跳到主要內容

臺灣博碩士論文加值系統

(54.224.117.125) 您好!臺灣時間:2022/01/28 19:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊強名
研究生(外文):Chiang-Ming Chuang
論文名稱:無鉛化共晶銲錫合金之振動破壞特性研究
論文名稱(外文):A Study on the Vibration Fracture Characteristics of Lead-Free Eutectic Solder Alloys
指導教授:呂傳盛呂傳盛引用關係陳立輝陳立輝引用關係
指導教授(外文):Truan-Sheng LuiLi-Hui Chen
學位類別:博士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:90
語文別:中文
論文頁數:162
中文關鍵詞:無鉛銲錫振動破壞機械性質
外文關鍵詞:Lead-Free SolderVibration FractureMechanical Properties
相關次數:
  • 被引用被引用:25
  • 點閱點閱:1157
  • 評分評分:
  • 下載下載:197
  • 收藏至我的研究室書目清單書目收藏:0
當含有銲點的電子元件被裝配在動態機械上時,銲點會因振動產生破壞,尤其是當振動的頻率遭遇共振狀態時,破壞的速率更會被進一步加快。因此,本研究以銲點材料─銲錫合金─的振動破壞特性為研究目標,首先廣泛的調查目前仍被大量使用的Sn-Pb系合金,從亞共晶到過共晶組成的振動破壞行為,以建立其基本振動數據,接著並與具有取代潛力的Sn-Zn及Sn-Ag兩個二元無鉛銲錫系統比較。
本研究以振動過程中試片偏移量及裂縫傳播隨振動次數增加的變化(D-N曲線及裂縫成長之速率),探討不同試料間的耐振動阻抗。且由於D-N曲線的變化與裂縫成長具有密切關係,因此本研究定義在試驗的過程中,當振動的偏移量低於起始偏移量時的振動次數為共振壽命,以為定量的比較。此外,振動時起始偏移量的高低與試片本身的制振性有關,可據此比較不同組成及系統銲錫合金之制振能力。
Sn-Pb銲錫,以接近共晶組成經過一長時間的室溫放置或快速的高溫安定化處理的試料耐振動阻抗較高。而比較Sn-Pb銲錫與Sn-Zn及Sn-Ag兩個系統的無鉛銲錫,發現以Sn-Ag銲錫的耐振動特性最佳,較共晶的Sn-Pb銲錫具有更好的制振性及裂縫傳播阻抗;而Sn-Zn系的銲錫如果被考量在振動環境中取代傳統銲錫,由於其共晶及過共晶組成(Zn含量大於9wt%)的裂縫傳播阻抗較差,可以考慮使用亞共晶的組成(Zn含量小於9wt%),不過其本身的制振性較傳統銲錫好,可降低振動時的振幅,使材料的破壞速度減緩,這是取代應用上值得被評估的優點。此外,根據拉伸塑性變形的結果,除了共晶Sn-9Zn試料外,其餘的無鉛銲錫試料與傳統Sn-40Pb相比,均有不錯的均勻塑性變形能力。
根據振動裂縫的起始及傳播路徑的觀察,發現在Sn-Pb、Sn-Zn及Sn-Ag三種合金系統中皆有共通性的富錫相層狀變形特徵產生,是一種晶粒內擠出及陷入的變形特徵,且由於此現象只出現在本研究的這種較高頻率的振動狀態下,可理解其形成應與應變的速率有關。實驗觀察發現此種變形特徵對試料的振動破壞特性具有重要的影響,且在Sn-Pb銲錫及兩組Sn-Zn 與Sn-Ag無鉛銲錫合金系統所造成的效應完全不同。在Sn-Pb銲錫中,此變形特徵會在其周圍的晶界上誘發微裂縫的產生,而這些微裂縫會引導主裂縫的傳播,加快材料劣化的速度;然而在Sn-Zn及Sn-Ag系統中,由於富錫相周圍的共晶基地具有微細的第二相,當層狀變形產生時,這些微細的第二相會阻礙微裂縫的產生,此時層狀變形反而扮演一吸收振動能量的機制,可提高材料的耐振動阻抗。
然而,就本研究釐清的Sn-Zn及Sn-Ag兩組無鉛銲錫的振動破壞阻抗,在無鉛取代應用的考量上仍有些問題存在,就Sn-Ag銲錫而言,雖然其具有較佳的裂縫傳播阻抗及制振性,但其拉伸強度仍稍嫌不足﹔而對Sn-Zn銲錫而言,亞共晶組成試料的振動阻抗及拉伸強度是具有取代的潛力,然而共晶及過共晶的試料則有待進一步改善。
Vibration failure can occur in soldering joints of chips through mechanical vibration. In particular, when the vibration frequency meets the resonance, the rate of failure is even higher. However, the current understanding of vibration fatigue fracture under higher frequency states is very limited. The vibration fracture characteristics of solder alloys were investigated in this study. In this report, the current use Sn-Pb solders as a database is first examined that can be compared with Sn-Zn and Sn-Ag lead-free solders.
