跳到主要內容

臺灣博碩士論文加值系統

(54.225.48.56) 您好!臺灣時間:2022/01/19 22:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周邦彥
研究生(外文):Bang-Yen Chou
論文名稱:添加氧化鋯顆粒強化相與引入氧化鋯介層對電漿熔射氫氧基磷灰石塗層性質的影響
論文名稱(外文):Plasma-Sprayed Hydroxyapatite Coating on Titanium Alloy With ZrO2 Second Phase and ZrO2 Intermediate Layer
指導教授:張煥修
指導教授(外文):Edward Chang
學位類別:博士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:90
語文別:中文
論文頁數:122
中文關鍵詞:電漿熔射氫氧基磷灰石氧化鋯微結構相變化黏著強度鍵結強度殘留應力
外文關鍵詞:plasma sprayinghydroxyapatiteZrO2microstructurephase transformationadhesive strengthbonding strengthresidual stress
相關次數:
  • 被引用被引用:2
  • 點閱點閱:998
  • 評分評分:
  • 下載下載:278
  • 收藏至我的研究室書目清單書目收藏:1
本論文第一章及第二章分別為緒論及理論基礎。根據文獻,在鈦合金基材上電漿熔射氫氧基磷灰石 (HA) 塗層,由於具有優良的生物相容性 (biocompatibility) 與機械性質,因此被廣泛應用作為骨外科植入材。本研究的主要目的,乃是藉由添加ZrO2顆粒分散於HA基地當中 (HA+ZrO2),以及在HA塗層與鈦合金基材間引入ZrO2介層 (HA/ZrO2),來強化電漿熔射HA塗層的機械性質。本研究探討這兩個塗層系統的強化機制,以及HA與ZrO2在熔射過程中的相變化反應機制。
第三章中,藉由X-ray繞射儀 (XRD),與穿透式電子顯微鏡 (TEM),探討電漿熔射HA+ZrO2塗層的微結構特性。研究顯示,HA+ZrO2粉末中的立方晶相ZrO2,於熔射過程當中仍然維持立方結構。ZrO2顆粒與磷酸鹽基地間的界面接合情形良好,產生局部區域的結晶位向關係。並且ZrO2顆粒與磷酸鹽反應,使ZrO2相變態生成CaZrO3。
本章之另一部分探究電漿熔射HA+ZrO2塗層的相變化機制。藉由XRD分析中晶格常數的計算 (Cohen’s method) 與TEM來探討塗層中的相組成與化學性質的變化。實驗結果顯示鈣離子從HA基地,於液態下擴散進入ZrO2,產生以下的塗層結構特性:(a) CaO與ZrO2形成固溶體 (ZrO2-7.7 mol% Y2O3-4.4 mol% CaO);(b) 生成CaZrO3與ZrO2的混合物,並具有結晶位向關係;(c) 含有Ca、P、Zr、及Y等元素的非晶相;(d) 缺鈣的HA相 (CaO-poor HA,Ca10-x(HPO4)x(PO4)6-x(OH)2-x,x = 0.06)。
第四章之內容是比較HA+ZrO2及HA/ZrO2兩塗層系統之機械性質及強化機制。塗層鍵結強度的量測是依照ASTM C633-79規範進行。研究顯示,鍵結強度從HA塗層的28.6  3.2 MPa,增加到HA+ZrO2塗層的32.5  4.2 MPa,及HA/ZrO2塗層的36.2  3.0 MPa。藉由TEM技術來分析HA/ZrO2塗層的橫截面結構,包括HA/ZrO2與ZrO2/鈦合金基材間的界面。顯示,在HA/ZrO2的界面上有元素擴散的現象發生。
在第五章中,含有與不含有ZrO2介層的電漿熔射HA塗層,分別在90、140與200℃等基材溫度下被覆。本章的主要目的,在於探討這些製程變數對塗層鍵結強度,殘留應力與破壞行為等的影響。結果顯示,除了在200℃基材溫度下噴覆的HA/ZrO2塗層,HA/ZrO2與HA塗層的鍵結強度隨著基材溫度的升高而降低。這現象推論是因為塗層中所產生的殘留應力所致。引入ZrO2介層可以大為提升HA塗層的鍵結強度,其可能的強化機制有:(a) ZrO2介層提供較為粗糙的表面;(b) ZrO2介層較佳的韌性促進機械強化效果。在200℃被覆溫度下的HA面層,擁有較為緻密的塗層結構,無法解釋HA/ZrO2塗層的高鍵結強度值。咸信在HA/ZrO2界面產生顯著的擴散鍵結,才是主要的原因。
In the thesis, the first two chapters, Chapter 1 and Chapter 2, are about introduction and theory foundation, respectively. From the literature, plasma-sprayed hydroxyapatite (HA) — coated Ti alloy surgical implant exhibits both excellent biocompatibility and satisfactory mechanical properties. The aim of this study was to strengthen the HA coating by adding dispersed ZrO2 particles in the HA matrix (HA+ZrO2) and introducing ZrO2 intermediate layer between HA coating and Ti alloy substrate as a bond coat (HA/ZrO2). In this study, the strengthening mechanisms of both coating systems were investigated as well as the transformation mechanisms of the interaction between HA and ZrO2 during spraying.
