跳到主要內容

臺灣博碩士論文加值系統

(3.81.172.77) 您好!臺灣時間:2022/01/21 18:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張榮芳
研究生(外文):Jung-Fang Chang
論文名稱:反應射頻磁控濺鍍透明導電ZnO:Al膜之成長特性及性質研究
論文名稱(外文):Growth characteristics and properties of transparent and conductive ZnO:Al films by reactive RF magnetron sputtering
指導教授:洪敏雄洪敏雄引用關係
指導教授(外文):Min-Hsiung Hon
學位類別:博士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:90
語文別:中文
論文頁數:135
中文關鍵詞:透明導電膜氧化鋅摻鋁反應磁控濺鍍薄膜一氧化碳感測器成長特性
外文關鍵詞:transparent and conductive filmsZnO:Alreactive magnetron sputteringthin filmsCO sensorgrowth characteristics
相關次數:
  • 被引用被引用:22
  • 點閱點閱:1376
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本研究採用反應性射頻磁控濺鍍法(reactive RF magnetron sputtering)成長透明導電ZnO:Al膜。針對製程參數的控制及鍍膜後熱處理的改善,提高鍍膜導電性並探討鍍膜結構及電性與光性間的關係。
全文共分四部分,第一部分為ZnO:Al薄膜的成長特性,包括成長速率及殘留應力與製程參數的關係。第二部分進一步分析微結構,並探討鍍膜之光、電性質與微結構之關聯。第三部分討論熱處理對鍍膜結構及光、電性的影響。第四部分探討ZnO:Al薄膜於CO氣體感測器之應用。
結果顯示,在本研究的參數下所得之鍍膜在氧分率大於12%時呈(0002)優先方向,表面平整緻密,截面具有明顯的柱狀結構。鍍膜成長速率受射頻功率及氧分壓影響較大。隨射頻功率提高,成長速率上升,但過高的功率導致鍍膜因再濺蝕效應使成長速率陡降且改變鍍膜成分。而隨氧分壓提高,成長速率呈先升後降的趨勢。在本研究條件下,鍍膜成長速率最高可達52.7nm/min。
鍍膜在各實驗參數下皆顯示具壓應力,隨氧分壓增加,壓應力呈先降後升的趨勢。當氧分率為12%及15% 時,壓應力則隨功率增加而下降,此係產生應力鬆弛所致。
鍍膜電阻率受射頻功率影響較大,功率80W時鍍膜因結構較不緻密,致電阻率較高;而功率110W時則因鍍膜受再濺蝕效應影響鍍膜組成與結構,因此電阻率亦偏高。而鍍膜電阻率隨基板溫度變化呈先降後升的趨勢。在本實驗參數下,於射頻功率100W及基板溫度250℃可得最低電阻值為4.16´10-4W.cm,此時鍍膜中電子濃度最高,達1.48´1021cm-3。比較鍍膜晶粒大小與電子平均自由路徑,認為晶粒內之雜質散射為主要電子散射機構。
由鍍膜之後熱處理研究得知,ZnO:Al薄膜分別在空氣及氮氣中熱處理後,電阻值均上升,此乃化學性氧吸附於鍍膜表面及晶界處所致。經300℃氫氣熱處理後,電阻值上升,而經400℃及500℃氫氣熱處理,化學性吸附態氧消失,電阻值下降。因此較高溫度和還原性氣氛可有效降低電阻值。
基板溫度大於200℃所得鍍膜皆具有大於80%之可見光穿透率。經由計算,鍍膜光學能隙介於3.2至3.5eV之間,隨導電率提高,鍍膜電子濃度增加,其光學能隙亦隨之增加。
在CO氣體感測性質方面,本實驗所得ZnO:Al鍍膜對偵測不同濃度之CO氣體皆具可靠性,當膜厚為65 nm,操作溫度400℃時,靈敏度最高,為61.6%。
Transparent and conductive ZnO:Al thin films were prepared by reactive RF magnetron sputtering. The electronic conductivity was improved by controlling the deposition parameters and post-annealing treatment while the relationship between the structural characteristics and optical as well as electric properties was investigated in this study.
Four main issues investigated here were (1) the growth characteristics of ZnO:Al films, including the growth rate and residual stress of the films; (2) a detailed analysis in the microstructure of ZnO:Al films and the electric and the optical properties; (3) the effect of post-annealing on the structural characteristics and electric as well as optical properties; (4) the application in the CO gas sensor detection.