The vibration fracture resistance of solders with different binary composition was investigated as a function of deflection amplitude and crack propagation rate during vibration tests. The D-N curve (deflection amplitude — cyclic number) can be used to examine the features of vibrational fracture resistance and is closely related to the timing of crack propagation. The critical cycles for failure is when the deflection amplitude is smaller than the initial deflection amplitude, which is defined as the resonant vibration fracture point for the purpose of quantitative comparison among different binary solder alloys. On the other hand, the damping capacity of the solders also can be examined qualitatively using the variation in initial deflection amplitude on a D-N curve.
From experimental results, in traditional Sn-Pb solders, the near eutectic composition possesses higher vibration resistance after an extended period of naturally aging or a stabilized treatment. Comparing traditional Sn-Pb solders and two lead-free solder systems, the vibration fracture resistance of the Sn-Ag eutectic solder, which possesses a longer D-N curve, higher crack propagation resistance and damping capacity than Sn-Pb solders, was found to be the best in this study. Sn-Zn solders, due to the crack propagation resistance of the eutectic and hypereutectic composition (Zn content over 9 wt%) was inferior, and it may be worth considering replacing the traditional solders with a hypoeutectic composition (Zn content below 9 wt%) in vibration environment. However, the damping capacity of Sn-Zn solders is better than traditional solders in lowering the deflection amplitude to raise the fracture resistance. This would be advantageous in certain replacement application.
Sometimes, the applications of solder alloys need plastic work, so it is necessary to understand the properties of plastic work of lead-free solders. According to the tensile results, comparing the traditional Sn-40Pb eutectic solder and two lead-free solder systems, except for Sn-9Zn, all the other compositive lead-free solders possess better characteristics of uniform plastic deformation than Sn-40Pb.
A specific deformation behavior, striated deformation in Sn-rich phase, that is an extrusion and intrusion of fatigue deformation in grains, is commonly found in Sn-Pb, Sn-Zn and Sn-Ag alloy systems. Because this phenomenon was only observed in the vibration state of this study, and not at all in traditional low-frequency fatigue studies, the occurrance of striated deformation may be related to the strain rate. The experimental results show that the vibration fracture characteristics of solders may be related to the striated deformation of Sn-rich phase, and the effect of different solder systems is opposite. In Sn-Pb solders, the striated deformation generates fine intergranular cracks in the surrounding grain boundaries that guide the main crack propagation and accelerate the deterioration rate of the specimen. However, conversely, in Sn-Zn and Sn-Ag solders, when striated deformation occur, the fine second phase disposing in the surrounding eutectic matrix may inhibit the fine crack initiation. At this time, the striated deformation plays the role of absorbing vibration energy and can enhance the vibration resistance of materials.