In Chapter 3, the microstructural characteristics of plasma-sprayed HA+ZrO2 coating on Ti alloy were investigated by using X-ray diffractometry (XRD) and transmission electron microscopy (TEM). The results reveal that the cubic phase of ZrO2 in HA+ZrO2 powders before coating maintains during plasma spraying and ZrO2 particle apparently bonds well to the calcium phosphate matrix with local crystallographic relationship. Furthermore, reaction of calcium phosphate and ZrO2 occurs to transform ZrO2 into CaZrO3.
In addition, the mechanism of phase transformation in plasma-sprayed HA+ZrO2 coating is explored in Chapter 3. The changes in phase and chemistry of the coatings were characterized by XRD with lattice constant measurement (Cohen’s method), and by TEM. Experimental results show an evidence of the diffusion of calcium ion from the hydroxyapatite matrix, in liquid state, into the ZrO2. It results in the following structural features in the composite coating: (a) a CaO-doped ZrO2 solid solution (ZrO2-7.7 mol% Y2O3-4.4 mol% CaO); (b) a mixture of ZrO2 and CaZrO3 having crystal-orientation relationship; (c) an amorphous phase containing elements of Ca, P, Zr and Y; and (d) a remaining CaO-poor HA matrix (Ca10-x(HPO4)x(PO4)6-x(OH)2-x, x = 0.06).
In Chapter 4, the mechanical properties and strengthening mechanisms between HA+ZrO2 and HA/ZrO2 coatings are compared. The bonding strength of coating is measured per ASTM C633-79. Results indicate that the bonding strength of the HA coatings increases from 28.6  3.2 MPa for HA coating to 32.5  4.2 MPa and 36.2  3.0 MPa for HA+ ZrO2 and HA/ZrO2 coatings, respectively. The cross-sectional microstructure of HA/ZrO2 coating of both HA/ZrO2 and ZrO2/Ti alloy interfaces was investigated by TEM. Elemental diffusion was found at HA/ZrO2 interface.
In Chapter 5, HA coatings were plasma sprayed on the Ti alloy substrates with and without an intermediate ZrO2 layer, meanwhile the temperatures of substrates were varied at 90, 140 and 200°C. The purpose of the investigation was to study the effects of those processing variables on the bonding strength, residual stress and failure behavior of the system. It is found that the bonding strengths of HA/ZrO2 and HA coatings generally decrease with increasing substrate temperature, except for the HA/ZrO2 coating deposited at 200°C. The rationale of the results is attributed to the residual stress generated in the coating. Introducing ZrO2 bond coat is found to significantly promote the bonding strength of HA coating. The possible strengthening mechanism is the rougher surface of ZrO2 bond coat and the higher toughness of ZrO2, which provide the mechanical strengthening effects. The slightly denser HA in 200°C-deposited HA coating cannot explain the high bonding strength of the HA/ZrO2 coating. It is believed that a stronger diffusion bonding is formed at the interface of HA and ZrO2, which increases the bonding between them chemically.