The results revealed that the flat and smooth surface morphologies and an obvious columnar structure in the cross-section morphologies were obtained for the as-deposited films. A c-axis (0002) preferred orientation was observed when the oxygen fraction in deposition was above 12%. The growth rate increased with increasing the RF power while it reduced rapidly due to the resputtering effect at a higher RF power and therefore, the composition altered abruptly. In addition, it increased with the oxygen fraction initially but decreased at higher oxygen fraction in deposition. The maximum growth rate obtained in this study was 52.7 nm/min.
A compressive stress in all the deposits was obtained in this study and it increased with increasing the oxygen fraction but then decreased. The compressive stress in the film decreased with RF power at oxygen fractions of 12% and 15% due to stress relaxation effect.
The resistivity of the films was affected significantly by RF power. It shows a higher resistivity deposited at RF powers of 80W due to a less dense structure and 110W due to the resputtering effect. The lowest resistivity of 4.16´10-4W.cm was obtained as deposited at a substrate temperature of 250℃ and RF power of 100W due to the films in this case having the highest carrier concentration of 1.48´1021cm-3. By comparing the grain size and the carrier mean free path, in-grain scattering was concluded to be the major factor in determining the scattering mechanism.
The resistance of the air- and nitrogen-annealed films was increased dramatically due to the chemisorbed oxygen on surface and grain boundaries as measured by X-ray photoelectron spectroscopy while it decreased for the hydrogen-annealed ones. The resistivity of the films was reduced as annealed at a higher temperature in the reduced atmosphere.
All of the films deposited at above 200℃ of substrate temperature show a visible transmittance of above 80% with an optical band-gap ranging from 3.2 to 3.5 eV, which increased with increasing the conductivity of the films.
For the application as a CO gas sensor, the sensitivity of the gas sensor increased as the concentration of CO gas was increased. The maximum sensitivity of 61.6% in this study was obtained for the 65 nm film at the operation temperature of 400℃.
中文摘要………………………………………………………………….I
英文摘要………………………………………………………………..III
總目錄…………………………………………………………………...V
圖目錄………………………………………………………………...VIII
表目錄………………………………………………………………...XIII
重要英漢名詞對照及符號說明……………………………………...XIV
第一章緒論……………………………………………………………1
1-1透明導電膜………………………………………………...…...1
1-2研究動機與目的………………………………………………..4
第二章理論基礎………………………………………………………9
2-1反應磁控濺鍍法………………………………………………..9
2-1-1 低溫電漿…………………………………………………...9
2-1-2 反應濺射………………………………………………….10
2-2 薄膜成核成長理論…………………………………………….12
2-3 ZnO:Al膜之電學性質…………………………………………18
第三章 實驗方法與步驟……………………………………………..21
3-1 實驗流程……………………………………………………….21
3-2 系統設計……………………………………………………….22
3-3原料選擇………………………………………………………24
3-4鍍膜參數及步驟………………………………………………25
3-5鍍膜熱處理……………………………………………………26
3-6鍍膜感測性質量測……………………………………………28
3-7鍍膜性質分析…………………………………………………28
第四章 ZnO:Al薄膜之成長特性…………………………………….35
4-1 製程參數對鍍膜成長速率之影響……………………………..35
4-1-1 射頻功率之影響…………………………………………35
4-1-2 氧分率之影響……………………………………………35
4-1-3 工作壓力之影響…………………………………………39
4-2 薄膜之晶體結構……………………………………………….42
4-3 薄膜之微觀形態……………………………………………….46
4-4 薄膜的應力分析……………………………………………….49
4-4-1 氧分率之影響…………………………………………...50
4-4-2 射頻功率之影響………………………………………...52
4-5 小結…………………………………………………………….54
第五章 ZnO:Al鍍膜之光電性質與結構之研究…………………….55
5-1 前言…………………………………………………………….55
5-2 ZnO:Al鍍膜結構分析…………….………………………….57
5-3 ZnO:Al鍍膜電性分析………………………………………..74
5-4 鍍膜光學性質量測……………………………………...……..81
5-5 小結…………………………………………………………….87
第六章 熱處理對ZnO:Al膜性質之影響…………………………….88
6-1 熱處理對鍍膜結構之影響…………………………………….88
6-2 熱處理對電阻之影響………………………………………….93
6-3 熱處理對光性之影響………………………………………...101
6-4 小結…………………………………………………………...104
第七章透明導電膜於CO氣體感測器之應用…………..…………105
7-1 前言…………………………………………………………...105
7-2 鍍膜形態觀察……………………………………………..….106
7-3 CO氣體感測特性……………………………………………..107
7-4 小結………………………………………………………..….117
第八章總結論………………………………………………………118
參考文獻………………………………………………………………120
誌謝……………………………………………………………………133
自述……………………………………………………………………134
參考文獻:
1.K. Badeker, Ann Phys. (Leipzig) 22 (1907) 749.