總目錄
中文摘要I
英文摘要III
致謝VI
總目錄VII
表目錄XI
圖目錄XIII
第一章 緒論1
第二章 研究背景及實驗流程4
2-1 軟銲(Soldering)的基本介紹4
2-2 傳統Sn-Pb銲錫4
2-3 發展中的二元無鉛銲錫6
2-3-1 Sn-Ag系銲錫6
2-3-2 Sn-Zn系銲錫7
2-3-3 Sn-Bi系銲錫8
2-3-4 無鉛銲錫之自然時效行為8
2-4 共振狀態與共振試驗9
2-4-1 自然頻率(Natural frequency)與共振頻率(Resonant Frequency)9
2-4-2 阻泥的影響10
2-4-3 共振試驗的D-N曲線11
2-5 裂縫傳播行為12
2-5-1 裂縫路徑特徵的影響12
2-5-2 第二相對裂縫傳播的影響13
2-6 本研究之實驗材料14
2-7 材料基礎機械性質測試15
2-8 振動試驗16
2-8-1 振動裝置16
2-8-2 決定共振頻率17
2-8-3 振動測試17
2-9 研究架構18
第三章 Sn-Pb系銲錫合金之振動破壞特性36
3-1 前言36
3-2 實驗材料與方法36
3-3 實驗結果37
3-3-1 微觀組織特徵與拉伸性質37
3-3-2 Sn-Pb銲錫之基本振動特性及振動試驗條件的選擇38
3-3-3 Sn-40Pb不同時效條件時之振動D-N曲線40
3-3-4 Sn-40Pb不同時效條件之變形破壞特徵40
3-3-5 不同Pb含量試料之振動D-N曲線41
3-3-6 不同Pb含量試料之變形破壞特徵42
3-4 討論43
3-4-1 共振頻率43
3-4-2 試片末端偏移量與振動台出力值的關係44
3-4-3 試片的變形行為對裂縫傳播的影響45
3-5 結論46
第四章 Sn-Zn系無鉛銲錫合金之振動破壞特性72
4-1 前言72
4-2 實驗材料與方法72
4-3 實驗結果73
4-3-1 微觀組織特徵與拉伸性質73
4-3-2 Sn-Zn系銲錫之共振頻率74
4-3-3 Sn-9Zn不同時效條件之振動破壞特性75
4-3-4 Sn-Zn系銲錫振動試驗時之D-N曲線75
4-3-5 Sn-Zn系銲錫之變形破壞特徵76
4-3-6 Sn-9Zn與Sn-40Pb改變不同起始偏移量之振動疲勞特性比較79
4-4 討論79
4-4-1 拉伸機械性質與微觀組織的關係79
4-4-2 共振頻率與制振性80
4-4-3 富錫相層狀變形與共晶區域纖維狀變形80
4-4-4 不同Zn含量試料的變形機構及對裂縫傳播的影響81
4-4-5 不同應變條件對Sn-9Zn與Sn-40Pb振動破壞特性的影響81
4-4-6 Sn-Zn系無鉛銲錫取代傳統銲錫的可行性83
4-5 結論83
第五章 Sn-Ag系無鉛銲錫合金之振動破壞特性105
5-1 前言105
5-2 實驗材料與方法105
5-3 實驗結果106
5-3-1 微觀組織特徵與拉伸性質106
5-3-2 Sn-3.5Ag銲錫振動試驗時之D-N曲線107
5-3-3 Sn-3.5Ag銲錫之變形破壞特徵107
5-4 討論108
5-4-1 非平衡狀態下Sn-Ag合金的凝固組織108
5-4-2 Sn-3.5Ag的制振性109
5-4-3 Sn-Ag合金的變形行為與基地組織特徵對裂縫傳播的影響109
5-5 結論110
第六章 共晶銲錫之共通性振動破壞機制及無鉛化問題探討125
6-1 前言125
6-2 銲錫合金的塑性加工特性125
6-3 富錫相層狀變形發生臨界條件及在不同合金系統中對振動特性的影響126
6-3-1 富錫相層狀變形與晶粒徑的關係126
6-3-2 富錫相層狀變形與受反覆應變次數的關係127
6-3-3 富錫相層狀變形的變形機構129
6-3-4 富錫相層狀變形對不同組織形態銲錫合金系統振動破壞特性的影響129
6-4 共振壽命的定義及不同銲錫合金系統之比較130
6-5 不同銲錫合金系統之制振性比較131
6-6 銲錫合金在振動環境使用的建議132
第七章 總結論148
第八章 參考資料152
自述162
1. Metal Handbook, A. W. Worcester and J. T. O’Reilly, ASM, 10th Edition, 1990, Vol. 2, pp. 543-556.
2. S. Jin, “Developing Lead-Free Solders: A Challenge and Opportunity”, JOM, July 1993, p. 13.
3. S. S. Kang and A. K. Sarkhel, “Lead Free Solders for Electronic Packaging”, J. Elec. Mater., 1994, Vol. 23, pp. 701-707.
4. M. McCormack, S. Jin, H. S. Chen, and D. A. Machusak, “New Lead-Free Sn-Zn-In Solder Alloys”, J. Elec. Mater., 1994, Vol. 23, pp. 687-690.
5. J. Glarzer, “Microstructure and Mechanical Properties of Pb-Free Solder Alloys for Low-Cost Electronic Assembly: A Rewiew”, J. Elec. Mater., 1994, Vol. 23, pp. 693-700
6. 馮克林,“簡談電子元件銲錫可靠度”,工業材料,民國86年4月,第124期,93-99頁。
7. S. M. McGuire, M. E. Fine, O. Buck and J. D. Achenbach, “Nondestructive Detection of Fatigue Cracks in PM 304 Stainless Steel by Internal Friction and Elasticity”, J. Mater. Res., 1993, Vol. 8, pp. 2216-2223.
