跳到主要內容

臺灣博碩士論文加值系統

(3.87.250.158) 您好!臺灣時間:2022/01/25 19:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐逸明
研究生(外文):Yih-Ming Shyu
論文名稱:化學氣相沉積法及電漿輔助化學氣相沉積法於低溫合成奈米碳管之研究
論文名稱(外文):Low Temperature Growth of Carbon Nanotubes by Chemical Vapor Deposition and Plasma Assisted Chemical Vapor Deposition
指導教授:洪昭南洪昭南引用關係
指導教授(外文):Franklin Chau-Nan Hong
學位類別:博士
校院名稱:國立成功大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:90
語文別:英文
論文頁數:171
中文關鍵詞:化學氣相沉積電漿輔助化學氣相沉積奈米碳管竹節型奈米碳管表面張力低溫成長整齊排列碳自由基
外文關鍵詞:chemical vapor depositionplasma assisted chemical vapor depositionnanotubesbamboo type nanotubessurface tensionlow temperature growthwell alignedcarbon free radical
相關次數:
  • 被引用被引用:31
  • 點閱點閱:3289
  • 評分評分:
  • 下載下載:907
  • 收藏至我的研究室書目清單書目收藏:0
本論文分別以化學氣相沉積法及電漿輔助化學氣相沉積法探討於低溫下合成奈米碳管。
於化學氣相沉積法合成奈米碳管時,反應的壓力為90Torr、於400~700℃下觸媒熱裂解乙炔、一氧化碳及甲烷來合成奈米碳管;實驗結果顯示在較低的溫度下(400℃)成長的奈米碳管,整體而言排列整齊,各別碳管的管壁結構彎曲且缺隙較多,碳-碳的鍵結由於低溫的關係而有應力的存在。當奈米碳管成長溫度升高時,約至500℃時應力減小、碳管的結構缺隙減少,但失去整體的排列性及管徑均勻性,進一步的Raman分析顯示在較高的溫度下乙炔容易自行熱裂解而沉積,形成非晶質碳(carbon soot)。於400℃下改變Fe-Ni觸媒的組成(2~55%Fe),發現當Fe的組成增加時奈米碳管的成長速率也增快。在不同的前處理條件下合成奈米碳管,發現當以少量的碳源前處理時,可使觸媒更適合在低溫下合成奈米碳管。400℃下合成之奈米碳管場發射啟動電壓為11V/mm。
於電漿輔助化學氣相沉積法合成奈米碳管時,所使用的反應氣體為CH4/N2/H2、壓力在15Torr、溫度為400~700℃、並使用與化學氣相沉積法相同的觸媒和利用脈衡式直流電源(400W~1500W)來產生電漿,發現在純自由基的環境下(即在觸媒沒有直接與電漿接觸下)亦可順利的合成出整齊排列的奈米碳管。若將觸媒置放在陽極表面而直接面對電漿時,反而沒有碳的沉積。利用殘餘氣體分析儀及電漿光譜儀來分析電漿中的反應物種,發現NH3及碳的自由基在成長奈米碳管時扮演極重要的角色。經由改變電漿參數如輸出功率、脈衡寬度(pulse width)等,發現基板溫度為影響奈米碳管成長速率及結構之最重要的參數。當瓦數降低至600W而溫度約在460℃時,只能合成出實心的碳纖維。其原因在於在較低的基板溫度下碳原子自觸媒中析出時較易與氣相中的H原子反應形成C-H鍵,導致無法生成石墨面捲曲的奈米碳管。
以觸媒法合成奈米碳管時,若在反應氣氛中含有高活性的N原子時,易使奈米碳管長出竹節型的結構,其原因可能為N原子容易加入石墨結構內,而部份取代碳原子的位置,使原本表相當穩定的石墨面的表面能大幅增加,因而易與觸媒作用,造成在成長奈米碳管時觸媒容易拉伸,使觸媒形狀會因最低能量的要求而形成週期性的變化,因而成長出具有竹節的奈米碳管。在以電弧法合成奈米碳管時,由於合成之溫度較高,觸媒的表面張力較低,因此也會因奈米碳管的毛細作用而長出竹節型奈米碳管。
以硝酸鋰為觸媒時,由於Li原子太小及Li的表面能較低,因而無法生成中空狀的奈米碳管,僅能得到實心的Li-C化合物。以CH4及O2為反應氣體在低溫時可以合成出中空狀的石墨結構及捲曲的石墨面。由於沒有觸媒的幫助,此中空石墨結構的管徑非常不規則。
The growth of carbon nanotubes at low temperature was studied by thermal chemical vapor deposition and plasma chemical vapor deposition methods.