2.R. Scheer, T. Walter, H.W. Schock, M.L. Fearheiley and H.L. Lewerenz, “CuInS2 based on thin film solar cell with 10.2% efficiency” Appl. Phys. Lett. 63 (1993) 3294.
3.M.A. Martínez, J. Herrero and M.T. Gutiérrez, “Deposition of transparent and conductive Al-doped ZnO thin films for photovoltaic solar cells”, Sol. Energy Mater. Sol. Cells 45 (1997) 75.
4.B.H. Lee, J.G. Kim, S.W. Cho and S.H. Lee, “Effect of process parameters on the characteristics of indium tin oxide thin film for flat panel display application”, Thin Solid Films 302 (1997) 25.
5.J. Xu, Q. Pan, Y. Shun and Z. Tian, “Grain size control and gas sensing properties of ZnO gas sensor”, Sensors and Actuators B66 (2000) 277.
6.C.C. Wu, C.I. Wu, J.C. Sturm and A. Kahn, “Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices”, Appl. Phys. Lett. 70 (1997) 1348.
7.S.A. Van Slyke, C.H. Chen and C.W. Tang, “Organic electro- luminescent devices with improved stability”, Appl. Phys. Lett. 69 (1996) 2160.
8.F. Li, H. Tang and J. Shinar, “Effects of aquaregia treatment of indium—tin—oxide substrates on the behavior of double layered organic light-emitting diodes”, Appl. Phys. Lett. 70 (1997) 2741.
9.曲喜新、楊邦朝、姜節儉、張懷武編著,“電子薄膜材料”,北京科學出版社出版 (1996) p.93.
10.J.L. Vossen, “Transparent Conducting Films”, Physics of Thin Films, 9 (1977) 1.
11.李玉華,”透明導電膜及其應用”,科儀新知,12卷第一期 (1990) 94.
12.T.J. Contts, D.L. Young and X. Li, “Characterization of transparent conducting oxides”, MRS Bulletin (2000) 58.
13.C. Eberspacher, A.L. Fahrenbruch and R.H. Bude, “Properties of ZnO films deposited onto InP by spray pyrolysis“, Thin Solid Films 136 (1986) 1.
14.J. Hu and R.G. Gordon, “Textured aluminum-doped zinc oxide thin films from atmospheric pressure chemical-vapor deposition”, J. Appl. Phys. 71 (1992) 880.
15.王敬龍,”以溶膠-凝膠法製備ITO薄膜之製程研究”,國立成功大學材料科學及工程研究所碩士論文 (1996) pp.36-79.
16.L. Davis, “Properties of transparent conducting oxides deposited at room temperature”, Thin Solid Films, 236 (1993) 1.
17.T. Minami, H. Sato, T. Sonoda, H. Nanto and S. Takata, “Influence of substrate and target temperatures on properties of transparent and conductive doped ZnO thin films”, Thin Solid Films 171 (1989) 307.
18.K. Wasa, S. Hayakawa, “Handbook of Sputter Deposition Technology”, Noyes Publications, 1992 Chap. 4, pp. 81-123.
19.B. Chapman,”Glow Discharge Processes”, John Wiley & Sons, New York, 1980 Chap. 6, pp. 260-269.
20.T. Minami, H. Nanto and S. Takata, “High conductive and transparent aluminum doped zinc oxide thin films prepared by RF magnetron sputtering”, Jpn. J. Appl. Phys. 23 (1984) L280.
21.M. Krunks and E. Mellikov, “Zinc oxide thin films by the spray pyrolysis method”, Thin Solid Films 270 (1995) 33.
22.T. Nakada, Y. Ohkubo, N. Murakami and A. Kunioka, “Transparent conducting boron-doped zinc oxide films deposited by DC-magnetron sputtering in B2H6-Ar mixtures”, Jpn. J. Appl. Phys. 34(1995) 3623.