8. S. M. McGuire, M. E. Fine and J. D. Achenbach, “Crack Detection by Resonant Frequency Measurements”, Metal. Trans. A, 1995, Vol. 26A, pp. 1123-1127.
9. S. Vaynman, M. E. Fine and D. A. Jeannotte, “Isothermal Fatigue of Low Tin Lead Based Solder”, Metall. Mater. Trans. A, 1988, Vol. 19A, pp. 1051-1059.
10. S. Vaynman and M. E. Fine, “Effect of Grain Boundary Failure on Fatigue Life of High-Lead Sn-Pn Solder”, Scripta Metallurgica et Materialia., 1990, Vol. 24, pp. 1737-1739.
11. V. Raman and T. C. Reiley, “Dynamic Recrystallization during High Temperature Fatigue”, Scripta Metallurgica., 1986, Vol. 20, pp. 1343-1346.
12. V. Raman and T. C. Reiley, “Cyclic Deformation and Fracture in Pb-Sn Solid Solution Alloy”, Metall. Mater. Trans. A, 1988, Vol. 19A, pp. 1533-1546.
13. R. Berriche, M. E. Fine and D. A. Jeannotte, “Environmental and Hold Time Effects on Fatigue of Low-Tin Lead-Based Solder”, Metall. Mater. Trans. A, 1991, Vol. 22A, pp. 357-366.
14. 賴玄金,“從IPC Work’99 會議中看無鉛銲錫電子構裝之應用現況與發展趨勢”,工業材料,民國90年,第158期,99-107頁。
15. E. P. Wood and K. L. Nimmo, “In Search of New Lead-Free Electronic Solders”, 1994, Vol. 23, pp. 709-713.
16. W. B. Hampshire, “The Search for Lead-Free Solders”, Soldering and Surface Mount Tech., June 1993, No. 14, pp. 49-52.
17. Metal Handbook, Boyer and T. L. Gall, ASM, 1985, Desk Edition, Chap. 30, pp. 73-76.
18. M. McCormack, S. Jin, G.W. Kammlott, "Suppression of Microstructural Coarsening and Creep Deformation in a Lead-Free Solder", American Institute of Physics, 1994, Vol. 64, pp.580-582.
19. 張樹人,“無鉛銲錫之凝固組織與機械性質間關係研究”,國立台灣師範大學工業教育研究所,碩士論文,民國85年。
20. I. Karakaya and W. T. Thompson, “The Pb-Sn System”, Bulletion of Alloy Phase Diagrams, 1998, Vol. 9, pp. 144-152.
21. B. T. Lampe, “Room Temperature Aging Properties of Some Solder Alloys”, Welding Res., Oct., 1976, pp. 331s-339s.
22. W. K. Jones, Y. Liu, M. A. Zampino, G. Gonnzalez and M. Shah, “A Study on Mechanical Properties of Eutectic and Solid Solution Pb-Sn-Ag Solders From —200oC to 150oC”, Design  Reliability of Solders and Solder Interconnections, 1997, TMS Annual Meeting, pp. 85-96.
23. K. Kawashima, T. Ito and M. Sakuragi, “Strain-Rate and Temperature-Dependent Stress-Strain Curves of Sn-Pb Eutectic Alloy”, J. Mater. Sci., 1992, Vol. 27, pp. 6387-6390.
24. M. McCormack, S. Jin, “New Lead-Free Solders”, J. Elec. Mater., 1994, Vol. 23, pp. 635-640.
25. S. K. Kang, T. G. Ference, “Nickel-alloyed Tin-lead Eutectic Solder for Surface Mount Technology”, J. Mater. Res., 1993, Vol. 8, pp. 1033-1040.
26. T. G. Langdon and R. C. Gifkins, “Cyclic Grain Boundary Migration during High Temperature Fatigue-I. Microstructure Observations”, Acta Metall., 1983, Vol. 31, pp. 727-938.
27. T. G. Langdon, D. Simpson and R. C. Gifkins, “Cyclic Grain Boundary Migration during High Temperature Fatigue-II. Measurement of Grain Boundary Sliding”, Acta Metall., 1983, Vol. 31, pp. 739-946.
28. L. Wen, G. R. Mon and R. G. Ross, “Inconsistencies in the Understanding of Solder Joint Reliability Physics”, Design  Reliability of Solders and Solder Interconnections, 1997, TMS Annual Meeting, pp. 219-228.
