跳到主要內容

臺灣博碩士論文加值系統

(107.21.85.250) 您好!臺灣時間:2022/01/18 08:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林宗欣
研究生(外文):Tsong-Shin Lim
論文名稱:半導體雷射泵浦微晶片型固態雷射之複雜動力學行為之研究
論文名稱(外文):Complex Dynamical Behaviors in LD-pumped Microchip Solid-state Lasers
指導教授:陳志隆陳志隆引用關係
指導教授(外文):Jyh-Long Chern
學位類別:博士
校院名稱:國立成功大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2001
畢業學年度:90
語文別:英文
中文關鍵詞:固態雷射不穩定現象非靜態特性相對噪音強度Nd:YVO4Nd:YAG延遲回饋同步混沌
外文關鍵詞:solid-state laserNd:YVO4Nd:YAGinstabilitynonstationarydelayed-feedbackrelative intensity noisesynchronized chaos
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1500
  • 評分評分:
  • 下載下載:388
  • 收藏至我的研究室書目清單書目收藏:0
在此論文中,我們研究半導體雷射泵浦微晶片型固態雷射(包括: Nd:YAG及Nd:YVO4)的複雜動力學行為。在有延遲回饋的半導體雷射泵浦單模微晶片型Nd:YVO4雷射中,我們首次觀察到兩種不穩定現象 (混沌暴漲及正弦暴漲)。這些結果與幾十年來受到廣泛研究的半導體雷射在延遲回饋下的行為所得到的結果截然不同。這兩種不穩定現象的主要性質可以用Lang-Kobayashi模型加上強的相位噪音數值模擬重現。另外,我們在鬆弛振盪態及隨機混沌暴漲態間的轉變點處發現機率相關性的非靜態特性,這也是第一次在實驗上看。這些現象也可以數值模擬重現。在歷史上,類似的特性也在簡單的動力學系統中被發現過。
此外,我們也探討B類雷射在雷射閥值(分歧點)附近的相對噪音行為。我們使用單模雷射速率方程式做數值模擬。我們發現在雷射閥值附近相對噪音強度在某些情況下會變強。此外,我們透過Fokker-Planck方程的方法在雷射閥值附近發現連續的transicritical分歧。另外,我們也有系統地探討單模雷射速率方程式裡的參數對相對噪音強度的影響。在實驗上,我們使用一個半導體雷射及兩個固態雷射(包括: Nd:YAG及Nd:YVO4)來探討相對噪音強度在雷射閥值附近的行為,並發現這兩種雷射的行為明顯不同。內在的參數,也就是反轉分布生命期及光子生命期的比值,被認為是影響結果的最主要的因素。
最後,我們提出一個新穎的耦合雷射系統方案,並且在兩個耦合的微晶片型Nd:YVO4雷射上發現了同步鬆弛振盪及同步混沌。另外,我們採用耦合雷射模型加上外加噪音,很成功的得到我們實驗上所觀察到的現象。

In this dissertation, we study the complex dynamical behaviors in laser-diode(LD)-pumped microchip solid-state lasers (SSLs), including neodymium doped yttrium orthvanadate (Nd:YVO4) and neodymium doped yttrium aluminum garnet (Nd:YAG).
In an LD-pumped single-mode microchip Nd:YVO4 laser with delayed-feedback system, two kinds of instabilities, random chaotic burst (RCB) generations and random sinusoidal burst generations, were observed experimentally for the first time.
These results are totally different form those observed in LDs with delayed-feedback systems, which have been widely studied last decades. Main features were reproduced numerically by utilizing the Lang-Kobayashi equations with strong phase noise, indicating phase-noise driven dynamical instabilities. Furthermore, a non-stationary characteristic of probability association was observed experimentally for the first time
at the transition between noise-driven relaxation oscillation state and RCB state. It was also well reproduced numerically. Before our study, the non-stationary characteristics were reported only by numerical simulations of simple dynamical systems. It was observed in a real physical system for the first time.
The relative intensity noise of class-B lasers around the lasing threshold (bifurcation point) was explored. Using single-mode laser rate equations, a enhancement of relative intensity noise was observed numerically around lasing threshold in some
conditions. Furthermore, the Fokker-Planck equation method was employed and a successive transcritical bifurcation was observed around the lasing threshold. The effects of each parameters in single-mode laser rate equations on the relative intensity fluctuation were explored systematically. One LD and two microchip SSLs, a Nd:YAG and a Nd:YVO4, were employed in the experiment. Significant differences in the characteristics of the LD and the SSLs were observed. The intrinsic parameters
of the lasers, namely, the time ratio between the lifetimes of carrier (population inversion) and photon, was considered to influence fluctuation dynamics dramatically.
Finally, a novel coupled-laser scheme was proposed and synchronized relaxation oscillations and synchronized chaos have been observed in a microchip Nd:YVO4 laser array with constant-power LD pumping. Coupled laser model equations with added noises are adopted to simulate the dynamics and the observed behaviors have been reproduced successfully.