23.R. Wang, L.H. King and A.W. Sleight, “Highly conducting transparent thin films based on zinc oxide”, J. Mater. Res. 11 (1996) 1659.
24.R. Konishi, K. Noda, H. Harada and H. Sasakura, “ Preparation of transparent ZnO:Al thin films”, J. Cryst. Growth 117 (1992) 939.
25.S. Ghosh, A. Sarkar, S. Chaudhuri and A.K. Pal, “Grain boundary scattering in aluminium-doped ZnO films” Thin Solid Films 205 (1991) 64.
26.H.C. Weller, R.H. Mauch and G.H. Bauer, “Studies on the interface between novel type ZnO and p-a-SiC:H in 1.5 eV a-SiGe:H pin diodes in comparison to SnOx and ITO”, Sol. Energy Mater. Sol. Cells 27 (1992) 217.
27.Y.I. Chen and J.G. Duh, ”Conductive and transparent Al-doped ZnO thin films prepared by RF magnetron sputtering”, Mater. Chem. Phys. 27 (1991) 427.
28.F. Shinoki and A. Itoh, “Mechanism of RF reactive sputtering”, J. Appl. Phys. 46 (1975) 3381.
29.K. Ellmer, K. Kudella, R. Mientus, R. Schieck and S. Fiechter, “Influence of discharge parameters on the layer properties of reactive magnetron sputtered ZnO:Al films”, Thin Solid Films 247 (1994) 15.
30.Y. Igasaki, I. Michiaki and S. Goro, “Some properties of Al-doped ZnO transparent conducting films prepared by RF reactive sputtering”, Appl. Surf. Sci. 33-34 (1988) 926.
31.Y. Igasaki and H. Saito, “The effects of zinc diffusion on the electrical and optical properties of ZnO:Al films prepared by RF reactive sputtering”, Thin Solid Films 199 (1991) 223.
32.M.K. Puchert, P.Y. Timbrell and R.N. Lamb, “Postdeposition annealing of radio frequency magnetron sputtered ZnO films”, J. Vac. Sci. Technol. A14 (1996) 2220.
33.K. Ellmer, K. Diesner, R. Wendt and S. Fiechter, “Relations between texture and electrical parameters of thin polycrystalline zinc oxide films”, Solid State Phenomena 51-52 (1996) 541.
34.S. Chaudhuri, J. Bhattacharya and A.K. Pal, “ Microstructure of indium tin oxide films produced by the d.c. sputtering technique”, Thin Solid Films 148 (1987) 279.
35.郭旭祥,”ZnO:Al薄膜氣體感測器之研究”,國立成功大學材料科學及工程學系碩士論文(2000) pp. 32-72.
36..K. Zhang, A.R. Forouhi and I. Bloomer, “Accurate and rapid determination of thickness, n and k spectra, and resistivity of indium-tin-oxide films”, J. Vac. Sci. Technol. A17 (1999) 1843.
37.T. Minami, T. Miyata and T. Yamamoto, “Stability of transparent conducting oxide films for use at high temperature”, J. Vac. Sci. Technol. A17 (1999) 1822.
38.T. Minami, T. Yamamoto and T. Miyata, “Highly transparent and conductive rare earth-doped ZnO thin films prepared by magnetron sputtering”, Thin Solid Films 366 (2000) 63.
39.M. Chen, Z. L. Pei, C. Sun, L. S. Wen and X. Wang, “Surface characterization of transparent conductive oxide Al-doped films”, J. Cryst. Growth 220 (2000) 254.
40.A. Grill, “Cold Plasma in Materials Fabrication: From Fundamentals to Applications”, IEEE Press, New York, 1994, pp. 7-22.
41.D.M. Mattox, “Handbook of Physical Vapor Deposition (PVD) Processing”, Noyes Publications, New Jersey, 1998, Chap. 4, pp. 209-216.
42.D.M. Mattox, “Particle bombardment effects on thin-film deposition: A review”, J. Vac. Sci. Technol. A7 (1989) 1105.
43.楊錦章,”基礎濺鍍電漿”,電子發展月刊,68期 (1983) 13.
44.R.Behrisch and K. Wittmaack, “Sputtering by Particle Bombardment III”, Springer-Verleg Berlin Heidelberg (1991) p.356.
45.L. Holland, “The Vacuum Deposition of Thin Films”, Wiley, New York (1956) p.434.