29. Y. Miyazawa and T. Ariga, “Influences of Aging Treatment on Microstructure and Hardness of Sn-(Ag, Bi, Zn) Eutectic Solder Alloys”, Mater. Trans, JIM, 2001, Vol. 42, pp. 776-782.
30. 張淑如,“鉛對人體的危害”,勞工安全衛生簡訊,民國84年,第12期,17-18頁。
31. 鉛フリーはんだ技術,須賀維知,日刊工業新聞社,1999,pp. 1-11(in Japanese)。
32. N.-C. Lee, “Getting Ready for Lead-Free Solders”, Soldering and Surface Mount Tech., July 1997, No. 26, pp. 65-68.
33. 陳信文,“無鉛銲料簡介”,電子與材料,民國88年,第一期,74-77頁。
34. I. Karakaya and W. T. Thompson, “The Ag-Sn System”, Bulletion of Alloy Phase Diagrams, 1987, Vol. 8, pp. 340-347.
35. K. Suganuma and Y. Nakamura, “Microstructure and Streng of Interface Between Sn-Ag Eutectic Solder and Cu”, J. Japan Inst. Metals, 1995, Vol. 59, pp. 1299-1305 (in Japanese).
36. K. Suganuma, S. H. Huh, K. Kim, H. Nakase and Y. Nakamura, “Effect of Ag Content on Properties of Sn-Ag Binary Alloy Solder” Mater. Trans, JIM, 2001, Vol. 42, pp. 286-291.
37. W. Yang, R. W. Messler, Jr and L. E. Felton, “Microstructure Evolution of Eutectic Sn-Ag Solder Joints”, J. Elec. Mater., 1994, Vol. 23, pp. 765-772.
38. M. McCormack, S. Jin, G. W. Kammlott and H. S. Chen, “New Pb-free Solder Alloy with Superior Mechanical Properties”, Appl. Phys. Lett., 1993, Vol. 63, pp. 15-17.
39. H. Mavoorj, J. Chin, S. Vaynman, B. Moran, L. Keer and M. Fine, “Creep, Stress Relaxation, and Plastic Deformation in Sn-Ag And Sn-Zn Eutectic Solders”, J. Elec. Mater, 1997, Vol. 26, pp. 783-790.
40. C. M. Miller, I. E. Anderson and J. F. Smith, “A Viable Tin-Lead Solder Substitute: Sn-Ag-Cu”, J. Elec. Mater., 1994, Vol. 23, pp. 595-601.
41. 村田透,“鉛フリーはんだの技術動向”,ェレクトロニクス實裝技術,1999臨時增刊號,pp. 54-58。
42. W. Yang, L. E. Feltion and R. W. Messler, “The Effect of Soldering Process Variables on the Microstructure and Mechanical Properties of Eutectic Sn-Ag/Cu Solder Joints”, J. Elec. Mater., 1995, Vol. 24, pp. 1465-1472.
43. J. S. Hwang and R. M. Vargas, “Solder Joint Reliability-Can Solder Creep”, Soldering&Surface Mount Tech., 1990, No. 5, pp. 38-45.
44. F. Hua and J. Glazer, “Lead-Free for Electronic Assembly”, Design  Reliability of Solders and Solder Interconnections, 1997, TMS Annual Meeting, pp. 65-73.
45. J. Glazer, “Metallurgy of Low Temperature Pb-Free Solders for Electronic Assembly”, International Mater. Rev., 1995, Vol. 40, pp. 65-93.
46. 鉛フリーはんだ技術,須賀維知,日刊工業新聞社,1999,pp. 83-96(in Japanese)。
47. Z. Moser, J. Dutkiewicz, W. Gasior and J. Salawa, “The Sn-Zn System”, Bull. Alloy Phase Diagrams, 1985, Vol. 6, pp. 330-334.
48. K. Suganuma, T. ShotoKu, Y. Nakamura and K. Niihara, “Wetting and Interface Microstructure between Sn-Zn Binary Alloys and Cu”, J. Mater. Res., 1998, Vol. 13, pp. 2859-2865.
49. Binary Alloy Phase Diagrams: Vol. 1, T. B. Mssalski, ASM, USA, 1986, pp. 540-541.
50. M. McCormack, H. S. Chen, G. W. Kammlott and S. Jin, “Sinificantly Improved Mechanical Properties of Bi-Sn Solder Alloys by Ag-Doping”, J. Elec. Mater., 1997, Vol. 26, pp. 954-958.
51. K. Suganuma, “Microstructural Features of Lift-off Phenomenon in Through-Hole Circuit Soldered By Sn-Bi Alloy”, Scripta Materialia, 1998, Vol. 38, pp. 1333-1340.
