跳到主要內容

臺灣博碩士論文加值系統

(54.92.164.9) 您好!臺灣時間:2022/01/23 05:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖彥婷
研究生(外文):Liao, Yen-ting
論文名稱:磷氧化合物及其衍生物的鍵結與構形分析
論文名稱(外文):The Analysis of Bonding and Conformations of Phosphorus Oxide and Its Derivatives
指導教授:蘇世剛
指導教授(外文):Su, Shyh Gang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:140
中文關鍵詞:磷氧化合物磷酸聚磷酸
外文關鍵詞:P4O6phosphatepolyphosphateATP
相關次數:
  • 被引用被引用:2
  • 點閱點閱:517
  • 評分評分:
  • 下載下載:80
  • 收藏至我的研究室書目清單書目收藏:0
我們利用AM1與ab initio量子力學方法計算磷氧化合物P4On(n=6-10)、磷酸和聚磷酸分子以及ATP等分子的最佳化結構。根據磷氧化合物的分析結果發現P4On分子內磷氧鍵彼此偶合的現象,並且在P4On分子中,增加磷上的terminal磷氧鍵會使磷周圍的bridged磷氧鍵鍵結變強,使P4On分子的結構扭曲。
在磷酸和聚磷酸中看到未解離的聚磷酸有分子內氫鍵存在而形成環狀,完全解離的聚磷酸分子則展開成鍊狀,推測是分子上的terminal氧原子帶有負電荷,導致terminal氧原子之間彼此排斥而使分子形成鍊狀。對完全解離之三聚磷酸以上的聚磷酸分子,其bridged磷氧鍵鍵序呈對稱分佈,且以最外側的bridged磷氧鍵鍵序最弱,緊接著最弱之bridged磷氧鍵的為鍵序最強的bridged磷氧鍵,分子中間部分的bridged磷氧鍵鍵序為次強的。由結果顯示聚磷酸的共振模式可能為:分子兩端的terminal磷氧鍵,其上的電子delocalize的範圍限於分子兩端的PO3 group,中間部分的terminal氧原子,其電子delocalize的範圍限於分子中間部分的PO2 group,因此整個聚磷酸可視為由兩端的PO3 group和中間部分的PO2 group並用bridged 氧原子以P-O-P linkage的方式連接起來。
聚磷酸在接上Adenosine形成AMP、ADP、ATP至模擬分子A “6”P等分子後,其bridged磷氧鍵鍵序以分子中polyphosphate chain最外端的bridged磷氧鍵最弱,bridged磷氧鍵依序呈現了“弱-強-弱-強”的變化順序,和聚磷酸分子的bridged磷氧鍵鍵序比較,ATP等分子的bridged磷氧鍵鍵序強弱差異更大,水解反應時很容易脫去一個個的PO3 group,更有利於反應的進行。由聚磷酸和ATP等分子的bridged磷氧鍵鍵序的變化,也印證了此類分子水解反應機構的實驗結果。
We used the AM1 and ab initio methods to calculate phosphorus oxides P4On (n=6-10), phosphate, polyphosphates, and ATP molecule. According to the results of P4On (n=6-10), we found that the PO bonds in P4On will couple each other. The increased terminal P=O bonds will make other bridged P-O bonds stronger than before and cause its structure distorted.
The un-dissociated poly-phosphoric acids are cyclic by the intra-molecular hydrogen bonds. The polyphosphates are linear because of the repulsions between the negative charges on terminal oxygen atoms. As for the polyphosphates which their degree of polymerization is above three, the bond orders of the bridged P-O bonds are symmetrical: the outer bridged P-O bonds are weakest, and near the weakest bridged P-O bonds are strongest. The bond orders of those middle bridged P-O bonds are at the moderate range compared to the outer ones. The result shows that the resonance modes of polyphosphates have two kinds of situations: the electrons on the terminal oxygen atoms at two extremities of polyphosphates would delocalize in the area of PO3 group, and the electrons on the terminal oxygen atoms at middle parts of polyphosphates would delocalize in the area of PO2 group. Thus it can be seen, polyphosphates are constituted by two PO3 groups as two end points and a few PO2 groups as the middle parts linked by bridged oxygen atoms.
The bond order distributions of bridged P-O bonds in AMP, ADP, and ATP molecules are some how different from polyphosphates and exhibits the order of “weak-strong-weak- strong” phenomena. The differences of the bond orders of the bridged P-O bonds in AMP, ADP, and ATP molecules are larger than that in polyphosphates. Hence the bridged P-O bonds in AMP, ADP, and ATP molecules are broken more easily during the hydrolysis reaction. Also, the results provide proofs of the experiments of hydrolysis reaction mechanism for such molecules.
