跳到主要內容

臺灣博碩士論文加值系統

(54.83.119.159) 您好!臺灣時間:2022/01/17 09:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃俊騰
研究生(外文):Jun-Teng Hung
論文名稱:四核銅錯化物的合成與反應
論文名稱(外文):Synthesis and Reactions of Tetranuclear Copper( I ) Complexes
指導教授:許拱北許拱北引用關係
指導教授(外文):Kom-Bei Shiu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2001
畢業學年度:90
語文別:中文
論文頁數:218
中文關鍵詞:超分子自我辨識自我組裝雙羧酸
外文關鍵詞:SupramoleculeSelf-recognitionSelf-assemblingdicarboxylic acid
相關次數:
  • 被引用被引用:0
  • 點閱點閱:595
  • 評分評分:
  • 下載下載:124
  • 收藏至我的研究室書目清單書目收藏:0
錯化物[Cu2(μ- dppm)2(MeCN)2][PF6]2與五種雙羧酸進行反應,得到四銅錯化物[{Cu2(μ- dppm)2}2(μ4,η4—O2C—X—CO2)][PF6]2,( X = CH2 (2)、CH2CH2 (3)、C6H4 (4)、C6H4C6H4 (5)、trans-CH=CH (6))。這些化合物已經由元素分析、IR和NMR光譜定出。其中3、4、5和6的晶體結構已經由X-ray單晶繞射解出。3的晶體含有3.5個丙酮分子,是三斜晶系, 空間群是Pī, a = 15.1352(3), b = 17.5068(4), c = 22.0689(4) Å, α = 101.843(1), β = 99.789(1), γ = 93.382(1)°, V = 5613.0(2) Å3, Z = 2, R = 0.0479, Rw = 0.1082;根據22441繞射數據(強度>2σ), GOF = 1.028。 4的晶體含有1.25個二氯甲烷分子,是四斜晶系, 空間群是I4/m, a = 16.1612(7), b = 16.1612(7), c = 43.9429(17) Å, V = 11477.2(8) Å3, Z = 4, R = 0.0576, Rw = 0.1821;根據6687繞射數據(強度>2σ), GOF = 1.039。5的晶體含有2個丙酮分子,是單斜晶系, 空間群是P21/n, a = 14.5557(3), b = 22.0803(4), c = 18.9248(4) Å, β = 91.109(1)°, V = 6081.2(2) Å3, Z = 2, R = 0.0735, Rw = 0.1585;根據12127繞射數據(強度>2σ), GOF = 1.072。6的晶體含有4個二氯甲烷分子,是單斜晶系, 空間群是P21/n, a = 11.2695(7),
b = 33.6399(14), c = 18.9248(9) Å, β = 107.582(1)°, V = 5541.9(5) Å3, Z = 2, R = 0.0779, Rw = 0.2151;根據12713繞射數據(強度>2σ), GOF = 1.041。
一系列的辨識實驗發現;各種溶劑分子對不同錯化物的辨識力大小為:甲醇,5>6>2>4>3;乙醚,5>4>3>2>6;正己烷,5>3>4>6>2;甲苯,4>3>5>6>2;喃,5>4>3>6>2;乙,4>5>6>2>3;丙酮,4>5>2>6>3。
各種錯化物對不同溶劑的辨識力大小為:2;乙>甲醇∼丙酮>甲苯∼喃>乙醚>正己烷。3;乙>甲苯>喃∼丙酮>甲醇>乙醚>正己烷。4;乙>甲苯>丙酮>喃>甲醇>乙醚>正己烷。5;乙>喃>甲醇>丙酮>乙醚>正己烷>甲苯。6;乙>甲醇>丙酮>喃>甲苯>乙醚∼正己烷。
四銅錯化物進一步與4,4’-雙分子反應得到固態高分子材料的無機錯化物[{Cu2(μ- dppm)2}2(μ4,η4—CO2—X—CO2)(4,4’-bipyridine)]n [PF6]2n ( X = CH2 (8)、CH2CH2 (9)、C6H4 (10)、C6H4C6H4 (11)、trans-CH=CH (12) );而錯化物 8的晶體結構已由X-ray單晶繞射解出。8的晶體含有5個正己烷分子,是單斜晶系, 空間群是Pc, a = 28.3052(3), b = 15.3564(2), c = 29.8175(3) Å, β = 100.8720(3)°, V = 12728.0(2) Å3, Z = 4, R = 0.0670, Rw = 0.1565;根據43554繞射數據(強度>2σ), GOF = 1.043。錯化物8、9、10及12會溶解於二氯甲烷,在形成四銅單位及分離之4,4’-雙分子。

[Cu2(μ- dppm)2(MeCN)2][PF6]2 reacted with five dicarboxylic acid to produce tetracopper complexes [{Cu2(μ- dppm)2}2(μ4,η4—O2CXCO2)] [PF6]2 ( X = CH2 (2)、CH2CH2 (3)、C6H4 (4)、C6H4C6H4 (5)、trans-CH=CH (6) ). These new complexes were characterized by elemental analysis, IR, and NMR spectra, together with the solid-state structures of 3-6 determined by X-ray diffraction methods. Crystal data:3•3.5acetone, triclinic, Pī, a = 15.1352(3), b = 17.5068(4), c = 22.0689(4) Å, α = 101.843(1), β = 99.789(1), γ = 93.382(1)°, V = 5613.0(2) Å3, Z = 2, R = 0.0479, Rw = 0.1082, base on 22441 with intensity>2σ, GOF = 1.028. 