46.S. Berg. H.O. Blom, T. Larsson and C. Nender, “Modeling of reactive sputtering of compound materials”, J. Vac. Sci. Technol. A5 (1987) 202.
47.B. Goranchev, V. Orlinov and V. Popova, “DC cathode sputtering: Influence of the oxygen content in the gas flow on the discharge current”, Thin Solid Films 33 (1976) 173.
48.J. Hrbek, “Sputtering of metals in the presence of reactive gases”, Thin Solid Films 42 (1977) 185.
49.R.A. Levy, “Microelectronic Materials and Processes”, Kluwer Academic Publishers, The Netherlands, 1989, pp182-186.
50.J.A. Venables, G.D.T. Spiller and M. Hanbücken, “Nucleation and growth of thin films”, Rep. Prog. Phys. 47 (1984) 399.
51.J. A. Thornton, “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings”, J. Vac. Sci. Technol. 11 (1974) 666.
52.J. A. Thornton, “Influence of substrate temperature and deposition conditions on structure of thick sputtered Cu coatings”, J. Vac. Sci. Technol. 12 (1975) 830.
53.H. L. Hartnagel, A. K. Jain and C. Jagadish, “Semiconducting Transparent Thin Films”, published by Institute of Physics Publication, 1995, p.17.
54.H. L. Hartnagel, A. K. Jain and C. Jagadish, “Semiconducting Transparent Thin Films”, published by Institute of Physics Publication, 1995, Chap. 3.
55.G. Gordillo and C. Calderón, ”Properties of ZnO thin films prepared by reactive evaporation”, Solar Energy Materials & Solar Cells 69 (2001) 251.
56.H. Hawamoto, R. Konishi, H. Harada and H. Sasakura, “Characteristics of ZnO:Al transparent conductive films”, Springer Proceedings in Physics, 38 (1989) 314.
57.A.Sarkar, S. Ghosh, S. Chaudhury and A.K. Pal, “Studies on electron transport properties and the Burstein-Moss shift in indium-doped ZnO films”, Thin Solid Films, 204 (1991) 255.
58.B.H. Choi, H.B. Im, J.S. Song and K.H. Yoon, “Optical and electrical properties of Ga2O3-doped ZnO films prepared by RF sputtering”, Thin Solid Films, 193/194 (1990) 712.
59.F.D. Paraguay, J. Morales, W.L. Estrada, E. Andrade, M.M. Yoshida, “Influence of Al, In, Cu, Fe and Sn dopants in the microstructure of zinc oxide thin films obtained by spray pyrolysis”, Thin Solid Films 366 (2000) 16.
60.C.X. Qiu and I. Shih, “Tin- and indium-doped zinc oxide films prepared by RF magnetron sputtering”, Sol. Energy Mater. 13 (1986) 75.
61.E. Hurtós and J. Rodríguez-Viejo, “Residual stress and texture in poly-SiC films grown by low pressure organometallic chemical-vapor deposition”, J. Appl. Phys. 87 (2000) 1748.
62.L.J. van der Pauw, “A method of measuring specific resistivity and Hall effect of discs of arbitrary shape”, Philips Research Reports 13 (1958) 1.
63.S.M. Rossnagel, J.J. Cuomo and W.O. Westwood, “Handbook of Plasma Processing Technology”, (1990) Chap. 9, p239.
64.B. Szyszka, “Transparent and conductive aluminum doped zinc oxide films prepared by mid-frequency reactive magnetron sputtering”, Thin Solid Films 351 (1999) 164.
65.S. Jäger, B. Szyszka, J. Szczyrbowski and G. Bräuer, “Comparison of transparent conductive oxide thin films prepared by a.c. and d.c. reactive magnetron sputtering”, Surface and Coatings Technol. 98 (1998) 1304.
66.R.E. Jones, H.F. Winters and L.I. Maissel, “Effect of oxygen on the rf sputtering rate of SiO2”, J. Vac. Sci. Technol. 5 (1968) 84.
67.J. Heller, “Reactive sputtering of metals in oxidizing atmospheres”, Thin Solid Films 17 (1973) 163.
68.B. Chapman ed., “Glow Discharge Processes”, John Wiley & Sons Inc., N.Y., 1980, Chap. 2. pp. 21-48.
69.A. Van der Drift, “Evolutionary selection: a principle governing growth orientation in vapour-deposited layers”, Philips Res. Report 22 (1967) 267.