---目錄---
口試證明書...................................................i
授權書.......................................................ii
中文摘要.....................................................iii
英文摘要.....................................................vi
誌謝.........................................................v
第一章 序論................................................1
第二章 分析方法............................................21
第三章磷氧化合物 P4On ( n = 6-10)的鍵結與構形分析.........27
第四章磷酸及聚磷酸的鍵結與構形分析........................60
第五章AMP, ADP及ATP分子的鍵結與構形分析...................98
結論.........................................................132
參考文獻.....................................................136
(1)L. Stryer, “ Biochemistry-4th” 1996, 443-459, Freeman
(2)A. Simon et al., Chem. Ber. 1997, 130, 1235-1240
(3)G. C. Hampson; A. J. Stosick, J. Am. Chem. Soc. 1938, 60, 1814-1822
(4)D. W. J. Cruickshank, Acta Cryst., 1964, 17, 677-679
(5)M. Jansen; M. Moebs, Inorg. Chem. 1984, 23, 4486-4488
(6)Lester Andrews* and Robert Withnall, J. Am. Chem. Soc.1988, 110, 17, 5605-5611
(7)Zofia Mielke and Lester Andrews, Inorg. Chem. 1990, 29, 2773-2779
(8)Lawrence L. Lohr, J. Phys. Chem. 1990, 94, 4832-4835
(9)D.E.C. Corbridge; “Phosphorus- An outline of its chemistry, biochemistry and Technology” Elsevier, 1990, 210-236
(10)Henk-Jan de Jager and A. M. Heyns; J. Phys. Chem. A 1998, 102, 2838-2841
(11)C. A. Fyfe, H. M. zu Altenschildesche, and J. Skibsted; Inorg. Chem. 1999, 38, 84-92
(12)Ching-Han Hu, Tore Brinck; J. Phys, Chem. A 1999, 103, p.5379-5386
(13)J. Florian and A. Warshel; J. Phys, Chem. B, 1998, 102, 719-734
(14)Chi-Li Liu, N. Hart, and H. D. Peck JR; Science 1982, 217, 363-364
(15)M. Baltscheffsky; Nature 1967, 216, 241-243
(16)M. Baltscheffsky, In Regulatory Functions of Biological Membranes( Järnefelt, J., ed.) Biochim. Biophys. Acta Library 1968, 11, 277-286
(17)M. Baltscheffsky, and PAL Nyren; “Bioenergetics”(Ernster ed.) Elsevier Science Publishers B. V. 1984, p187- 206
(18)科學月刊著, “諾貝爾的榮耀-化學桂冠-Nobel Laureates Chemistry”, 天下遠見出版社, 1999年, 21-30, 187-194;
(19)W. S. Allison, Acc. Chem. Res. 1998, 31, 819-826
(20)D. F. Moffett, S. B. Moffett, and C. L. Schauf; “Human Physiology”, Mosby-Year book, Inc. 1993, 82-83
(21)Armstrong, D. R.; Perkins, P. G. and Stewart, J. P.; J. Chem. Soc. Dalton, 1973,627
(22)R. C. Haddon, J. Am. Chem. Soc., 1986, 108, 837
(23)M. Mühlhäuser, B. Engels, C.M. Marian, Sigrid D. Peyerimhoff, P. J. Bruna and Martin Jansen; Angew. Chem. Int. Ed. Engl. 1994,33, 563-565
(24)S. Strojek and M. Jansen; Chem. Ber. 1996,129, 121-124
(25)Z. Mielke, L. Andrews; J. Phys. Chem. 1989, 93, 2971-2976
(26)R. C. Mowrey, B. A. Williams; J. Phys. Chem. A 1997, 101, 5748-5752
(27)A. R. S. Valentim, B. Engels, S. Peyerimhoff; Inorg. Chem. 1997,36, 2451-2457
(28)A. R. S. Valentim, B. Engels, S. D. Peyerimhoff; J. Phys. Chem. A. 1998, 102, 3690-3696
(29)A. R. S. Valentim, B. Engels, S. D. Peyerimhoff; J. Phys. Chem. A. 1999, 103, 6214-6219