中文摘要A1
英文摘要A4
目錄B1
表目錄C1
圖目錄D1
第一章 緒論1
第二章 理論基礎4
2-1 氫氧基磷灰石4
2-1-1 氫氧基磷灰石的合成方法4
2-1-2 氫氧基磷灰石的基本性質4
2-2 氧化鋯6
2-2-1 氧化鋯的穩定劑及韌化機構6
2-2-2 ZrO2-Y2O3二元系統6
2-2-3 氧化鋯強化生醫陶瓷7
2-3 電漿熔射8
2-3-1 原理8
2-3-2 塗層顯微結構與性質8
2-3-3 電漿熔射複合塗層9
2-4 精確晶格常數計算10
2-5 殘留應力的量測11
第三章 HA+10 wt% ZrO2複合塗層的微結構特性與相變化機制20
3-1 前言20
3-2 實驗方法與步驟21
3-2-1 熔射粉末的製備21
3-2-2 試片的製備22
3-2-3 塗層結構特性分析22
3-2-4 晶格常數的計算23
3-3 實驗結果23
3-3A 8-10塗層結構特性23
3-3B 8-10塗層中的相變化25
3-3B-1 TEM顯微研究25
3-3B-2 交互擴散25
3-3B-3 ZrO2晶格常數26
3-4 討論26
3-4A 8-10塗層結構特性26
3-4B 8-10塗層中的相變化29
3-4B-1 交互擴散的特性29
3-4B-2 相分解31
3-5 結論35
3-5A 8-10塗層結構特性35
3-5B 8-10塗層中的相變化35
附錄A36
附錄B37
第四章 HA/ZrO2雙層塗層性質研究67
4-1 前言67
4-2 實驗方法與步驟68
4-2-1 熔射粉末的製備68
4-2-2 試片的製備68
4-2-3 塗層結構特性分析68
4-2-4 鍵結強度測試69
4-3 實驗結果70
4-3-1 粉末性質70
4-3-2 塗層特性70
4-3-3 塗層鍵結強度值71
4-4 討論71
4-4-1 HA/ZrO2塗層性質71
4-4-2 HA/ZrO2塗層界面TEM研究73
4-4-3 HA/ZrO2塗層與8-10塗層的比較75
4-5 結論76
第五章 基材溫度對HA/ZrO2塗層鍵結強度與殘留應力的影響93
5-1 前言93
5-2 實驗方法與步驟93
5-2-1 熔射粉末的製備93
5-2-2 試片的製備94
5-2-3 塗層特性94
5-2-4 鍵結強度, 破壞面分析與殘留應力量測94
5-3 實驗結果95
5-3-1 塗層特性95
5-3-2 鍵結強度, 破壞面分析與殘留應力量測96
5-4 討論97
5-4-1 相組成97
5-4-2 塗層結構98
5-4-3 鍵結強度, 破壞面分析與殘留應力量測98
5-5 結論100
第六章 總結論110
參考文獻112
1. Albee, F. H., “Studies in Bonegrowth-triple Calcium Phosphate as a Stimulus to Osteogenesis,” Ann. Surg., 71 (1920) 32.
2. J. Zhou, X. Zhang, J. Chen, S. Zeng, and K. de Groot, “High Temperature Characteristics of Synthetic Hydroxapatite,” J. Mater. Sci.: Mater. Med., 4 (1993) 83-85.
3. L. L. Hench, “Bioceramics: From Concept to Clinic,” J. Am. Ceram. Soc., 74 [7] (1991) 1487-1510.
4. D. F. G. Poole, “Tooth Enamel 2,” Vol. 44, John Wright & Sons, Bristol, 1969.
5. M. Ogiso, “TEM Analysis of Hydroxyapatite-Bone Interfacial Reactions,” J. Dent. Res., 60 [A] (1981) 419-424.
6. C. A. van Blitterswijk, J. J. Grote, W. Kuijpers, W. Th. Daems, and K. de Groot, “Macropore Tissue Ingrowth - A Quantitative and Qualitative Study on Hydroxyapatite Ceramic,” Biomaterials, 7 (1986) 137-143.
7. H. A. Hoogendoorn, W. Renooij, L. M. A. Akkermmans, W. Visser, and P. Wittebol, “Long-Term Study of Large Ceramic Implants (Porous Hydroxyapatite) in Dog Femora,” Clin. Orthop., 187 (1984) 281-288.
8. T. Kitsugi, T. Yamamuro, H. Takeuchi, and M. Ono, “Bonding Behavior of 3 Types of Hydroxyapatite with Different Sintering Temperatures Implanted in Bone,” Clin. Orthop., 234 (1988) 280-290.
9. M. Jarcho, C. H. Bolen, M. B. Thomas, J. Bobick, J. F. Kay, and R. H. Doremus, “Hydroxyapatite Synthesis and Characterization in Dense Polycrystalline Form,” J. Mater. Sci., 11 (1976) 2027-2035.
10. G. de With, H. J. A. van Dijk, N. Hattu, and K. Prijs, “Preparation, Microstructure and Mechanical Properties of Dense Polycrystalline Hydroxyapatite,” J. Mater. Sci., 16 (1981) 1592-1598.
11. R. G. T. Geesink, K. de Groot, and C. P. A. T. Christel, “Chemical Implant Fixation Using Hydroxyapatite Coatings,” Clin. Orthop., 225 (1987) 147-170.
12. K. A. Thomas, J. F. Kay, S. D. Cook, and M. Jarcho, “The Effect of Surface Macrotexture and Hydroxyapatite Coating on the Mechanical Strength and Histologic Profiles of Titanium Implant Materials,” J. Biomed. Mater. Res., 21 (1987) 1395-1414.
13. K. A. Thomas, and S. D. Cook, “An Evaluation of Variables Influencing Implant Fixation by Direct Bone Apposition,” ibid., 19 (1985) 875-901.
14. L. L. Hench, “Bioceramics,” J. Am. Ceram. Soc., 81 [7] (1998) 1705-1728.
15. R. Van Audekercke and M. Martens, “Mechanical Properties of Cancellous Bone,” pp. 89-98 in Natural and Living Biomaterials. Edited by G. W. Hastings and P. Ducheyne. CRC Press, Inc., Baton, Florida, 1984.