52. J. N. Hu, H. Tanaka and T. Narita, “Aging Behavior of a Sn-Bi Eutectic solder at Temperatures between 233 and 373K”, Mater. Trans, JIM, 2001, Vol. 42, pp. 769-775.
53. 鉛フリーはんだ技術,須賀維知,日刊工業新聞社,1999,pp. 35-55(in Japanese)。
54. S. Jin and M. MaCormack, “Dispersoid Addition to a Pb-Free Solder for Suppression of Microstructural Coarsening”, J. Elec. Mater., 1994, Vol. 23, pp. 735-739.
55. M. MaCormack, S. Jin and G. W. Kammlott, “Suppression of Microstructural Coarsening and Creep Deformation in a Lead-Free Solder”, Appl. Phys. Lett., 1994, Vol. 64, pp. 580-582.
56. 殷翠梅,“Sn-Ag系無鉛銲錫之振動破壞特性探討”,國立成功大學材料科學及工程學系,碩士論文,民國90年。
57. E. W. Hare, R. Corwin and E. K. Riemer, “Structure and Property Changes during Room Temperature Aging of Bismuth Solders”, Electronic Packaging Materials and Processes Conf., ASM Proc., 1985, pp. 109-115.
58. Mechanical Vibrations, S. S. Rao, Addison-Wesley Publishing Company, Inc., 1990, 2nd ed., pp.4-160.
59. An Introduction to Mechanical Vibration, R. F. Stridel, Jr., John Wiley and Sons, Inc., New York, 1988, 3rd ed., pp. 96-226.
60. 振動與噪音的阻尼控制,孫慶鴻、張啟軍、姚慧珠編著,機械工業出版社,北京,1992,38-57頁。
61. Dynamic Vibration Absorbers: Theory and Technical Application, B. G. Korenev and L. M. Reznikov, John Wiley and Sons, Inc., England, 1993, pp. 1-80.
62. Theory of Vibration, Volume II: Discrete and Continuous Systems, A. A. Shabana, Springer-Verlag, New York, 1991, pp. 1-40.
63. 洪佳和,“亞共晶鋁-矽(-鎂)合金之共振破壞特性及其冶金影響因素之探討”,國立成功大學材料科學及工程學系,博士論文,民國90年。
64. A. Grannato K. Lucke, “Application of Dislocation Theory to Internal Friction Phenomena at High Frequencies”, J. Appl. Phys., 1956, Vol. 27, pp. 583-593.
65. J. Zhang, R. J. Perez, M. Gupta and E. J. Lavernia, ”Damping Behavior of Particulate Reinforced 2519 Al Metal Matrix Composites”, Scripta Metall. Mater., 1993, Vol. 28, pp. 91-96.
66. J. Zhang, R. J. Perez and E. J. Lavernia, “Dislocation-Induced Damping in Metal Matrix Composites”, J. Mater. Sci., 1993, Vol. 28, pp. 835-846.
67. J. Zhang, R. J. Perez and E. J. Lavernia, “Documentation of Damping Capacity of Metallic, Ceramic and Metal-Matrix Composite Materials”, J. Mater. Sci., 1993, Vol.28, pp. 2395-2404.
68. R. J. Perez, J. Zhang, M. N. Gungor and E. J. Lavernia, “Damping Behavior of 6061Al/Gr Metal Matrix Composites”, Metall. Trans., 1993, Vol. 24A, pp. 701-711.
69. E. J. Lavernia, R. J. Perez and J. Zhang, “Damping Behavior of Discontinuously Reinforced Al Alloy Metal-Matrix composites”, Metall. Mater. Trans., 1995, Vol. 26A, pp. 2803-2818.
70. M. Okabe, T. Mori and T. Mura, “Internal Friction caused By Diffusion Around a Second-Phase Particle Al-Si Alloy”, Phil. Mag. A, 1981, Vol. 44, pp. 1-12.
71. M. Hinai, S. Sawaya and H. Masumoto, “Damping Characteristics of Cold-Worked Al-Si Alloys”, Trans. of Japan Inst. Metals, 1986, Vol. 27, pp. 784-788.
72. A. Wolfenden, L. S. Cook, J. M. Wolla, “Phase Changes and Damping in Crystalline Materials”, M3D: Mechanics and Mechanism of Material Damping, ASTM STP 1169, V. K. Kinra and A. Wolfenden Eds., American Society for Testing and Materials Philadelphia, 1992, pp. 124-141.