(30)H. Saint-Martin, I. Ortega-Blake, A. Les, and L. Adamowicz; Biochim. Biophys. Acta 1991, 1080, 205-214
(31)M. E. Colvin, E. Evleth, and Y. Akacem; J. Am. Chem. Soc. 1995, 117, 4357-4362
(32)B. Ma, C. Meredith, and H. F. Schaefer; J. Phys. Chem. 1994, 98, 8216-8223
(33)H. Saint-Martin and L. E. Vicent; J. Phys. Chem. A 1999, 103, 6862-6872
(34)W. J. McCarthy, D. M. A. Smith, L. Adamowicz, H. Saint-Martin, and I. Ortega-Blake; J. Am. Chem. Soc. 1998, 120, 6113-6120
(35)H. Saint-Martin, L. E. Ruiz-Vicent, A. Ramirez-Solis, and I. Ortega-Blake; J. Am. Chem. Soc. 1996, 118, 12167-12173
(36)P. George, R. J. Witonsky, M. Trachtman, C. Wu, W. Dorwart, L. Richman, W. Richman, F. Shurayh and B. Lentz, Biochim. Biophys. Acta 1970, 223, 1-15
(37)L. de Meis, Biochim. Biophys. Acta 1989, 973, 333-349
(38)A. T. Blades, Y. Ho, and P. Kebarle, J. Am. Chem. Soc. 1996, 118, 196-201
(39)M. W. Schmidt, S. Yabushita, and M. S. Gordon; J. Phys. Chem. 1984, 88, 382-389
(40)M. W. Schmidt, and M. S. Gordon; J. Am. Chem. Soc. 1985, 107, 1922-1930
(41)D. B. Chesnut; J. Am. Chem. Soc. 1998, 120, 10504-10510
(42)D. B. Chesnut; J. Am. Chem. Soc. 1999, 121, 2335-2336
(43)T. Stefan, and R. Janoschek; J. Mol. Model. 2000, 6, 282-288
(44)D. G. Gilheany; Chem. Rev. 1994, 94, 1339-1374
(45)G. Michael Blackburn and Michael J. Gait; “Nucleic acids in chemistry and biology” IRL Press at Oxford University Press,1990, Ch.2, Ch.5
(46)A. T. Blades, Y. Ho, and P. Kebarle, J. Phys. Chem. 1996, 100, 2443-2446
(47)Robert H.and Blessing, Acta Cryst. 1988, B44, 334-340
(48)Carl S. Ewig and J. R. Van Wazer; J. Am. Chem. Soc. 1985, 107, 1965-1971
(49)E. L. Stewart, N. Nevins, L. Allinger, and J. P. Bowen; J. Org. Chem. 1999, 64, 5350-5360
(50)S. A. H. Spieser, Bas R. Leeflang, Loes M. J. Kroon-Batenburg, and Jan Kroon; J. Phys. Chem. A 2000, 104, 7333-7338
(51)F. Grein, Theochem 2001, 536, 87-98
(52)C. S. Ewig and John R. Van Wazer, J. Am. Chem. Soc. 1988, 110, 79-86
(53) C. S. Ewig and John R. Van Wazer, J. Am. Chem. Soc. 1986, 108, 4354-4360
(54)M. Klingenberg, Biochem. Soc. Trans 1992, 20, 547-550
(55)T. L. Hill and M. F. Morales; J. Am. Chem. Soc. 1950, 73, 1656-1660
(56)H. M. Kalckar, Chem. Revs. 1941, 28, 71-171
(57)C. Allin and K. Gerwert, Biochemistry 2001, 40, 3037-3046
(58)G. Chakrabarti, M. R. Mejillano, Young-Hee Park, D. G. V. Velde, and R. H. Himes; Biochemistry 2000, 39, 10269-10274
(59)J. E. Kilpatrick, K. S. Pitzer, and Ralph Spitzer, J. Am. Chem. Soc. 1947, 69,2483-2488
(60)C. Altona and M. Sundaralingam, J. Am. Chem. Soc. 1972, 94, 8205-8212
(61)W. A. Goddard, etc.; J. Am. Chem. Soc. 1999, 121, 985-993
(62)S. Nishikawa, N. Kuramoto, and H. Huang, J. Phys. Chem. B. 1999, 3754-3757
(63)P. Wang, R. M. Izatt, John L. Oscarson, and S. E. Gillespie, J. Phys. Chem. 1996, 9556-9560
(64)I. Tvaroska, I. Andre, and J. P. Carver, J. Phys. Chem. B. 1999, 103, 2560-2569
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top