By thermal chemical vapor deposition method, carbon nanotubes could be synthesized from 400 to 700℃at 90Torr with catalysts using acetylene or carbon monoxide reactant. Well-aligned carbon nanotubes with defects and strain could be grown at 400℃. The strain of the nanotubes could be released with less defects when reaction temperature rose about 500℃. However, the well alignment disappeared due to the low growth density. Carbon soots, detected by Raman spectroscopy, were deposited on the substrate by thermal decomposition of acetylene in gas phase at a higher temperature. Compositions of Fe-Ni particle were also varied (2~55%Fe) to study its effect on the growth of carbon nanotubes at 400℃. The growth rate increased when the composition of Fe increased inside catalyst. The catalysts pretreated with dilute acetylene or carbon monoxide were suitable for carbon nanotube growth at a very low temperature. The turn on voltage for filed emission was 11V/mm.
By plasma chemical vapor deposition method, carbon nanotubes could be grown from 400 to 700℃at 15Torr using CH4/N2/H2 as reactants. Well-aligned carbon nanotubes could be grown by free radicals produced from the plasma in a wide range of growth conditions. No carbon was deposited on the catalyst-covered substrate when it is exposed directly to the plasma. NH and CN radicals, detected by residual gas analyzer and optical emission spectroscopy, play an important role in growing carbon nanotubes. The substrate temperature, the most important parameter, affects the carbon nanotube growths, especially at a low temperature. Only carbon fibers were formed when the substrate temperature was below 460℃ due to the hydrogenation of carbon in the hydrogen plasma. The formation of C-H bonds, by hydrogen atom and the carbon precipitated from saturated catalyst, prohibits the formation of curly and seamless graphite planes.
In both thermal and plasma chemical vapor deposition methods, bamboo type carbon nanotubes could be grown when active nitrogen atoms exist in the gas phase, possibly due to the modification of carbon nanotube structure by nitrogen reaction. Nitrogen atoms partially replace carbon atoms on the graphite network, inducing one carbon atom to be bonded to other species or destroying two six-member rings. The nitrogen addition increases the surface energy of carbon nanotubes, interacting more strongly with liquid catalysts when growing carbon nanotubes. The catalyst’s morphology thus varied periodically by minimizing its total energy. Bamboo type carbon nanotubes are then formed during this deformation processes. In the arc method, the high reaction temperature reduces the surface energy of the catalyst. Hence, catalysts can deform periodically balancing between the capillary force and the congregate force. Bamboo type carbon nanotubes were therefore formed.
Only lithium carbide was formed when lithium nitrate acetone was used as catalyst due to small atomic size and low surface tension of lithium. In lower temperature, low than 350℃, curl graphite plane and quasi-hollow graphite structures were grown when methane and oxygen was used as reaction gases.
目 錄
中文摘要I
英文摘要III
誌謝V
目錄VI
表目錄X
圖目錄XI
第一章序論1
1-1 前言1
1-2 研究動機與目的3
1-3 各章提要4
第二章文獻回顧6
2-1 奈米碳管的結構與性質6
2-1-1結構及電性6
2-1-1~1 單層奈米碳管的結構及電性6
2-1-1~2 多層奈米碳管的結構及電性8
2-1-1~3 場發射特性8
2-1-2機械特性9
2-1-3熱性質10
2-1-3~1熱穩定性10
2-1-3~2 熱導性10
2-1-3~3 熱膨脹性11
2-2 奈米碳管的生成機構21
2-2-1 非觸媒法21
2-2-2 觸媒法21
2-3 CVD法合成奈米碳管27
2-4 電漿輔助法合成奈米碳管31
第三章實驗方法與步驟33
3-1 實驗流程33
3-2 實驗系統設計34
3-2-1 化學氣相沉積(CVD)系統34
3-2-2 電漿輔助化學氣相沉積(PACVD)系統35
3-3 實驗材料42
3-3-1基板材料42
3-3-2觸媒材料42
3-3-3 反應物42
3-3-4 電極材料43
3-4 實驗步驟44
3-4-1 觸媒的製備44
3-4-1~1溶液法製備觸媒44
3-4-1~2 蒸鍍法製備觸媒44
3-4-2 CVD法合成奈米碳管之實驗步驟44
3-4-3 PACVD法合成奈米碳管之實驗步驟45
3-5 分析與鑑定46
3-5-1 表面形態觀察46
3-5-2 元素分析46
3-5-3 結構分析46
3-5-4 氣相物種分析46
3-5-5 碳結構分析46
第四章CVD法低溫合成奈米碳管49
4-1 前言49
4-2 CVD法低溫合成奈米碳管50
4-3 觸媒組成的影響55
4-4 前處理對合成奈米碳管的影響58
4-5 溫度效應62
4-6 氧氣對合成奈米碳管的影響67
4-7 不同碳源效應72
4-8 場發射76
4-9 結論78
第五章電漿輔助CVD法合成奈米碳管79
5-1 前言79
5-2 位置效應(碳自由基合成奈米碳管)81
5-3 氣體組成效應92
5-4 電漿中反應物種分析101
5-5電漿條件的影響106
5-6活性N原子對竹節狀奈米碳管的生成的影響122
5-7 Plasma CVD 法於低溫合成奈米碳管131
5-8 結論143
第六章總結論145
參考文獻147
附錄155
自述171
參考文獻
[1] M Kunpfer, Surface Science Reports 42(2001)1-74.