4•1.25CH2Cl2, tetragonal, I4/m, a = 16.1612(7), b = 16.1612(7), c = 43.9429(17) Å, V = 11477.2(8) Å3, Z = 4, R = 0.0576, Rw = 0.1821, base on 6687 with intensity>2σ, GOF = 1.039. 5•2acetone, monoclinic, P21/n, a = 14.5557(3), b = 22.0803(4), c = 18.9248(4) Å, β = 91.109(1)°, V = 6081.2(2) Å3, Z = 2, R = 0.0735, Rw = 0.1585;base on 12127 with intensity>2σ, GOF = 1.072. 6•4CH2Cl2, monoclinic, P21/n, a = 11.2695(7), b = 33.6399(14), c = 18.9248(9) Å, β = 107.582(1)°, V = 5541.9(5) Å3, Z = 2, R = 0.0779, Rw = 0.2151, base on 12713 with intensity>2σ, GOF = 1.041.
A series of recognition experiments were carried out and found the recognition trend of different complexes toward each solvent molecule:MeOH, 5>6>2>4>3;Et2O, 5>4>3>2>6; Hexane, 5>3>4>6>2;MePh, 4>3>5>6>2;THF, 5>4>3>6>2;MeCN, 4>5>6>2>3;Me2CO, 4>5>2>6>3; and that of different solvents toward each complex:2, MeCN>MeOH∼Me2CO>MePh∼THF>Et2O>Hexane;3, MeCN>MePh>THF∼Me2CO>MeOH>Et2O>Hexane;4, MeCN>MePh>THF>Me2CO>MeOH>Et2O>Hexane;5, MeCN>THF>MeOH>Me2CO>Et2O>Hexane>MePh;6, MeCN>MeOH>Me2CO>THF>MePh>Et2O∼Hexane。
Further reaction of complexes with one equivalent of 4,4’-bipyridine afforded polymeric solid compounds,[{Cu2(μ- dppm)2}2(μ4,η4—CO2XCO2)(4,4’-bipyridine)]n [PF6]2n ( X = CH2 (8)、CH2CH2 (9)、C6H4 (10)、C6H4C6H4 (11)、trans-CH=CH (12)). The solid-state structures of 8-12 were also supported by that of 8 determined by X-ray diffraction methods. Crystal data:8•5hexane, monoclinic, Pc, a = 28.3052(3), b = 15.3564(2), c = 29.8175(3) Å, β = 100.8720(3)°, V = 12728.0(2) Å3, Z = 4, R = 0.0670, Rw = 0.1565, base on 43554 with intensity>2σ, GOF = 1.043. The tetracopper unit and one 4,4’-bipyridine molecule were reformed by dissolving complexes 8-10 and 12 in CH2Cl2.

中文摘要……………………………………I
英文摘要……………………………………II
致謝 ……………………………………III
目錄 ……………………………………IV
圖目錄 ……………………………………VI
表目錄 …………………………………… X
光譜圖目錄…………………………………XI
簡稱 ……………………………………XVI
第一章 緒論1
1-1.超分子化學 (Supramolecular chemistry ...1
1-1-1.超分子的意義......1
1-1-2.超分子的實例......1
1-1-3.受體與介質......4
1-1-4.無機方形分子的總類....6
1-1-5.方形分子的辨識.......18
1.2研究的構想與計劃........22
第二章 實驗部分...24
2-1.儀器、藥品及實驗裝置........24
2-2.錯合物的合成與鑑定..........27
2-3.錯化物的養晶................45
2-4.錯化物的辨識實驗............46
2-4-1.溶劑..........46
2.4-2.陰離子........47
第三章 結果與討論.......48
3-1.四銅錯化物與固態高分子之無機錯化物的合成......48
3-1-1.四銅錯化物 [{Cu2(μ- dppm)2}2(μ4,η4- CO2XCO2)][PF6]2的合成..48
3-1-2. 固態高分子之無機錯化物[{Cu2(μ-dppm)2}2(μ4,η4-CO2-X-CO2) (4,4’-bipyridine)]n[ PF6]2n的合成............49
3-2.四銅錯化物與固態高分子之無機錯化物的光譜討論..50
3-3.辨識實驗的結果討論.....56
3-4.四銅錯化物和高分子的晶體探討.........62
3-5.[{Cu2(μ- dppm)2}3(μ-1, 3, 5-Cyclohexanetricarboxylato)][PF6]3 (7)的合成…64
3-6. [Cu4(dppm)4(μ4 —η1 ,η2 — C≡C)][PF6]2 (13) 的合成與討論.....66
3-7. [Ru3(μ3 — O)(CO)6(dppm)2] (14) 的合成與討論.....67
第四章 結論.......69
參考文獻..........70
附錄一:I.R, 1H-NMR, 和31P{1H} NMR光譜圖..............74
附錄二:各晶體之數據、原子的位置與鍵角和鍵長..........164

(1) Jean-Marie Lehn, Angew. Chem. Int. Ed. Engl. 1988, 27, 90.