70.J. Hinze and K. Ellmer, “In situ measurement of mechanical stress in polycrystalline zinc-oxide thin films prepared by magnetron sputtering”, J. Appl. Phys. 88 (2000) 2443.
71.J. A. Thornton, “Stress-related effects in thin films”, Thin Solid Film 171 (1989) 5.
72.D.S. Rickerby, “Internal stress and adherence of titanium nitride coatings”, J. Vac. Sci. Technol. A4 (1986) 2809.
73.R. Messier, “Structure-composition variation in rf-sputtered films of Ge caused by process parameter changes”, J. Vac. Sci. Technol. 13 (1976) 1060.
74.F.M.D.,Huerle and J.M.E. Harper, “Note on the origin of intrinsic stresses in films deposited via evaporation and sputtering”, Thin Solid Film, 81 (1989) 171.
75.K. Ellmer, “Magnetron sputtering of transparent conductive zinc oxide: relation between the sputtering parameters and the electronic properties”, J. Phys. D: Appl. Phys. 33 (2000) R17.
76.Y.E. Lee, J.B. Lee, Y.J. Kim, H.K. Yang, J.C. Park and H.J. Kim, “Microstructural evolution and preferred orientation change of radio-frequency-magnetron sputtered ZnO thin films”, J. Vac. Sci. Technol. A14 (1996) 1943.
77.T.J. Vink, W. Walrave, J.L.C. Daams, P.C. Baarslag and J.E.A.M. van der Meerakker, “On the homogeneity of sputter-deposited ITO films. Part I: stress and microstructure”, Thin Solid Films 266 (1995) 145.
78.C.A. Davis, “A simple model for the formation of compressive stress in thin films by ion bombardment” Thin Solid Films, 226 (1993) 30.
79.田民波、劉德令編譯,“薄膜科學與技術手冊-上冊”,機械工業出版社(1991) pp. 10-25.
80.J. F. Chang, H. L. Wang and M. H. Hon, “Studying of transparent conductive ZnO:Al thin films by RF reactive magnetron sputtering”, J. Cryst. Growth 211 (2000) 93.
81.P. Villars and L.D. Calvert, “Pearson’s Handbook of Crystallographic Data for Intermetallic Phases”, American Society for Metals, Cleveland, 1989, Vol. 3, p.2948.
82.W. Hirschwald, P. Bonasewicz, L. Ernst, M. Grade, D. Hofmann, S. Krebs, R. Littbarski, G. Neumann, M. Grunze and D. M. Kolb, “Zinc Oxide”, Current Topics in Materials Science (1981) North-Holland Publ. Co. Amsterdam, 143.
83.N. Fujimura, T. Nishihara, S. Goto, J. Xu and T. Ito, “Control of preferred orientation for ZnOx films: control of self-texture”, J. Cryst. Growth 130 (1993) 269.
84.W.F. Wu, B.S. Chiou and S.T. Hsieh, “Effect of sputtering power on the structural and optical properties of RF magnetron sputtered ITO films”, Semicond. Sci. Technol. 9 (1994) 1242.
85.K.C. Park, D.Y. Ma and K.K. Kim, “The physical properties of Al-doped zinc oxide films prepared by RF magnetron sputtering”, Thin Solid Films 305 (1997) 201.
86.S.M. Rossnagel, J.J. Cuomo and W.O. Westwood, “Handbook of Plasma Processing Technology”, Noyes Publications (1990) 237.
87.I. Sieber, N. Wanderka, I. Urban, I. Dörfel, E. Schierhorn, F. Fenske and W. Fuhs, “Electron microscopic characterization of reactively sputtered ZnO films with different Al-doping levels”, Thin Solid Films 330 (1998) 108.
88.T. Minami, H. Sato, K. Ohashi, T. Tomofuji and S. Takata, “Conduction mechanism of highly conductive and transparent zinc oxide thin films prepared by magnetron sputtering”, J. Cryst. Growth 117 (1992) 370.
89.F. C. M. van de Pol, F. R. Blom and T. J. A. Popma, “R.F. planar magnetron sputtered ZnO films I. Structural properties”, Thin Solid Films 204 (1991) 349.
90.K.H. Kim, K.C. Park and D.Y. Ma, “Structural, electrical and optical properties of aluminium doped zinc oxide films prepared by radio frequency magnetron sputtering”, J. Appl. Phys. 81 (1997) 7764.