16. E. P. Butler, “Transformation-Toughened Zirconia Ceramics,” Mater. Sci. Technol., 1 (1985) 417-432.
17. N. Claussen, “Fracture Toughness of Al2O3 with an Unstabilized ZrO2 Dispersed Phase,” J. Am. Ceram. Soc., 59 (1976) 49-51.
18. D. J. Green, “Critical Microstructures for Microcracking in Al2O3-ZrO2 Composites,” J. Am. Ceram. Soc., 65 (1982) 610-614.
19. M. Ruhle, A. G. Evans, R. M. Mcmeeking, and P. G. Charalambides, “Microcrack Toughening in Alumina/Zirconia,” Acta Metall., 35 (1987) 2701-2710.
20. T. Kasuga, K. Nakajima, T. Uno, and M. Yoshida, “Preparation of Zirconia Toughened Bioactive Glass-ceramic Composite by Sinter-hot Isostatic Pressing,” J. Am. Ceram. Soc., 75 [5] (1992) 1103-1107.
21. T. Kasuga, M. Yoshda, A. J. Ikushima, M. Tuchiya, and H. Kusakari, “Stability of Zirconia-toughened Bioactive Glass-ceramics: in vivo Study Using Dogs,” J. Mater. Sci. Mater. Med., 4 (1993) 36-39.
22. J. M. Wu, and T. S. Yeh, “Sintering of Hydroxyapatite-zirconia Composite Materials,” J. Mater. Sci., 23 (1988) 3771-3777.
23. K. Ioku, S. Somiya, and M. Yoshimura, “Hydroxyapatite Ceramics with Tetragonal Zirconia Particles Dispersion Prepared by HIP Post-Sintering,” J. Jpn. Ceram. Soc., 99 [3] (1991) 196-203.
24. N. Tamari, M. Mouri, and I. Kondo, “Mechanical Properties and Existing Phases of Composite Ceramics Obtained by Sintering of a Mixture of Hydroxyapatite and Zirconia,” J. Jpn. Ceram. Soc., 95 [8] (1987) 806-809.
25. R. G. T. Geesink, K. de Groot, and C. P. A. Klein, “Bonding of Bone to Apatite-Coated Implants,” J. Bone Joint Surg., 70B (1988) 17-22.
26. H. Oonishi, M. Yamamoto, H. Ishimaru, E. Tsuji, S. Kushitani, M. Aono, and Y. Ukon, “The Effect of Hydroxyapatite Coating on Bone-Growth into Porous Titanium-Alloy Implants,” J. Bone Joint Surg., 71B (1989) 213-216.
27. D. Poulmaire, M. Ducos, Y. Setti, and M. P. Hypolite, “Development of Dental Implants in Titanium with HA Coatings,” pp. 191-202 in Proc. 2nd Plasma-Technik-Symp. Edited by S. Blum-Sandmeier, H. Eschnauer, P. Huber, and A. R. Nicoll. Plasma-Technik AG, 3 (1991).
28. D. Matejka, V. Palka, M. Brezovsky, P. Sebo, I. Infner, and M. Pastorok, “Plasma Coated Composite Intraosseous Implants,” pp. 171-177 in Proc. 2nd Plasma-Technik-Symp. Edited by S. Blum-Sandmeier, H. Eschnauer, P. Huber, and A. R. Nicoll. Plasma-Technik AG, 3 (1991).
29. C. C. Berndt, G. N. Haddad, A. J. D. Farmer, and K. A. Gross, “Review Article. Thermal Spraying for Bioceramic Applications,” Mater. Forum, 14 (1990) 161-173.
30. F. Brossa, A. Cigada, R. Chiesa, L. Paracchini, and C. Consonni, “Adhesion Properties of Plasma Sprayed Hydroxyapatite Coatings for Orthopaedic Prostheses,” Biomed. Mater. Eng., 3 (1993) 127-136.
31. K. Hayashi, T. Inadome, T. Mashima, and Y. Sugioka, “Comparison of Bone-Implant Interface Shear Strength of Solid Hydroxyapatite and Hydroxyapatite-Coated Titanium Implants,” J. Biomed. Mater. Res., 27 (1993) 557-563.
32. D. B. Burr, S. Mori, R. D. Boyd, T. C. Sun, J. D. Blaha, L. Lane, and J. Parr, “Histomorphometric Assessment of the Mechanisms for Rapid Ingrowth of Bone to HA/TCP Coated Implants,” J. Biomed. Mater. Res., 27 (1993) 645-653.