(2) Jean-Marie Lehn, Angew. Chem. Int. Ed. Engl. 1990, 29, 1304.
(3) David S. Lawrence, Tao Jiang, and Michael Levett. Chem. Rev. 1995, 95, 2229.
(4) Douglas Philp and J. Fraser Stoddart. Angew. Chem. Int. Ed. Engl. 1996, 35, 1154.
(5) Howard M. Colquhoun, J. Fraser Stoddart, and David J. Williams, Angew. Chem. Int. Ed. Engl. 1986, 25, 487.
(6) Makoto Fujita, Chemical Society Reviews, 1998, 27, 417.
(7) Peter J. Stang and Bogdan Olenyuk, Acc. Chem. Res. 1997, 30, 502.
(8) Jean-Marie Lehn. Supramolecular chemistry :concepts and perspectives, New York , 1995
(9) George M. Whitesides, John P. Mathias, Christopher T. Seto, Science, 1991, 254, 1312.
(10) Makoto Fujita, Daichi Oguro, and Katsuyuki Ogura, Nature, 1995, 378, 30
(11) V. Balzani and F. Scandola, Supramolecular Photochemistry, Ellis Horwood, New Yprk, 1991.
(12) A. P. de Silva, H. Q. N. Gunaratne and C. P. McCoy, Nature 1993, 364,42.
(13) U. Kolle, Angew. Chem. Int. Ed. Engl. 1991, 30, 956.
(14) F. Garnier, Angew. Chem. Int. Ed. Engl. 1989, 28, 513.
(15) H. Meier, Organic Semiconductors, Verlag Chemie, Weinheim, 1974.
(16) J. Simon and J.-J. Andre, Molecular Seniconductors, Springer, Berlin, 1985
(17) B. L. Feringga, W. F. Jager and B. de Lange, Tetrahedron, 1993, 49, 8267.
(18) J. H. Burroughes, Nature, 1990, 347, 539.
(19) N. S. Hush, A. T. Wong, G. B. Bacskay and J. R. Reimers, J. Am. Chem. Soc. 1990, 112, 4192.
(20) Jean-Marie Lehn, Science, 1985, 227, 849.
(21) R. Schumacher, Angew. Chem. Int. Ed. Engl. 1990, 24, 329.
(22) R. M. Penner, M. j. Heben, T. L. Longin, N. S. Lewis, Science, 1990, 250, 1118.
(23) J. F. Rusling, Acc. Chem. Res. 1991, 24, 75.
(24) Alfter, F., Supramolecular chemistry : an introduction, New York, 1991.
(25) K. Kern et al., Phys. Rev. Lett. 1991, 67, 855.
(26) H. Meier, Organic Semiconductors, Verlag Chemie, Weinheim, 1974.
(27) M. C. Etter, Acc. Chem. Res. 1990, 23, 120
(28) W. L. Jorgensen and J. Pranata, J. Am. Chem. Soc. 1990, 112, 2008
(29) R. Taylor and O. Kennard, Acc. Chem. Res. 1984, 17, 320.
(30) J. Pranata, S. G. Wierschke and W. L. Jorgensen, J. Am. Chem. Soc. 1991, 113, 2810
(31) Jean-Marie Lehn, J. Chem. Soc., Chem. Commun. 1990, 479.
(32) J. A. Zerkowski, and G. M. Whitesides, J. Am. Chem. Soc. 1990, 121, 9025.
(33) J. A. Zerkowski, and G. M. Whitesides, J. Am. Chem. Soc. 1992, 114, 5473.
(34) Anne Milet, Tatiana Korona, and Elise Kochanski., J. Chem. Phys. 1999, 17, 7727
(35) K. N. Houk, Stephan Menzer, and David J. Williams. J. Am. Chem. Soc. 1999, 121, 1479
(36) W. M. Muller and W. H. Watson, Topics Curr. Chem. 1984,125, 131
(37) K. Morokuma, Acc. Chem. Res. 1977, 10, 294.