[2] LC Qin, X Zhao, K Hirahara, Y Miyamoto, Y Ando, S Iijima, Nature 408(2000)50.
[3] R Saito, M Fujita, G Dresselhaus, MS Dresselhaus, Physical Review B 46 (1992)1804.
[4] R Saito, M Fujita, G Dresselhaus, MS Dresselhaus, Applied Physics Letters 60(1992)2204.
[5] N Hamada, S Swada, A Oshiyama, Physical Review Lett. 68(1992)1579.
[6] R Saito, G Deresselhaus, MS Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press; London,(1998).
[7] TA Edison, US Patent 470,925(1892).(Issued March 15,1892).
[8] P Schutzenberger, L Schutzenberger, Compt. Rend. 111(1890)774.
[9] CH Pelabon, Compt. Rend. 137(1905)706.
[10] R Bacon, Journal of Applied Physics. 31(1960)283-290.
[11] C Herring, JK Galt, Physical Review 85(1952) 1060.
[12] AP Levitt, in Whisker Technology, Wiley-Interscience, New York,1970).
[13] AW Morre, AR Ubbelohde, DA Young, Brit. Journal of Applied Physics. 13(1962)393.
[14] LCF Blackman, AR Ubbelohde, Proceedings of the Royal Society of London - A 266(1962)20.
[15] MS Dresselhaus, G Dresselhaus, K Sugihara, IL Spain, HA Goldberg, Graphite Fibers and Filaments(Springer-Verlag, Berlin,1988), Vol. 5 of Springer Series in Materials Science.
[16] M Endo, Mecanisme de croissance en phase vapor de fibers de carbon(The growth mechanism of vapor-grown carbon fibers). PhD thesis, University of Orleans, Orleans, France, 1975. (in French).
[17] M Endo, PhD thesis, Nagoya University, Japan, 1978. (in Japanese).
[18] A Oberlin, M Endo, T Koyama, Carbon 14(1976)133.
[19] A Oberlin, M Endo, T Koyama, Journal of Crystal Growth 32(1976)335-349.
[20] HW Kroto, JR Heath, SC O’Brien, RF Curl, RE Smelley, Nature(London) 318(1985)162-163.
[21] S Iijima, Nature(London) 354(1991)56.
[22] DS Bethune, CH Kiang, MS Deveries, G Gorman, R Savoy, J Vazquez, R Beyars, Nature 363 (1993) 605.
[23] S Iijima, T Ichibashi, Nature 363 (1993) 603
[24] A Thess, R Lee, P Nikolaev, H Dai, P Petit, J Robert, C Xu, YH Lee, SG Kim, AG Rinzler, D T Colbert, GE Scuseria, D Tomanek, JE Fischer, RE Smalley, Science 273(1996)483
[25] C Journet, WK Maser, P Bernier, A Loiseau, M Lamy de Chapelle, S Lefrant, P Deniard, R Lee, JE Fischer, Nature 388(1997) 756.
[26] H Dai, A Rinzler, P Nikolaev, A Thess, DT Colbert, R E Smalley, Chemical Physics Letters 260 (1996) 471.
[27] RE Smalley, BI Yakobson, The Future of The fullerenes, Solid State Communications 107 (1998)597-606.
[28] YC Choi, DJ Bae, YH Lee, BS Lee, IT Han, WB Choi, NS Lee, JM Kim, Synthetic Metals, 108(2)(2000)159-163.
[29] YC Choi, YM Shin, YH Lee, BS Lee, GS Park, WB Choi, NS Lee, JM Kim, Applied Physics Letter 76(2000)2367-2369.