33. C. P. A. T. Klein, J. G. C. Wolke, J. M. A. de Blieck-Hogervorst, and K. de Groot, “Calcium Phosphate Plasma-Sprayed Coatings and Their Stability: An in vivo Study,” J. Biomed. Mater. Res., 28 (1994) 909-917.
34. K. Hayashi, K. Uenoyama, N. Matsuguchi, and Y. Sugika, “Quantitative Analysis of in vivo Tissue Responses to Titanium-Oxide and Hydroxyapatite-Coated Titanium Alloy,” J. Biomed. Mater. Res., 25 (1991) 515-523.
35. C. P. A. T. Klein, P. Patka, H. B. M. van defLubbe, J. G. C. Wolke, and K. de Groot, “Plasma-Sprayed Coatings of Tetracalcium Phosphate, Hydroxyapatite, and -TCP on Titanium Alloy: An Interface Study,” J. Biomed. Mater. Res., 25 (1991) 53-65.
36. T. W. Bauer and R. C. T. Geesink, “Hydroxyapatite-Coated Femoral Stems,” J. Bone Joint Surg., 73-A [10] (1991) 1439-1452.
37. H. Ji, C. B. Ponton and P. M. Marquis, “Microstructural Characterization of Hydroxyapatite Coating on Titanium,” J. Mater. Sci.: Mater. Med., 3 (1992) 283-287.
38. J. A. Jansen, J. P. C. M. van de Waerden, J. G. C. Wolke, and K. de Groot, “Histologic Evaluation of the Osseous Adaptation to Titanium and Hydroxyapatite-Coated Titanium Implants,” J. Biomed. Mater. Res., 25 (1991) 973-989.
39. W. J. A. Dhert, C. P. A. T. Klein, J. G. C. Wolke, E. A. van der Velde, K. de Groot, and P. M. Rozing, “A Mechanical Investigation of Fluorapatite, Magnesiumwhitlockite, and Hydroxyapatite Plasma-sprayed Coatings in Goats,” J. Biomed. Mater. Res., 25 (1991) 1183-1200.
40. B. C. Wang, T. M. Lee, E. Chang, and C. Y. Yang, “The Shear Strength and the Failure Mode of Plasma Sprayed Hydroxyapatite Coating to Bone: the Effect of Coating Thickness,” J. Biomed. Mater. Res., 27 (1993) 1315-1327.
41. M. J. Filiaggi, N. A. Coombs, and R. M. Pilliar, “Characterization of the Interface in the Plasma-sprayed HA coating/Ti-6Al-4V implant system,” J. Biomed. Mater. Res., 25 (1991) 1211-1229.
42. R. M. Pilliar, D. A. Deporter, P. A. Watson, M. Pharoah, M. Chiipman, N. Valiquette, S. Carter, and K. de Groot, “The Effect of Partial Coating with Hydroxyapatite on Bone Remodeling in Relation to Porous Coated Titanium-Alloy Dental Implants in the Dog,” J. Dent. Res., 70 (1991) 1338-1345.
43. J. M. Spivak, J. L. Ricci, N. C. Blumenthal, and H. Alexander, “A New Canine Model to Evaluate the Biological Response of Intramedullary Bone to Implant Materials and Surfaces,” J. Biomed. Mater Res. 24 (1990) 1121-1149.
44. S. D. Cook, J. F. Kay, K. A. Thomas, and M. Jarcho, Int. J. Oral Maxillofac. Imp., 2 (1987) 15.
45. J. Ilavsky, A. J. Allen, G. G. Long, S. Krueger, C. C. Berndt, and H. Herman, “Influence of Spray Angle on the Pore and Crack Microstructure of Plasma-Sprayed Deposits,” J. Am. Ceram. Soc., 80 [3] (1997) 733-742.
46. B. C. Wang, E. Chang, C. Y. Yang, and D. Tu, “Characteristics and Osteoconductivity of Three Different Plasma-Sprayed Hydroxyapatite Coatings,” Surf. and Coat. Technol., 58 (1993) 107-117.
47. E. Chang, W. J. Chang, B. C. Wang, and C. Y. Yang, “Plasma Spraying of Zirconia-Reinforced Hydroxyapatite Composite Coatings on Titanium: Part I Phase, Microstructure and Bonding Strength,” J. Mater. Sci.: Mater. Med., 8 (1997) 193-200.
48. E. Chang, W. J. Chang, B. C. Wang, and C. Y. Yang, “Plasma Spraying of Zirconia-Reinforced Hydroxyapatite Composite Coatings on Titanium: Part II Dissolution Behavior in Simulated Body Fluid and Bonding Degradation,” J. Mater. Sci.: Mater. Med., 8 (1997) 201-211.
49. H. Kurzweg, R. B. Heimann, T. Troczynski, and M. L. Wayman, “Development of Plasma-sprayed Bioceramic Coatings with Bond Coats Based on Titania and Zirconia,” Biomaterials, 19 (1998) 1507-1511.
