. Additives containing halogens were found to have a catalytic effect on the combustion reaction. High product yields were obtained when using additives of NH4X, CO(NH2)2, CH3(CH2)16COOH, and CO2H(CH2)2CO2H. In all these cases, egg-shell-like skins were observed to form on the Al particles at the early stage of combustion. The catalytic effect, formation of the egg-shell-like skins and their effects on the combustion process were investigated and discussed.
In the crucible process, small amounts of each additive (eg, ammonium chloride、urea : 0.3-1.5 wt %) or the diluent of AlN powder (10-50 wt %) was mixed with Al powder and the powder mixture was then poured into a graphite crucible. A nitrogen gas stream was introduced to the bottom of the container and allowed to flow up through the powder stack. The combustion reaction was ignited by heating the top surface of the powder stack. High product yields (~ 98 %) were obtained under N2 pressures of 0.2-0.5MPa. A small amount of residual Al was only detected in the outer portion of the combustion product.
In order to enhance the nitridation reaction at the outer portoion, a low-melting-point container, which was made up of thin and perforated aluminum sheet was used instead of graphite crucible. The aluminum container was converted completely to AlN during combustion reaction and high product yields (~ 99.5 %) were obtained. Effects of several process parameters on the product yield were investigated and discussed.
總目錄
中文摘要 (Ⅰ)
英文摘要 (Ⅲ)
總目錄 (Ⅴ)
圖表符號 (Ⅷ)
第一章緒論 (1)
第二章原理與研究動機(4)
2-1 氮化鋁物理性質(4)
2-2 熱傳導機構(5)
2-3 燃燒合成法(7)
2-4燃燒合成氮化物(10)
2.4-1 熱力學限制(10)
2.4-2動力學影響(13)
2-5燃燒法合成氮化鋁文獻回顧(14)
2-6研究動機(18)
第三章 實驗方法(19)
3-1 壓錠製程(19)
3-1-1 反應錠製備(19)
3-1-2 合成反應之進行(20)
3-1-3反應溫度量測(21)
3-2 耐高溫容器製程(21)
3-2-1反應物製備(21)
3-2-2 合成反應之進行(22)
3-2-3反應溫度量測(23)
3-3 鋁製容器製程(23)
3-3-1 反應物製備(23)
3-3-2 合成反應之進行(24)
3-3-3反應溫度量測(24)
3-4分析方法(24)
3.4-1 XRD分析(25)
3.4-2 SEM分析(25)
3.4-3 EDX 分析(25)
3.4-4 N/O分析(25)
3.4-5 Thermal conductivity analysis(25)
3.4-5 Particle Size Distribution分析(26)
3.4-6 轉化率分析(26)
第四章壓錠製程結果與討論(36)
4-1 結果(36)
4-1.1 燃燒現象與溫度變化(36)
4-1.2 添加劑對合成氮化鋁的影響(41)
4-1.3 添加劑對反應過程的影響(46)
4-1.4 產物型態(50)
4-2討論(56)
第五章 坩堝製程之結果與討論(60)
5-1結果(60)
5-1.1 燃燒現象(60)
5-1.2 添加劑種類與稀釋劑對引燃反應之影響(61)
5-1.3 改變加熱功率對引燃反應之影響(63)
5-1.4 燃燒波行進方向(63)
5-1.5燃燒產物結構(66)
5-1.6 添加劑與稀釋劑含量對轉化率的影響(66)
5-1.7 添加劑種類與稀釋劑其含量對產物型態之影響(70)
5-1.8 添加劑種類與稀釋劑其含量對燃燒波速度之影響(73)
5-1.9 氮氣壓力對轉化率之效應(73)
5-1.10 氮氣流率對轉化率之效應(74)
5-2 討論(80)
第六章 鋁製容器製程結果與討論(87)
6-1 結果(87)
6-1.1 鋁製容器與反應粉體間無置放氮化鋁粉層(87)
燃燒現象(87)
燃燒波行進方向(88)
燃燒產物結構(88)
6-1.2 鋁製容器與反應粉體間置放氮化鋁粉層(93)
燃燒現象(93)
燃燒波行進方向(93)
燃燒產物結構(94)
起始劑(94)
6-2 討論(101)
6-3 鋁製容器製程優點(102)
第七章 結論(104)
參考文獻(106)