[30] J Jiao, PE Nolan, D Deraphin, AH Cutler, DC Lynch, Journal of the Electrochemical Society 143 (1996) 932.
[31] Y Chen, LP Guo, DJ Johnson, RH Prince, Journal of Crystal Growth 193 (1998) 342-346.
[32] LM Peng, ZL Zhang, ZQ Xue, QD Wu, ZN Gu, DG Pettifor, Stability of Carbon Nanotube: How Small Can They Be?, Physical Review Letters 85 (2000) 3249-3252.
[33] MS Dresselhaus, G Dresselhaus, R Saito, Physics of carbon nanotubes, Carbon 33(1995) 883-891.
[34] DH Oh, YH Lee, Physical Review B 58(1998) 7407-7411.
[35] ATR Lee, P Nikolaev, H Dai, P Petit, J Robert, C Xu, YH Lee, SG Kim, DT Colbert, G Scuseria, D Tomanek, JE Fisher, RE Smalley, Science 275(1996) 483.
[36] M Treones, N Grobert, J Olivares, JP Zhang, H Terrones, K Kordatos, WK Hsu, JP Hare, PD Townsend, K Prassides, AK Cheetham, HW Kroto, DRM Walton, Nature 388(1997) 52.
[37] M Terrones, WK Hsu, HW Kroto, DRM Walton, Nanotube: A Revolution in Materials Science, Topics in Current Chemistry 199(1998)1.
[38] JWG Wildoer, LC Venema, AG Rinzler, RE Smalley, C Dekker, Nature 391(1998) 59.
[39] SJ Tans, MH Devoret, HJ Dai, A Thess, RE Smalley, LJ Geerligs, C Dekker, Nature, 386(1997) 474.
[40] M Bockrath, et al. Science 275(1997) 1922.
[41] L Langer, et al., Physical Review Letters, 76(1996)479.
[42] H Dai, EW Wong, CM Lieber, Science 272(1996) 52.
[43] V Ivanov, JB Nagy, P Lambi, AA Lucas, XB Zhang, XF Xhang, D Bernaerts, GV Tendeloo, S Amelinckx, JV Lunduyt, Chemical Physics Letters 223(1994) 329.
[44] B Gan, J Ahn, Q Zhang, Rusli, SF Yoon, J Yu, QF Huang, K Chew, VA Ligatchev, XB Zhang, WZ Li, Chemical Physics Letters 333 (2001) 23-28.
[45] CJ Lee, J Park, Applied Physics Letters 77(2000)3397-3399.
[46] P Chen, X Wu, J Lin, H Li KL Tan, Carbon 38(2000)139-143.
[47] AM Rao, D Jacques, RC Haddon, W Zhu, C Bower, S Jin, Applied Physics Letters 76(2000) 3813-3815.
[48] JM Kim, WB Choi, NS Lee, JE Jung Diamond and Related Materials 9 (2000) 1184-1189.
[49] H Murakami, M Hirakawa, C Tanaka, H Yamakawa, Applied Physics Letters 76(2000)1776-1778.
[50] WB Choi, DS Chung, JH Kang, HY Kim, YW Jin, IT Han, YH Lee, JE Jung, NS Lee, Park GS, Kim JM, Applied Physics Letters 75(1999)3129-3131.
[51] J Rpbertson, Journal of Vacuum Science & Technology B 17 (1999) 659-665.
[52] RH Fowler, LW Nordheim, Proceedings of the Royal Society of London - A 119 (1928) 173.
[53] O. Groning, OM Kuttel, Ch Emmenegger, P Groning, L Schlapbach, Journal of Vacuum Science & Technology B 18 (2000) 665.
[54] S Iijima, C Brabec, A Maiti, J Bernholc,Journal of Chemical Physics 104(1996) 2089.
[55] NG Chopra, LX Benedict, VH Crespi, ML Choen, SG Louie, A Zettl, Nature 377(1995) 135.
[56] PM Ajayan, O Stephan, C Colliex, D Trauth, Science 265(1994) 1212.
[57] G Overney, W Zhong, D Tomanek, Physica D 27(1993) 93.
[58] DH Robertson, DW Brener, JW Minmire, Physical Review B 4(1992) 592.
[59] Kelly BT, Physics of Graphite Applied Science, London (1992).
[60] J Tersoff, Physical Review B 46(1992) 546.
[61] MR Falvo, GJ Clary, RM II Taylor, V Chi, FP Brooks, S Washburn, R Superfine, Nature 389(1997) 582.
[62] M Treacy, TW Ebesen, JM Gibson, Nature 381(1996) 678.