50. Y. C. Tsui, C. Doyle, and T. W. Clyne, “Plasma Sprayed Hydroxyapatite Coatings on Titanium Substrates Part 2: Optimization of Coating Properties,” Biomaterials, 19 (1998) 2031-2043.
51. D. Lamy, A. C. Pierre, and R. B. Heimann, “Hydroxyapatite Coatings with a Bond Coat of Biomedical Implants by Plasma Projection,” J. Mater. Res., 11 [3] (1996) 680-686.
52. 王寶琪, ”電漿熔射氫氧基磷灰石披覆於鈦鋁釩合金基材生醫塗層之塗層特性與生物反應研究,” 國立成功大學材料科學及工程研究所, 1995.
53. F. C. M. Driessens, “Formation and Stability of Calcium Phosphates in Relation to the Phase Composition of the Mineral in Calcified Tissue,” pp. 1-32 in Bioceramic of Calcium Phosphate. Edited by K. de Groot. CRC press inc., Boca Raton, Florida, 1983.
54. H. Tagai, and H. Aoki, “Preparation of Synthetic Hydroxyapatite and Sintering of Apatite Ceramics,” pp. 477 in Mechanical Properties of Biomaterials. Edited by G. W. Hastings, and J. Upton. John Wiley & Sons Press, 1980.
55. T. Kijima and M. Tsutsumi, “Preparation and Thermal Properties of Dense Poly-crystalline Oxyhydroxyapatite,” J. Am. Cera. Soc., 62 (1979) 455-460.
56. G. Bauer, “Biochemical Aspects of Osseo-Integration,” pp. 81-97 in CRC Handbook of Bioactive Ceramics Vol. I. Edited by T. Yamamuro, L. L. Hench, and J. Wilson. CRC Press Inc., Boca Raton, Florida, 1990.
57. R. S. Roth, T. Negas, and L. P. Cook, “Systems Containing Water,” pp. 321-322 in Phase Diagrams for Ceramists, Vol. 5. Edited by G. Smith and M. A. Clevinger. American Ceramic Society, Columbus, Ohio, 1983.
58. K. de Groot, C. P. A. T. Klein, J. G. C. Wolke, and J. M. A. de Blieck-Hoger-vorst, “Chemistry of Calcium Phosphate Bioceramics,” pp. 3-16 in CRC Handbook of Bioactive Ceramics Vol. II. Edited by T. Yamamuro, L. L. Hench, and J. Wilson. CRC Press Inc., Boca Raton, Florida, 1990.
59. H. Newesely, “High Temperature Behavior of Hydroxy- and Fluorapatite,” J. Oral Rehab., 4 (1977) 97.
60. P. V. Ribond, “Phase Diagrams for Ceramists,” Vol. V. The American Ceramics Society Inc., 1983.
61. R. C. Garvie, “Zirconium Dioxide and Some of Its Binary System,” Chap. 4 in High Temperature Oxides Vol. 5-II. Edited by A. M. Alper. Academic Press, New York, 1970.
62. H. G. Scott, “Phase Relationships in the Zirconia-Yttria System,” J. Mater. Sci., 10 [9] (1975) 1527-1535.
63. R. A. Miller, S. R. Levine, and P. E. Hodge, “Thermal Barrier Coatings for Super Alloys,” pp. 473-480 in Proc. 4th Int‘l. Symp. Superalloys, Seven Springs, PA. 1980. Edited by J. K. Tien. ASM, Metals Park, OH, 1980.
64. C. H. Liebert, and F. S. Stepka, “Potential Use of Ceramic Coating as a Thermal Insulation on Cool Turbine Hardware,” NASA TM (1976) X-3352.
65. S. Stecura, “Effects of Compositional Changes on the Performance of a Thermal Barrier Coating System,” NASA TM (1978) 78976.
66. F. N. Longo et al., “Second National Conference on Thermal Spray,” pp. 1. American Society for Metals, USA, 1984.
67. J. H. Clare et al., “Metal Handbook,” pp. 361 in Ninth Edition. American Society for Metals, USA, 1982.
68. H. S. Ingham, and A. P. Shepard, “Plasma Flame Process,” pp. 11. METCO Inc., Westburg, Long Island, New York, USA, 1965.
69. “Plasma Spraying of Metallic and Ceramic Materials,” pp. 15. Edited by D. Matejka, and B. Benko. John Wiley and Sons Ltd. UK.
70. C. C. Berndt, and J. H. Yi, “Toughening of Thermally Sprayed Coatings,” Materials Science Forum Volumes, 34-36 (1988) 469-473.
71. C. C. Berndt, and J. H. Yi, “The Manufacture and Microstructure of Fiber-Reinforced Thermally Sprayed Coatings,” Surf. Coat. Technol., 37 (1989) 89-110.