73. 江東昇,“亞共晶鋁-矽(-鎂)合金之共振傳播行為研究”,國立成功大學材料科學及工程學系,博士論文,民國88年。
74. 林士晴,“球狀石墨鑄鐵之振動破壞特性研究”,國立成功大學材料科學及工程學系,博士論文,民國90年。
75. Fatigue Threshold, D. Taylor, Butterworth and Co. Ltd, 1989, pp. 71-91.
76. Fatigue of Materials, S. Suresh, Cambridge University Press. New York, 1991, pp. 292.
77. Elementary Engineering Fracture Mechanics, D. Broek, Martinus Nijhoff Publishers, 1984, pp. 158-163.
78. S. Suresh, “Crack Deflection: Implication for the Growth of Long and Short Fatigue Cracks”, Metall. Trans., 1983, Vol. 14A, pp. 2375-2385.
79. W. Elber, Eng. Fract. Mech., “ Fatigue-Crack Closure under Cyclic Tension”, 1971, Vol. 2, pp. 37-45.
80. S. Suresh and R. O. Ritchie, “A Geometric Model for Fatigue Crack Closure Induced by Fracture Surface Roughness”, Metall. Trans. A, 1982, Vol. 13A, pp. 1627-1631.
81. S. H. Wang, C. Muller and H. E. Exner, “A Model for Roughness-Induced Fatigue Crack Closure”, Metall. Mater. Trans A, 1998, Vol. 29A, pp. 1933-1939.
82. S. Suresh and R. O. Ritchie, “Mechanistic Dissimilarities Between Enviromentally Influenced Fatigue-Crack Propagation at Near-Threshold and Higher Gowth Rates in Lower Strength Steels”, Metal Sci., 1982, Vol. 16, pp. 529-538.
83. S. Suresh, “Fatigue Crack Deflection and Fracture Surface Contact: Micromechanical Models”, Metall. Trans. A, 1985, vol. 16A, pp. 249-260.
84. R. O. Ritchie, “Mechanisms of Fatigue Crack Propagation in Metals, Ceramics and Composites: Role of Crack Tip Shielding”, Mater. Sci. Eng., 1988, Vol. A103, pp. 15-28.
85. W. J. Drury, A. M. Gokhale and S. D. Antolovich, “Effect of Crack Surface Geometry on Fatigue Crack Closure”, Metall. Trans. A, 1995, Vol. 26A, pp. 2651-2663.
86. A. J. Padkin, M. F. Brereton and J. E. King, “Fatigue Crack Growth in Two Phase Alloys”, Mater. Sci. Tech., 1987, Vol. 3, pp. 217-223.
87. D. M. Knowles and J. E. King, “Role of Reinforcement/Matrix Interfacial Strength in Fatigue Crack Propergation in Particulate SiC Reinforced Aluminum Alloy 8090”, Mater. Sci. Tech., 1992, Vol. 8, pp. 500-509.
88. S. Nishi and T. Kobayashi, “A Study on the Toughness of Aluminum Alloys Castings”, IMONO, 1974, Vol. 46, pp. 905-912 (in Japanese).
89. C. Masuda and Y. Tanaka, “Fatigue Properties and Fatigue Fracture Mechanisms of SiC Wiskers or SiC Particlate-Reinforced Aluminum Composites”, J. Mater. Sci., 1992, Vol. 27, pp. 413-422.
90. S. Kumai, J. E. King and J. F. Knott, “Fatigue in SiC-Particulate-Reinforced Aluminum Alloy Composites”, Mater. Sci. Eng., 1991, Vol. A146, pp. 317-326.
91. J. J. Mason and R. O. Ritchie, “Fatigue Crack Growth Resistance in SiC Particulate and Whisker Reinforced P/M 2124 Aluminum Matrix Composites”, Mater. Sci. Eng., 1997, Vol. A231, pp. 170-187.
92. Y. Sugimura and S. Suresh, “Effects of SiC Content on Fatigue Crack Growth in Aluminum Alloys Reinforced with SiC Particles”, Metall. Trans. A, 1992, Vol. 23A, pp. 2231-2242.
93. J. N. Hall, J. W. Jones and A. K. Sachdev, “Particle Size, Volume Fraction and Matrix Strength Effects on Fatigue Behavior and Particle Fracture in 2124 Aluminum-SiCp Composites”, Mater. Sci. Eng., 1994, Vol. A183, pp. 69-80.