[63] EW Wong, PE Sheehan, CM Lieber. Science 277(1997) 1971.
[64] N Krishnankutty, C Park, NM Rodriguez, RTK Baker, Carbon 27(1989) 315-323.
[65] RS Ruoff, DC Lorents, Carbon 33(1995) 925-930.
[66] S Berber, YK Kwon, D Tomanek, Physical Review Letters 84 (2000) 4613-4616.
[67] J Hone, M Whitney, A Zettl, Synthetic Metals 103(1999) 2498-2499.
[68] TR Anthony, WF Banholzer, JF Fleischer, L Wei PK Kuo, RL Thomas, RW Pryor, Physical Review B 42(1990) 1104.
[69] RS Ruoff, SRI Report #MP 92-263, Menlo Park, CA (1992).
[70] S Bandow, Japanese Journal of Applied Physics, Part 2 36(1997)pp. L1403-L1405
[71] S Iijima, PM Ajayan, T Ichihashi, Physical Review Letters 69(1992) 3100.
[72] S Iijima, Materials Science and Engineering B 19(1993) 172.
[73] S Iijima, T Ichihashi, Y Ando, Nature 356(1992) 776.
[74] RE Smallley, Materials Science and Engineering B 19(1993) 1-7.
[75] M Endo, HW Kroto, Journal of Physical Chemistry 96(1992) 6491.
[76] Y Saito, T Yoshikawa, M. Inagaki, M. Tomita, T Hayashi, Chemical Physics Letters 304 (1993) 277.
[77] RTK Baker , PS Harries, Chemistry and physics of carbon, Marcel Dekker, New York(1978) 83.
[78] RTK Baker, MA Braber, PS Harries FS Feates, RJ Waite, Journal of catalysis 26(1972) 51.
[79] RTK Baker, JJ Chludzinski, Journal of catalysis 64(1980) 464.
[80] RTK Baker, PS Harries, RB Thomas, RJ Waite, Journal of catalysis 30(1973) 86.
[81] RTK Baker, RJ Waite, Journal of catalysis 37(1975) 101.
[82] T Baird, JR Fryer, Carbon 12(1974) 591.
[83] 梁國超,以中空陰極化學氣相沉積法成長鑽石膜及碳微管,國立成功大學化學工程研究所博士論文,1999.
[84] M Jung, KY Eun, JK Lee, YJ Baik, KR Lee, JW Park, Diamond and Related Materials 10 (2001) 1235-1240.
[85] S Xie, W Li, Z Pan, B Chang, L Sun, Materials Science and Engineering A286 (2000) 11-15.
[86] XH Chen, SQ Feng, Y Ding, JC Peng, ZZ Chen, Thin Solid Films 339 (1999) 6-9.
[87] CJ Lee, J Park, SY Kang, JH Lee, Chemical Physics Letters 323 (2000) 554-559.
[88] CJ Lee, JH Park, J Park, Chemical Physics Letters 323 (2000) 560-565.
[89] N Grobert et al., Applied Physics A-Materials Science & Processing 70 (2000) 175-183.
[90] M Terrones, et al., Nature 388 (1997) 52-55.
[91] M Terrones, et al., Chemical Physics Letters 285 (1998) 299-305.
[92] N Krishnankutty, C Park, NM Rodriguez, RTK Baker, ct37 (1997) 295-307.
[93] Q Liang, Q Li, DL Chen, DR Zhou, BL Zhang, ZL Yu, Chemical Journal of Chinese Universities-Chinese, 21 (2000) 623-625.
[94] NM Rodriguez, MS Kim, F Tortin, I Mochida, RTK Baker, Applied Catalyst A: Geneial 148 (1997) 265-282.
[95] CJ Lee, J Park, JM Kim, Y Huh, J Y Lee, K S No, Chemical Physics Letters 327 (2000) 277-283.
[96] XX Zhang, ZQ Li, GH Wen, KK Fung, J Chen, Y Li, Chemical Physics Letters 333 (2001) 509-514.
[97] Y Li, J Chen, Y Ma, J Zhao, Y Qin, L Chang, Chemical Communications (1999) 1141-1142.
[98] OP Krivoruchko, NI Maksimova, VI Zaikovskii, Aleksei N Salanov, Carbon 38 (2000) 1075-1082.
[99] K Hernadi, A Fonseca, JB Nagy, A Siska, I Kiricsi, Applied Catalysis A General 199 (2000) 245-255.
[100] M Nath, BC Satishkumar, A Govindaraj, CP Vinod, CRN Rao, Chemical Physics Letters 322 (2000) 333-340.