72. B. D. Cullity, “Precise Parameter Measurements,” pp. 350-68 in Elements of X-Ray Diffraction. Edited by M. Cohen. Addison-Wesley Publishing Company Inc., 1978.
73. B. D. Cullity, “Measurement of Residual Stress,” pp. 447-478 in Element of X-ray diffraction. 2nd ed. Reading. MA: Addison-Wesley, 1980.
74. Y. C. Yang, and E. Chang, “Biaxial Residual Stress States of Plasma-sprayed Hydroxyapatite Coatings on Titanium Alloy Substrate,” Biomaterials, 21 (2000) 1327-1337.
75. M. B. Thomas, R. H. Doremus, M. Jarcho, and R. L. Salsbury, “Dense Hydroxyapatite: Fatigue and Fracture Strength After Various Treatments, From Diametral Tests,” J. Mater. Sci., 15 (1980) 891-894.
76. S. Kotani, Y. Fujita, T. Kitsugi, T. Nakamura, and T. Yamamuro, “Bone Bonding Mechanism of -tricalcium Phosphate,” J. Biomed. Mater. Res., 25 (1991) 1303-1315.
77. M. Neo, S. Kotani, Y. Fujita, T. Nakamura, and T. Yamamuro, “Differences in Ceramic-Bone Interface Between Surface-Active Ceramics and Resorbable Ceramics: a Study by Scanning and Transmission Electron Microscopy,” J. Biomed. Mater. Res., 26 (1992) 255-267.
78. L. Xie and E. A. Monroe, “The Hydrolysis of Tetracalcium Phosphate and Other Calcium,” pp. 29-37 in CRC Handbook of Bioactive Ceramics Vol. II: Calcium Phosphate and Hydroxyapatite Ceramics. Edited by T. Yamamuro, L. L. Hench, and J. Wilson. CRC Press, Inc., Boca Raton, Florida, 1990.
79. M. Weinlaender, and F. Adar, pp. 19-21 in J. Beumer III UCLA Symposium. Edited by E. B. Kenney, and P. K. Moy. Palm Springs, CA., April 1990.
80. R. C. Garvie, R. H. Hannink, and R. T. Pascoe, “Ceramic Steel,” Nature, 258 (1975) 703-704.
81. R. A. Miller, R. G. Garlick, and J. L. Smialek, “Phase Distribution in Plasma-Sprayed Zirconia-Yittria Syatem,” J. Mater. Sci., 10 [9] (1975) 1527-35.
82. T. K. Gupta, J. H. Bechtold, R. C. Kuznicki, and L. H. Cadoff, “Stabilization of Tetragonal Phase in Polycrystalline Zirconia,” J. Mater. Sci., 12 [12] (1977) 2421-2426.
83. R. A. Miller, J. L. Smialek, and R. G. Garlick, “Phase Stability in Plasma Sprayed Partially Stabilized Zirconia- Yttria,” pp. 241-253 in Adv. Ceram. III, Science and Technology of zirconia. Edited by A. H. Heuer and L. W. Hobbs. Am. Ceram. Soc., Columbus, OH, 1981.
84. M. Mattioli-Belmonte, P. Mengucci, N. Specchia, G. Gobbi, S. Dubini, L. Simonelli, F. Greco, G. Majni, G. Biagini, and C. Rizzoli, “An Experimental Study in X-ray Spectroscopy of the Zirconium (Ca-PSZ) — Bone Interface. Microanalytic Evaluation of the Osteogenetic Response,” J. Mater. Sci. Mater. Med., 8 (1997) 85-90.
85. B. Cales, Y. Stefani, and E. Lilley, “Long-Term in vivo and in vitro Aging of a Zirconia Ceramic Used in Orthopaedy,” J. Biomed. Mater. Res., 28 (1994) 619-624.
86. D. K. Das and R. Sivakumar, “Modeling of the Temperature and the Velocity of Ceramic Powder Particles in a Plasma Flame — II. Zirconia,” Acta Metall. Mater., 38 [11] (1990) 2193-2198.
87. P. Ramaswamy and D. C. Agrawal, “Effect of Sintering Zirconia with Calcia in Very Low Partial Pressure of Oxygen,” J. Mater. Sci., 22 (1987) 1243-1248.
88. 陳福榮, 鮑忠興, “高解析度穿透式電子顯微鏡分析,” pp. 215-235 in 材料分析. Edited by 汪建民. 中國材料科學學會.
89. V. S. Stubican and S. P. Ray, “Phase Equilibria and Ordering in the System ZrO2-CaO,” J. Am. Ceram. Soc., 60 (1977) 534-537.