1. G. A. Slack, R. A. Tanzilli, R. O. Pohl, and J. W. Vandersande, J. Phys. Chem. Solids, 48(7), 641 (1987).
2. T. J. Mroz, Jr., Ceram. Bull., 71(5), 782 (1992). .
3. L. M. Sheppard, Ceram. Bull., 69(11), 1801 (1990).
4. B. H. Mussler, Ceram. Bull., 79(6), 45 (2000).
5. F. J.-M. Haussonne, Mater. Manuf. Processes, 10(4), 717 (1995).
6. G. Selvaduray, and L. Sheet, Mater. Sci. Technol., 9(1), 463 (1993).
7. J. Subrahmanyam, and M. Vijayakumar, J. Mater. Sci., 27(3), 6249 (1997).
8. Y. Kurokawa, K. Utsumi, and H. Takamizawa, J. Am. Ceram. Soc., 71(7), 588 (1988).
9. D. P. H. Hasselman, J. Am. Ceram. Soc., 72(6), 967 (1989).
10. W. D. Callister, JR.,” Materials Science and Engineering : an Introduction” 4 th, ed. (1999).
11. W. J. Kim, D. K. Kim, and C. H. Kim, Mater. Syn. Proc., 3(1), 39 (1999).
12. A. G. Merzhanov and I. P. Borovinskaya, Combust. Sci. Technol., 10(1), 195 (1975).
13. H. C. Yi and J. J. Moore, J. Mater. Sci., 25(2), 1159 (1990).
14. 袁瀾章, 自蔓延高溫合成技術研究發展,武漢工業大學出版社 (1994).
15. Z. A. Munir, Ceram . Bull. , 67(2), 342(1990).
16. K. Hirao, Y. Miyamoto, and M. Koizumi, J. Am. Ceram. Soc., 69(4), C-60 (1986).
17. M. E. Grami and Z. A. Munir, J. Am. Ceram. Soc., 73(4), 1235 (1990).
18. J. Karpinski and S. Porowski, J. Grystal Growth, 66(2), 11 (1994).
19. National Bureau of Standards U. S. Department of Commerce, JANAF Thermochemical Tables, 2nd Edition, NSROS-NBS 37, Washington, D. C.(1971).
20. Z. A. Munir and J. B. Holt, J. Mater. Sci., 22(1), 710 (1987).
21. S. D. Dunmead, J. B. Holt, and D. D. Kingman, SHS and Densification of AlN, Lawrence Livermore National Laboratory, 186-194.
22. Y. Miyamoto, M. Koizumi, H. Sakagami, and H. Nakada, J Pat. 63-274605 (1987).
23. T. Tsuchida, t. Kitagawa, and M. Inagaki, J. Mater. Sci., 32(3), 5123 (1997).
24. J. B. Holt, Ind. Res. Dev., April, 88 (1983).
25. A. P. Amosov, G. V. Bichurov, Int. J. SHS., 1(2), 239 (1992).
26. H. Yamashita, Y. Imai, R. Oguma, T. Hayashi, M. Tamura, and H. Matsuo, J Pat. 61205606 (1986).
27. W. C. Lee, C. L. Tu, C. Y. Weng and S. L. Chung, J. Mater. Res., 10(3), 774 (1995).
28. S. L. Chung, W. L. Yu and C. N. Lin, J. Mater. Res., 14(5), 1928 (1999).
29. S. M. Bradshaw, and J. L. Spicer, J. Am. Ceram. Soc., 82(9), 2293 (1999).
30. J. Shin, D. H. Ahn, M. S. Shin, and Y. S. Kim, J. Am. Ceram. Soc., 83(5), 1021 (2000).
31. S. D. Dunmead, W. G. Moore, K. E. Howard, and K. C. Morse, US Pat. 5649278 (1997).
32. G. J. Jiang, H. R. Zhuang, W. L. Li, F. Y. Wu, B. L. Zhang, and X. R. Fu, J. Mater. Syn. Proc., 7(1), 1 (1999).
33. W. C. Lee and S. L. Chung, J. Mater. Res., 12(3), 805 (1997).
34. C. C. Hwang and S. L. Chung, J. Mater. Res., 13(3), 680 (1997).
35. Z. A. Munir, Ceram. Bull., 6 (2), 342 (1988).
36. M. Costantino and C. Firpo, J. Mater. Res., 6(11), 2397 (1991).
37. K. G. Nickel, R. Riedel and G. Petzow, J. Am. Ceram. Soc., 72 (10), 1804 (1989).
38. I. Kimura, K. Ichiya, M. Ishii and N. Hotta, J. Mater. Sci. Lett., 8(2), 303 (1989).
39. M. Bockwski, A. Witek, S. Krukowski, M. Wroblewski, S. Porowski, R. M. Marin- Ayral, and J. C. Tedenac, J. Mater. Syn. Proc., 5(6), 449 (1997).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top