1 Introduction 1
1.1 Complex Dynamics in optics 1
1.2 Typical Characteristics of Microchip Solid-state Lasers 2
1.3 Organization of this Dissertation 9
2 Phase-noise-driven Instability in a Single-mode Microchip Nd:YVO4 Laser with Feedback 13
2.1 Experimental Setup 16
2.2 General Features of Experimental Results 19
2.3 Theoretical Exploration Based on Lang-Kobayashi Model 23
2.4 Summary 31
3 Non-stationary Characteristics of Instability in a Single-mode Microchip Nd:YVO4 Laser with Feedback 48
3.1 Probability Association Analysis 50
3.2 Experimenxal Results 53
3.3 Numerical Results 54
3.4 Summary 55
4 Successive Transcritical Bifurcation and Relative Intensity Fluctuation Enhancement in Single-mode Class-B Lasers 60
4.1 Relative Intensity Noise (RIN) 62
4.2 Rate Equation Description 63
4.3 Analytic Approach Based on the Fokker-Planck Equation 64
4.4 General Features 71
4.5 Experimental Results 74
4.6 Summary 77
5 Synchronized Noise-driven Relaxation Oscillations in Mutually Coupled Nd:YVO4 lasers 85
5.1 Experimental Setup 86
5.2 Experimental Results 88
5.3 Numerical 90
5.4 Summary 91
6 Conclusions and Future Works 98
6.1 Conclusions 98
6.2 Future Works 102
A Numerical Methods for Stochastic Differential Equations 104
A.1 Expansion in the Step Length h 104
A.2 Method for the Estimation of Measurable Quantity 108
B SVD Analysis 112
B.1 Introduction and Background 112
B.2 Practice of Embedding 113
B.3 SVD Test of Determinism: The Formalism 116
C Experimental Setup 118
D Measurement Instruments 120
D.1 Intensity Fluctuation Measurement 120
D.2 Optical Spectrum Measurement 121
Bibliography 126