[101] WZ Li, SS Xie, LX Qian, BH Chang, BS Zou, WY Zhou, RA Zhao, G Wang, Science 274 (1996) 1701.
[102] ZW Pan, SS Xie, BH Chang, LF Sun, WY Zhou, G Wang, Chemical Physics Letters 299 (1999) 97-102.
[103] CW Wang, MK Li, SL Pan, HL Li, Chinese Science Bulletin 45 (2000) 1373-1376.
[104] JS Suh, JS Lee, Applied Physics Letters 75 (1999) 2047.
[105] J Li, C Papadopoulos, JM Xu, M Moskovits, Applied Physics Letters 75 (1999) 367-369.
[106] ZK Tang, HD Sun, J Wang, J Chen, G Li, Bulletin of Materials Science 22 (1999) 329-333.
[107] PE Nolan, MJ Schabel, DC Lynch, Carbon 33 (1995) 79-85.
[108] P Pinheiro, MC Schouler, P Gadelle, M Mermoux, E Dooryhee, Carbon 38 (2000) 1469-1479.
[109] AA Khassin, TM Yurieva, VI Zaikovskii, VN Parmon, Reaction Kinectic and Catalysis Letters 64 (1998) 63.
[110] S Herreyre, P Gadelle, Carbon 33 (1995) 234-237.
[111] M Andersson, PA Henning, K Jansson, M Nygren, Journal of Materials Research 15 (2000) 1822.
[112] AWH Mau, L Dai, Journal of the American Chemical Society 121 (1999) 10832-10833.
[113] S Huang, L Dai, AWH Mau, Journal of Physical Chemistry B 103 (1999) 4223-4227.
[114] H Araki, H Kajii, K Yoshino, Japanese Journal of Applied Physics part2-Letters 38 (1999) L1351-L1353.
[115] B Chapman, Glow Discharge Processes Sputtering and Plasma etching, John wiley & sons, New York, (1980) p52.
[116] SL Sung, SH Tsai, XW Liu, HC Shih, Journal of Materials Research 15 (2000) 502-510.
[117] Y Chen ZL Wang, JS Yin, DJ Jonhnson, RH Prince, Chemical Physics Letters 272 (1997) 178-182.
[118] C Bower, W Zhu, S Jin, O Zhou, Applied Physics Letters 77 (2000) 830.
[119] Y Chen, DT Shaw, Applied Physcis Letters 76 (2000) 2469.
[120] JL Kwo, M Yokoyama, WC Wang, FY Chuang, IN Lin, Diamond and Related Materials 9 (2000) 1270.
[121] Q Chen, L Dai, Applied Physics Letters 76(19) (2000) 2719.
[122] ZF Ren, ZP Huang, DZ Wang, JG Wen, JW Xu, JH Wang, LE Calvet, J Chen, JF Klemic, MA Reed, Applied Physics Letters 75 (1999) 1086.
[123] J Cermak and H Mehrer, Acta Metallurgica Materialia 42(4) (1994) 1345.
[124] TB Massalski, JL Murray, LH Bennet, H Baker, “Binary Alloy Phase Diagrams”, American Society for metals (1986).
[125] CJ Smithells, EA Brandes, “Metals Reference Book”, fifth edition, Butterworths (1976)
[126] GV Raynor, VG Rivlin, “Phase Equilibria in Iron Ternary Alloys”, The Institute of Metals (1988)
[127] W Zhu, C Bower, O Zhou, G Kochanski, S Jin, Applied Physics Letters 75 (1999) 873.
[128] KH Chen, JJ Wu, LC Chen CY Wen, PD Kichambare, FG Tarntair, PF Kuo, SW Chang, YF Chen, Diamond and Related Materials 9 (2000) 1249.
[129] M Okai, T Muneyoshi, T Yaguchi, S Sasaki, Applied Physics Letters 77(2000) 3468.
[130] VI Merkulov, DH Lowndes, YY Wei, G Eres, E Voelkl, Applied Physics Letters 2000; 76(24):3555-3557.
[131] ZF Ren, ZP Huang, JW Wu, JH Wang, P Bush, MP Siegal, PN Provencio, Science 282 (1998) 1105.
[132] ZP Huang JW Xu, ZF Ren, JH Wang, Applied Physics Letters 73 (1998) 3845.
[133] J Han, WS Yang, JB Yoo, CY Park, Journal of Applied Physics 2000; 88(12):7363-7365.
[134] SH Tsai, FK Chiang, TG Tsai, FS Shieu, HC Shih, Thin Solid Films 2000; 366(1-2):11-15.