(38) P. A. Kollman, Acc. Chem. Res. 1977, 10, 365.
(39) C. J. Pedersen, J. Am. Chem. Soc. 1967, 89, 7017.
(40) C. J. Pedersen, Angew. Chem. Int. Ed. Engl. 1988, 27, 1053.
(41) M. R. Truter, Struct. Bonding 1973, 16, 71
(42) Jean-Marie Lehn, Pure Appl. Chem. 1978, 50, 871.
(43) Jean-Marie Lehn, Acc. Chem. Res. 1978, 11, 49
(44) U. Koert, M. M. Harding and Jean-Marie Lehn, Nature 1990,346, 339
(45) Makoto Fujita; Jun Yazaki; and Katsuyuki Ogura. J. Am. Chem. Soc. 1990, 112, 5645.
(46) Peter J. Stang and Danh H. Cao. J. Am. Chem. Soc. 1994, 116, 4981
(47) Christopher A. Hunter and Luke D. Sarson. Angew. Chem. Int. Ed. Engl. 1994, 33, 2313.
(48) Bernhard Lippert. J. Am. Chem. Soc. 1994, 116, 616.
(49) Peter J. Stang and Danh H. Cao. J. Am. Chem. Soc. 1995, 117, 6273.
(50) R. M. Nielson, J. T. Hupp and E. I. Yoon. J. Am. Chem. Soc. 1995, 117, 9085
(51) Robert V. Slone, Joseph T. Hupp, and Thomas E. Albrecht- Schmitt. Inorg. Chem. 1996, 35, 4096.
(52) Peter J. Stang.; Olenyuk, B.; Fan, J.; Arif, A. M. Organometallics 1996, 15, 904
(53) Peter J. Stang and Bogdan Olenyuk. Angew. Chem. Int. Ed. Engl. 1996, 35, 732.
(54) Peter J. Stang and Danh H. Cao. J. Am. Chem. Soc. 1997, 119, 5164
(55) Garry S. Hanan, Dirk Volkmer, Jean-Marie Lehn, and Dieter Fenske. Angew. Chem. Int. Ed. Engl. 1997, 36, 1842
(56) Robert V. Slone and Joseph T. Hupp. Inorg. Chem. 1997, 36, 5422
(57) Cristian S. Campos-Fernandez, Rodolphe Clerac, and Kim R. Dunbar. Angew. Chem. Int. Ed. Engl. 1999, 38, 3477
(58) Elisabetta Iengo, and Enzo Alessio. Angew. Chem. Int. Ed. Engl. 2000, 39, 1096
(59) Kurt D. Benkstein, Joseph T. Hupp, and Charlotte L. Stern. Inorg. Chem. 1998, 37, 5404.
(60) Kurt D. Benkstein, Joseph T. Hupp, and Charlotte L. Stern. J. Am. Chem. Soc. 1998, 120, 12982
(61) T. Rajendran, Fang-Yuan Lee, Gene-Hsiang Lee, Shie-Ming Peng, Chong Mou Wang, and Kuang-lieh Lu. Inorg. Chem. 2000, 39, 2016
(62) Benesi, H. A.; Hildebrand, J. H. J. Am. Chem. Soc. 1949, 71, 2703
(63) Makoto Fujita, Jun Yazaki, and Katsuyuki Ogura. Tetrahedron Letters, 1991, 5589.
(64) Suzanne Belanger, Joseph T. Hupp, and Thomas G. Garrell. J. Am. Chem. Soc. 1999, 121, 557
(65) Josefina Diez, M. Pilar Gamasa, and Jose Gimeno, J Chem. Soc. Dalton Trans.1987, 1275
(66) Josefina Diez, M. Pilar Gamasa, and Jose Gimeno, J Chem. Soc. Dalton Trans.1990, 1027
(67) Robert A. Holwerda, Polyhedron , 1994, 5, 737
(68) K. L. Scott, K. Wieghardt, and A. G. Sykes, Inorganic Chemistry, 1973, 12, 655
(69) CRC Handbook of Chemistry and Physics, 2000-2001,81st Edition
(70) Charles J. Pouchert , Jacqlynn Behnke. The Aldrich Library of 13C and 1H FT NMR Spectra. 1993 by Aldrich Chemical Company, Inc.
(71) G. MARC LOUDON, Organic Chemistry, third edition ,1995
(72) Jitendra K. Bera ,F Albert Cotton and Richard A. Walton, J. Am. Chem. Soc. 2001,123, 1515
(73) Vivian Wing-Wah Yam, Wendy Kit-Mai Fung, and Kung-Kai Cheung, Angew. Chem. Int. Ed. Engl. 1996, 35, 1100

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top