91.E.M. Bachari, G.Baud, S. Ben Amor and M. Jacquet, “Structural and optical properties of sputtered ZnO films”, Thin Solid Films 348 (1999) 165.
92.D. Rohde, H. Kersten, C. Eggs and R. Hippler, “Thin film deposition by reactive magnetron sputtering: on the influence of target oxidation and its effect on surface properties”, Thin Solid Films 305 (1997)164.
93.E. Terzini, G. Nobile, S. Loreti, C. Minarini, T. Polichetti and P. Thiakan, “Influences of sputtering power and substrate temperature on the properties of RF magnetron sputtered indium tin oxide thin films”, Jpn. J. Appl. Phys. 38 (1999) 3448.
94.K. Tominaga, M. Kataoka, H. Manabe, T. Ueda and I. Mori, “Transparent ZnO:Al films prepared by co-sputtering of ZnO:Al with either a Zn or an Al target”, Thin Solid Films 290/291 (1996) 84.
95.F.R. Blom, F.C.M. van de pol, G. Bauhuis and Th.J.A. Popma, “R.F. planar magnetron sputtered ZnO films II. Electrical properties”, Thin Solid Films 204 (1991) 365.
96.C. Kittle, “Introduction to Solid State Physics”, John Wiley and Sons (SEA), Singapore, 1986, chap. 6. p. 125.
97.K. Zakrzewska, T. Pisarkiewicz and A. Czapla, “Scattering of carriers in reactively sputtered CdIn2O4 thin films”, Phys. Status. Solidi. A99 (1987) 141.
98.R.B.H. Tahar, T. Ban, Y. Ohya and Y. Takahashi, “Electronic transport in tin-doped indium oxide thin films prepared by sol-gel technique”, J. Appl. Phys. 83 (1998) 2139.
99.H. Yan, G.H. Chen, W.K. Man, S.P. Wong and R.W.M. Kwok, “Characterizations of SnO2 thin films deposited on Si substrates”, Thin Solid Films 326 (1998) 88.
100.D. Jiles, “Introduction to the Electronic Properties of Materials”, Chapman and Hall, 1994, chap. 9. p. 180.
101.M. D. Giulio, G. Micocci, R. Rella, P. Siciliano and A. Tepore, “Optical absorption and photoconductivity in amorphous indium selenide thin films”, Thin Solid Films 148 (1987) 273.
102.E. Burstein, “Anomalous optical absorption limit in InSb”, Phys. Rev. 93 (1954) 455.
103.T.S. Moss, Proc. Phys. Soc. London Ser. B 67 (1954) 775.
104.S. Ghosh, A. Sarkar, S. Bhattacharya, S. Chaudhuri and A.K. Pal, Microstructure of ZnO films produced by reactive DC sputtering technique”, J. Crystal Growth, 108(1991), 534.
105.R. Cebulla, R. Werndt and K. Ellmer, “Al-doped zinc oxide films deposited by simultaneous RF and DC excitation of a magnetron plasma: relationships between plasma parameters and structural and electrical film properties”, J. Appl. Phys. 83 (1998) 1087.
106.S. Takata, T. Minami, and H. Nanto, “Stability of aluminium-doped ZnO transparent electrodes fabricated by sputtering”, Thin Solid Films, 135(1986), 183.
107.K.L. Chopra, S. Major and D.K. Pandya, “Transparent conductors — a status review”, Thin Solid Films 102 (1983) 1.
108.S.A. Studeniki, N. Golego and M. Cocivera, “Carrier mobility and density contributions to photoconductivity transients in polycrystalline ZnO films”, J. Appl. Phys. 87 (2000) 2413.
109.G.J. Exarhos, A. Rose and C.F. Windisch Jr, “Spectroscopic characterization of processing-induced property changes in doped ZnO films”, Thin Solid Films 308-309 (1997) 56.
110.J.C.C. Fan and J.B. Goodenough, “X-ray photoemission spectroscopy studies of Sn-doped indium-oxidefilms”, J. Appl. Phys. 48 (1977) 3524.
111.K.H. Yoon, J.W. Choi and D.H. Lee, “Characteristics of ZnO thin films deposited onto Al/Si substrates by r.f. magnetron sputtering”, Thin Solid Films 302 (1997) 116.
112.S.R. Morrison, “Selectivity in semiconductor gas sensors”, Sens. Actuators 12 (1987) 425.
113.C.A. Papadopoulos and J.N. Avaritsiotis, “A model for the gas sensing properties of tin oxide thin films with surface catalysts”, Sens. Actuators B28 (1995) 201.