[135] F Okuyama, T Hayashi, Y Fujimoto, Journal of Applied Physics 1998; 84(3):1626-1631.
[136] Q Zhang, SF Yoon, J Ahn, B Gan, Risli, MB Yu, Journal of Materials Research 15 (2000) 1749.
[137] Q Zhang, SF Yoon, J Ahn B Gan, Risli, MB Yu, Journal of Physics and Chemistry of Solid 61 (2000) 1179-1183.
[138] YC Choi, YM Shin, YH Lee, BS Lee, GS Park, WB Choi, NS Lee, JM Kim, Applied Physics Letters 2000; 76(17):2367-2369.
[139] H Cui, O Zhou, BR Stoner, Journal of Applied Physics 88 (2000) 6072.
[140] SH Tsai, CW Chao, CL Lee, HC Shih, Applied Physics Letters 1999; 74(23):3462-3464.
[141] OM Kuttel, O Groening, C Emmenegger, L Schlapbach, Applied Physics Letters 73 (1998) 2113.
[142] LC Qin, D Zhou, AR Krauss, DM Gruen, Applied Physics Letters 72 (1998) 3437.
[143] S Sivaram, Chemical vapor deposition: thermal and plasma deposition of electronic materials, Van Nostrand Reinhold: New York. 1995:98.
[144] F Tuinstra, JL Koenig, The Journal of Chemical Physics, 1970; 53(3):1126-1130.
[145] J Shiao, RW Hoffman, Thin Solid Films 283 1996) 145-150.
[146] JH Kaufman, S Metin, DD Saperstein, Physical Review B 39 1989) 13053.
[147] KJ Clay, SP Speakman, GAJ Amaratunga, SRP Silva, Journal of Applied Physics. 79 (1996) 7227-7233.
[148] H Chatei, J Bougdira, M Remy, P Alnot, C Bruch, JK Kruger, Daimond and Related Materials 6 (1997) 107-119.
[149] RWB Pearse, AG Gaydon, The Identificatino of Molecular Spectra 4th,Chapman and Hall, London, 1984.
[150] DR Lide, HPR Frederikse, Handbook of Chemistry and Physics 75th, CRC Press, London, (1995) p51-52.
[151] CA Somorjai, Introduction to Surface Chemistry and Catalysis, John Wiley. & Sons., New York, (1994) p448.
[152] EF Kukovitsky, SG L’vov, NA Sainov, Chemical Physics Letters 317 (2000) 65.
[153] CH Liang, GW Meng, LD Zhang, NF Shen, XY Zhang, Journal of Crystall Growth 218 (2000) 136-139.
[154] 王宏達,奈米碳管的成長與分析,國立成功大學化學工程研究所碩士論文,2001.
[155] K Mukhopadhyay, A Koshio, T Sugai, N Tanaka, H Shinohara, Z Konya. JB Nagy, Chemical Physics Letters 303 (1999) 117-124.
[156] R Andrews, D Jacques, AM Rao, F Derbyshire, D Qian, X Fan, E. C. Dickey, J. Chen, Chemical Physics Letters 303 (1999) 467-474.
[157] SB Sinnott, R Andrews, D Qian, AM Rao, Z Mao, EC Dickey, F Derbyshire, Chemical Physics Letters 315 (1999) 25-30.
[158] CJ Lee, KH Son, J Park, JE Yoo, Y Huh, JY Lee, Chemical Physics Letters 338 (2001) 113-117.
[159] WQ Han, PK Redlich, T Seeger, F Ernst, et al., Applied physics Letters 77(2000) 1807.
[160] DC Li, L Dai, S Huang, AWH Mau, ZL Wang, Chemical Physics Letters 316(2000) 349-355.
[161] YC Choi, YM Shin, SC Lim, DJ Bae, YH Lee, BS Lee, DC Chung, Journal of Applied Physics 88 (2000) 4898.
[162] C Bower, O Zhou, W Zhu, DJ Werder, S Jin, Applied Physics Letters 77 (2000) 2767.
[163] HJ Li, XB Wang, YL Song, YQ Lui, QS Li, L Jiang, DB Zhu, Chemical Journal of Chinese University-Chinese 22 (2001) 759-761.
[164] N Eustathopoulos, B Drevet, E Ricci, Journal of Crystal Growth 191 (1998) 268-274.
[165] Y Saito, Carbon 33 (1995) 979-988.
[166] TW Ebbesen, Journal of Physics and Chemistry of Solids 57 (1996) 951-955.