90. R. Z. LeGeros, “Biodegradation and Bioresorption of Calcium Phosphate Ceramics,” Clin. Mater., 14 (1993) 65-88.
91. K. A. Gross, V. Gross, and C. C. Berndt, “Thermal Analysis of Amorphous Phases in Hydroxyapatite Coatings,” J. Am. Ceram. Soc., 81 [1] (1998) 106-112.
92. B. C. Wang, E. Chang, T. M. Lee, and C. Y. Yang, “Changes in Phases and Crystallinity of Plasma-Sprayed Hydroxyapatite Coatings Under Heat Treatment: A Quantitative Study,” J. Biomed. Mater. Res., 29 (1995) 1483-1492.
93. J. Weng, X. Liu, X. Zhang, Z. Ma, X. Ji, and Z. Zyman, “Further Studies on the Plasma-Sprayed Amorphous Phase in Hydroxyapatite Coatings and Its Deamorphization,” Biomaterials, 14 [8] 578-582.
94. K. de Groot, “Ceramics of Calcium Phosphates: Preparation and Properties,” pp. 99-114 in Bioceramics of Calcium Phosphate. Edited by K. de Groot. CRC Press, Inc., Boca Raton, Florida, 1983.
95. J. D. Reardon and M. R. Dofman, “Advanced Thermal Barrier Coatings — An Overview,” J. Mater. Ener. Sys., 8 [4] (1987) 414-419.
96. B. D. Cullity, “Chemical Analysis by X-Ray Diffraction,” pp. 397-420 in Elements of X-Ray Diffraction. Edited by M. Cohen. Addison-Wesley Publishing Company Inc., 1978.
97. K. Ishikawa, P. Ducheyne, and S. Radin, “Determination of the Ca/P Ratio in Calcium-Deficient Hydroxyapatite Using X-Ray Diffraction Analysis,” J. Mater. Sci.: Mater. Med., 4 (1993) 165-168.
98. Y. Yang, Z. Liu, C. Luo, and Y. Chuang, “Measurements of Residual Stress and Bond Strength of Plasma Sprayed Laminated Coatings,” Surf. Coat. Technol., 89 (1997) 97-100.
99. Ö. Ünal, and D. J. Sordelet, “In-plane Tensile Strength and Residual Stress in Thick Al2O3 Coatings on Aluminum Alloy,” Scripta Materialia, 42 (2000) 631-636.
100. 王文中博士, “假設檢定,” pp. 251-320 in 統計學與Excel資料分析之實習應用. Edited by 許耀豪, 楊雅雯, 陳怡甄. 博碩文化股份有限公司.
101. S. D. Cook, K. A. Thomas, J. F. Kay, and M. Jarcho, “Hydroxyapatite-Coated Porous Titanium for Use as an Orthopedic Biologic Attachment System,” Clin. Orthop., 230 (1988) 303-312.
102. S. R. Sousa, and M. A. Barbosa, “Effect of Hydroxyapatite Thickness on Metal-Ion Release From Ti-6Al-4V Substrates,” Biomaterials, 17 [4] (1996) 397-404.
103. S. R. Sousa, and M. A. Barbosa, “Effect of Hydroxyapatite Thickness on Metal-Ion Release From Stainless Steel Substrates,” J. Mater. Sci.:Mater. Med., 6 [12] (1995) 818-823.
104. D. Matejka, V. Palka, and I. Infner, pp. 14-15 in “IV. Work-shop Plasmatechnik.” Edited by G. Nutsch. TU, Ilmenau, October 1996.
105. R. Elsing, O. Knotek, and U. Balting, “The Influence of Physical Properties and Spraying Parameters on the Creation of Residual Thermal Stresses During the Spraying Process,” Surf. Coat. Technol., 41 (1990) 147-156.
106. S. Takeuchi, M. Ito, and K. Takeda, “Modelling of Residual Stress in Plasma-sprayed Coatings: Effect of Substrate Temperature,” Surf. Coat. Technol., 43/44 (1990) 426-435.
107. P. Scardi, M. Leoni, and L. Bertamini, “Residual Stress in Plasma Sprayed Partially Stabilised Zirconia TBCs: Influence of the Deposition Temperature,” Thin Solid Films, 278 (1996) 96-103.
108. Y. C. Yang, and E. Chang, “Influence of Residual Stress on Bonding Strength and Fracture of Plasma-sprayed Hydroxyapatite Coatings on Ti-6Al-4V Substrate,” Biomaterials, 22 (2001) 1827-1836.
109. A. Ravaglioli, and A. Krajewski, Bioceramics: materials, properties, and application, pp. 44-45. London: Chapman & Hall, 1992.
110. J. W. Watson, and S. R. Levine, “Deposition stress Effects on the Life of Thermal Barrier Coatings on Burner Rigs,” Thin Solid Films, 119 (1984) 185-193.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top