114.M.C. Horrillo, J Gutiérrez, L. Arés, J.I. Robla, I. Sayago and J. Getino, “The influence of the tin-oxide deposition technique on the sensitivity to CO”, Sens. Actuators B 24-25 (1995) 507.
115.G. Sberveglieri, “Recent development in semiconducting thin-film gas sensors”, Sens. Actuators B 23 (1995) 103.
116.T.A. Jones, B. Mann and J.G. Firth, “Effect of the physical form of the oxide on the conductivity changes produced by CH4, CO and H2O on ZnO”, Sens. Actuators 5 (1984) 75.
117.D. Kohl, “Surface processes in the detection of reducing gases with SnO2-based devices”, Sens. Actuators 18 (1989) 71.
118.J. Robertson, “Defect levels of SnO2”, Phys. Rev. B30 (1984) 3520.
119.H. Obayashi and T. Kudo, “Some crystallographic, electronic and thermochemical properties of the perovskite-type La1-xMxNiO3”, Jpn. J. Appl. Phys. 14 (1975) 330.
120.D. S. Vlachos, C. A. Papadopoulos and J. N. Avaritsiotis, “Characterisation of the catalyst-semiconductor interaction mechanism in metal-oxide gas sensors”, Sens. Actuators B 44. (1997) 458.
121.P. Ciureanu, “Thin Film Resistive Sensors”, Institute of Physics Publishing (1992).
122.N.J. Dayan, S.R. Sainkar, R.N. Karekar and R.C. Aiyer, “Formation and characterization of ZnO:Sb thick-film gas sensors”, Thin Solid Films 325 (1998) 254.
123.G. Sberveglieri, “Gas Sensors”, Kluwer Academic, The Netherlands, 1992, Ch. 3, 89-116.
124.J.F. McAleer, P.T. Mosely, J.O. Norris and D.E. Williams, “Tin dioxide gas sensors”, J. Chem. Soc. Faraday Trans. 83 (1987) 1323.
125.K. Ihokura and J. Watson, “The Stannic Oxide Gas Sensor”, CRC, 1994, chap. 2, 54-55.
126.F. Réti, M. Fleischer, H. Meixner and J. Giber, “Effect of adsorption of reducing gases on the conductivity of b-Ga2O3 thin films in the presence of CO”, Sens. Actuators B 18-19 (1994) 573.
127.L. D. Birkerfeld, A.M. Azad and S.A. Akbar, “Carbon monoxide and hydrogen detection by anatase modification of Titanium dioxide”, J. Am. Ceram. Soc. 75 (1992) 2964.
128.邱春茂,”鑭鍶鈷系鈣鈦礦結構薄膜對CO感測特性之研究”,國立成功大學材料科學及工程學系博士論文 (1999).
129.H.M. Lin, S.J. Tzeng, P.J. Hsiau and W.L. Tsai, “Electrode effects on gas sensing properties of nanocrystalline zinc oxide”, Nanostructured Materials 10 (1998) 465.
130.M. Katsura, M. Shiratori, T. Takahashi, Y. Yokomizo and N. Ichinose, “Catalyst effect on zinc oxide semiconductor gas sensor, in Proc. 1st Int. Meeting on Chem. Sensors, Fukuoka (1983) 101.
131.H. Nanto, T. Minami and S. Takata, “Zinc-oxide thin-film ammonia gas sensors with high sensitivity and excellent selectivity”, J. Appl. Phys. 60 (1986) 482.
132.N.J. Dayan, S.R. Sainkar and R.N. Karekar, “On the highly selective ZnO:Al2O3 based thick film hydrogen sensors”, Journal of Materials Science Letter 16 (1997) 1952.
133.V.M. Aroutiounian and G.S. Aghababian, “To the theory of semiconductor gas sensors”, Sens. Actuators B 50 (1998) 80.
134.T.H. Kwon, S.H. Park, J.Y. Ryu and H.H. Choi, “Zinc oxide thin film doped with Al2O3, TiO2 and V2O5 as sensitive sensor for trimethylamine gas”, Sens. Actuators B46 (1998) 75.
135.M.D. Giulio, G. Micocci, A. Serra and A. Tepore, “Characteristics of reactively sputtered Pt-SnO2 thin films for gas sensors”, J. Vac. Sci. Technol. A14 (1996) 2215.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top