[167] N Demoncy, O Stephan, N Brun, C Colliex, A Loiseau, H Pascard, Synthetic Metals 103 (1999) 2380-2383.
[168] CH Kiangm, MS Dresselhaus, R Beyers, DS Bethune, Chemical Physics Letters 259 (1996) 41-47.
[169] A Skapski, Acta Materialia 4 (1959)576.
[170] AT Matveev, D Golberg, VP Novikov LL Klimkovich, Y Bando, Carbon 39 (2001) 137-158.
參考文獻
[A1] P Chen, PF Wang, GD Lin, HB Zhang, KR Tsai, Chemical Journal of Chinese University-Chinese 16 (1995) 1783-1784.
[A2] M Yodasaka, R Kikuchi, Y Ohki, E Ota, S Yoshimura, Applied Physics Letters 70 (1997)1817.
[A3] VV Kovalevski, AN Safronov, Carbon 36 (1998) 963-968.
[A4] NA Kiselev, J Slona, DN Zakharov, EF Kukovitsku, JL Hutchison, J Hammer, AS Kotosonov, Carbon 36 (1998) 1149-1157.
[A5] Y Gao, J Liu, M Shi, SH Elder, JW Virden, Applied Physics Letters 74 (1999) 3642.
[A6] S Fan, W Liang, H Dang, N Franklin T Tombler, M Chapline, H Dai, Physica E 8 (2000) 179-183.
[A7] NR Franklin, H Dai, Advanced Materials 12(2000) 890.
[A8] AM Cassell, NR Franklin, TW Tombler, EM Chan, J Han, H Dai, Journal of the American Chemical Society 121 (1999) 7975-7976.
[A9] Y Avigal, R Kalish, Applied Physics Letters 78 (2001) 2291-2293.
[A10] P Chen, HB Zhang, GD Lin, Q Hong, KR Tsai, Carbon 35 (1997) 1495-1501.
[A11] A Govindaraj, R Sen, AK Santra, BV Nagaraju, Materials Research Bulletin 33 (1998) 663-667.
[A12] P Nikolaev, MJ Bronikowski, RK Bradley, F Rohmund, DT Colbert, KA Smith, RE Smalley, Chemical Physics Letters 313 (1999) 91-97.
[A13] A Meier, VA Kirillov, GG Kuvshinov, YI Mogilnykh, A Reller A Steinfeld, A Weidenkaff, Chemical Engineering Science 54 (1999) 3341-3348.
[A14] Q Liang, BC Liu, SH Tang, ZJ Li, Q Li, LZ Gao, BL Zhang, ZL Yu, Acta Chimica Sinica 58 (2000) 1336-1339.
[A15] M Yudasaka, R Kikuchi, Y Ohki, S Yoshimura, Carbon 35 (1997) 195-201.
[A16] BK Pradhan, T Toba, T Kyotani, A Tomita, Chemistry of Materials 10 (1998) 2510-2515.
[A17] H Araki, H Kajii, K Yoshino, Japanese Journal of Applied Physics part2-Letters 38 (1999) L836-L838
[A18] SM Huang, LM Dai, AWH Mau, Journal of Physical Chemistry B 103 (1999) 4223-4227.
[A19] S Huang, L Dai, AWH Mau, Materials Communications 9 (1999) 1221-1222.
[A20] HD Sun, ZK Tang, J Chen, G Li, Applied Physics A-Materials Science & Processing 69 (1999) 381-384.
[A21] BC Satishkumar, A Govindaraj, CNR Rao, Chemical Physics Letters 307 (1999) 158-162.
[A22] SW Liu, XH Tang, Y Mastai, I Felner, A Gedanken, Journal of Materials Chemistry 10 (2000) 2502-2506.
[A23] L Ci, J Wei, B Wei, J Liang, X Xu, D Wu, Carbon 39 (2001) 329-335.
[A24] A Cao, L Ci, G Wu, B Wei, C Xu, J Liang, D Wu, Carbon 39 (2001) 137-158.
[A25] MS Kim, NM Rodriguez, RTK Baker, Journal of Catalysis 131 (1991) 60.
[A26] ZF Ren, ZP Huang, JW Xu, DZ Wang, JH Wang, AIP Conference Proceedings 486 (1999) 263-267.
[A27] YC Choi, DJ Bae, YH Lee, et al., Journal of Vacuum Science & Technology A- Vacuum Surface and Films 18 (2000) 1864-1868.
[A28] JH Han, WS Yang, JB Yoo, CY Park, Journal of Applied Physics 88 (2000) 7363.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top