94. N. Chawla, C. Andres, J. W. Jones and J. E. Allison, “Effect of SiC Volume Fraction and Particle Size on the Fatigue Resistance of a 2080 Al/SiCp Composite”, Metall. Mater. Trans. A, 1998, Vol. 29A, pp. 2843-2854.
95. J. K. Shang and R. O. Ritchie, “On the Particulate-Size Dependence of Fatigue-Crack Propagation Thresholds in SiC-Particulate-Reinforced Aluminum-Alloy Composites: Role of Crack Closure and Crack Trapping”, Acta Metall., 1989, Vol. 37, pp. 2267-2278.
96. J. K. Shang, W. Yu and R. O. Ritchie, “Role of Silicon Carbide Particles in Fatigue Crack Growth in SiC-Particlate-Reinforced Aluminum Alloy Composites”, Mater. Sci. Eng., 1988, Vol. A102, pp. 181-192.
97. O. Botstein, R. Arone and B. Shpigler, “Fatigue Crack Growth Mechanisms in Al-SiC Particulate Metal Matrix Composites”, Mater. Sci. Eng., 1990, Vol. A128, pp. 15-22.
98. F. T. Lee, J. F. Major and F. H. Samuel, “Effect of Silicon Particles on the Fatigue Crack Growth Characteristics of Al-12 Wt Pct Mg-(0-0.02) Wt Pct Sr Casting Alloys”, Metall. Mater. Trans. A, 1995, Vol. 26A, pp. 1553-1570.
99. T. Kobayashi, M. Minomi and K. Ikeda, “Fatigue Crack Propagation in Al-Si Alloy Castings”, J. Japan Inst. of Light Metals, Vol. 37, No. 12, pp. 824-830 (in Japanese).
100. A. K. Ghosh, “The Influence of Strain Hardening and Strain Rate Sensitivity on Steel Metal Forming”, J. Engr. Mater. Tech., 1977, Vol. 99, pp. 264-274.
101. Z. Guo and H. Conrad, “Fatigue Crack Growth Rate in 63Sn-37Pb Solder Joint”, J. Elec. Packaging, 1993, Vol. 115, pp.159-164.
102. H. D. Solomon, “Fatigue of 60/40 Solder”, IEEE Trans. on Component, Hybrids, and Manufacturing Tech., 1986, Vol. CHMT-9, pp. 423-432.
103. H. Jiang, R. Hermann and W. J. Plumbridge, “ High-Strain Fatigue of Pb-Sn Eutectic Solder Alloy”, J. Mater. Sci., 1996, Vol. 31, pp. 6455-6461.
104. W. J. Plumbridge, “Review Solders in Electronic”, J. Mater Sci., 1996, Vol. 31, pp. 2501-2514.
105. W. H. Hunt, Jr., J. R. Brockenbrough and P. E. Magnusen, “An Al-Si-Mg Composite Model System: Microstructural Effect on Deformation and Damage Evolution”, Scripta Metall. Mater., 1991, Vol. 25, pp. 15-20.
106. C. Y. Tang, M. Jie, W. Shen and K. C. Yung, “The Degradation of Elastic Properties of Aluminum Alloy 2024T3 Due to Strain Damage”, Scripta Metall. Mater., 1998, Vol. 38, pp. 221-238.
107. G. T. Hahn and A. R. Rosenfield, “Metallurgical Factors Affecting Fracture Toughness of Aluminum Alloys”, Metall. Trans. A, 1975, Vol. 6A, pp. 653-669.
108. Solders and Soldering: Materials, Design, Production and Analysis for Reliable Bonding, H. H. Manko, 1979, McGraw-Hill, Inc., USA, pp. 41-123.
109. K. T. Park, S. Yan and F. A. Mohamed, “Boundary Sliding Behavior in High-Purity Pb-62%Sn”, Phil. Mag. A, 1995, pp. 891-903.
110. Y. Nakamura, “Trends in Lead Free Solder in 21Century”, Inter. Elec. Dev. Mater. Sym., 1998, Tainan, Taiwan, pp. 340-344.
111. D. Lee, K. Kim, Y. Lee and C. Choi, ”Factors Determining Crystal Orientation of Dendritic Growth during Solidification”, Mater. Chem. and Phys., 1997, Vol. 47, pp. 154-158.
112. Plastic Deformation of Crystallines Solids, J. S. Koehler, 1950, Mellon Institute, Pittsburgh, pp. 216-223.
113. Fatigue Mechanism: Advances in Quantitative Measurement of Physical Damage, J. Lankford, D. L. Davidson, W. L. Morris and R. P. Wei, 1983, ASTM, Philadelphia, pp. 5-45.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top