[1] H. Haken. Analogy between higher instabilities in fluids and lasers. Phys. Lett., 53A:pp. 77—78, 1975.
[2] T. Kimura and K. Otsuka. Response of a cw Nd3+:YAG laser to sinusoidal cavity perturbations. IEEE J. Quantum Electron., QE-6:pp. 764—769, 1970.
[3] K. Ikeda. Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system. Opt. Commun., 30:pp. 257—261, 1979.
[4] M. J. Feigenbaum. The onset spectrum of turbulence. Phys. Lett., 74A:pp. 375—378, 1979.
[5] T. Mukai and K. Otsuka. New route to optical chaos: successive-subharmonicoscillation cascade in a semiconductor laser coupled to an external cavity. Phys. Rev. Lett., 55:pp. 1711—1714, 1985.
[6] C. A. Burrus and J. Stone. Single-crystal fiber optical device: a Nd:YAG fiber laser. Appl. Phys. Lett., 26:pp. 318—320, 1975.
[7] W. Koechner. Solid-State Laser Engineering. Springer, New York, 5th edition edition, 1999.
[8] T. Kushida, H. M. Marcos, and J. E. Geusic. Laser transition cross section and fluorescence branching ratio for Nd:3+ in yttrium aluminum garnet. Phys. Rev., 167:pp. 289—313, 1968.
[9] W. F. Krupke, M. D. Shinn, J. E. Marion, J. A. Caird, and S. E. Stokowski. Spectroscopic, optical, and thermomechanical properties of neodymium-doped and chromium-doped gadolinium scandium gallium garnet. J. Opt. Soc. Am. B, 3:pp. 102—114, 1986.
[10] P. H. Klein and W. J. Croft. Thermal conductivity, diffusivity, and expansion of Y3Al5O12, and LaF3 in the range 77±—300±k. J. Appl. Phys., 38:pp. 1603—1607, 1967.
[11] L. D. Shazer. Vanadate crystal exploit diode-pumped technology. Laser Focus World, pages pp. 88—90, February 1994.
[12] J. R. O’Connor. Unusual crystal-field energy level and effcient laser properties of YVO4:Nd. Appl. Phys. Lett., 9:pp. 407—409, 1966.
[13] A. Brignon, G. Feugnet, J. P. Huignard, and J.-P. Pocholle. Compact Nd:YAG and Nd:YVO4 amplifiers end-pumped by a high-brightness stacked array. IEEE J. Quantum Electron., 34:pp. 577—585, 1998.
[14] R. A. Fields, M. Birnbaum, and C. L. Fincher. Highly effcient Nd:YVO4 diodelaser end-pumped laser. Appl. Phys. Lett., 51:pp. 1885—1886, 1987.
[15] K. Otsuka. Ultrahigh sensitivity laser doppler velocimetry with a microchip solid-state laser. Appl. Opt., 33:pp. 1111—1114, 1994.
[16] K. Otsuka. Laser-fluctuation measurements in a bath of strong gaussian noise. Appl. Phys., 18:415—149, 1979.
[17] K. Otsuka. Effect of external perturbations on LiNdP4O12 lasers. IEEE J. Quantum Electron., QE-15:pp. 655—663, 1979.
[18] K Otsuka, J.-Y. Ko, J.-L. Chern, K. Ohki, and H. Utsu. Instabilities in a laserdiode-pumped microchip solid-state laser with feedback. Phys. Rev. A, 60:pp.R3389—R3392, 1999.
[19] R. M. May. Simple mathematical models with very complicated dynamics. Nature, 261:pp. 459—467, 1976.
[20] M. C. Mackay and L. Glass. Oscillation and chaos in physiological control systems. Science, 197:pp. 287—289, 1977.
[21] J. Foss, A. Longtin, B. Mensour, and J. Milton. Multistability and delayed recurrent loops. Phys. Rev. Lett., 76:pp. 708—711, 1996.
[22] R. Lang and K. Kobayashi. External optical feedback effects on semiconductor injection laser properties. IEEE J. Quantum Electron., QE-16:pp. 347—355, 1980.
[23] K. Petermann. External optical feedback phenomena in semiconductor lasers. IEEE J. Sel. Top. Quantum Electron., 1:pp. 480—489, 1995.
[24] A. T. Ryan and G. P. Agrawal. Optical-feedback-induced chaos and its control in multimode semiconductor lasers. IEEE J. Quantum Electron., 30:pp. 668—679, 1994.
[25] B. W. Liby and D. Statman. Controling the linewidth of a semiconductor laser with photorefractive phase conjugate feedback. IEEE J. Quantum Electron., 33:pp. 835—838, 1996.
[26] N. Kikuchi, Y. Liu and J. Ohtsubo. Chaos control and noise suppression in external-cavity semiconductor lasers. IEEE J. Quantum Electron., 33:pp. 56-65, 1997.
[27] S. I. Turovets, J. Dellunde, and K. A. Shore. Nonlinear dynamics of a laser diode subjected to both optical and electronic feedback. J. Opt. Soc. Am. B, 14:pp. 200—208, 1997.
[28] J. Wieland, C. R. Mirasso, and D. Lenstra. Prevention of coherence collapse in diode lasers by dynamic targeting. Opt. Lett., 22:pp. 469—471, 1997.
[29] Y. Kitaoka, H. Sato, K. Mizuuchi, K. Yamamoto, and M. Kato. Intensity noise of laser diodes with optical feedback. IEEE J. Quantum Electron., 32:pp. 822—828, 1996.
[30] P. K¨urz and T. Mukai. Frequency stabilization of a semiconductor laser by external phase-conjugate feedback. Opt. Lett., 21:pp. 1369—1371, 1996.
[31] C. R. Mirasso, P. Colet, and P. Garcia-Fernandez. Synchronization of chaotic semiconductor lasers: Application to encoded communications. IEEE Photonics Technol. Lett., 8:pp. 299—301, 1996.
[32] V. Annovazzi-Lodi, S. Donati, and A. Scire. Synchronization of chaotic injected laser systems and its application to optical cryptography. IEEE J. Quantum
Electron., 33:pp. 953—959, 1996.
[33] J. Martin-Regalado, G. H. M. van Tarwijk, S. Balle, and M. San Miguel. Mode control and pattern stabilization in broad-area laser by optical feedback. Phys. Rev. A, 54:pp. 5386—5393, 1996.
[34] M. Homar, J. V. Moloney, and M. San Miguel. Travelling wave model of a multimode Fabry-Perot laser in free running and external cavity configurations. IEEE J. Quantum Electron., 32:pp. 553—566, 1996.
[35] J. Dellunde, M. C. Torrent, C. R. Mirasso, E. Hernandez-Garcia, and J. M. Sancho. Analytical calculations of switch-on time and timing jitter in diode lasers subjected to optical feedback and external light injection. Opt. Commun.,
115:pp. 523—527, 1995.
[36] G. H. M. van Tartwijk and M. San Miguel. Optical feedback on self-pulsating semiconductor lasers. IEEE J. Quantum Electron., 32:pp. 1191—1202, 1996.
[37] J. Mørk, B. Tromborg, and P. L. Christiansen. Bistability and low-frequency fluctuations in semiconductor lasers with optical feedback: a theoretical analysis. IEEE J. Quantum Electron., 24:pp. 123—133, 1988.
[38] A. Hohl, H. J. C. van der Linden, and R. Roy. Determinism and stochasticity of power-dropout events in semiconductor lasers with optical feedback. Opt. Lett., 20:pp. 2396—2398, 1995.
[39] C. H. Henry and R. F. Kazarinov. Instability of semiconductor lasers due to optical feedback from distant reflectors. IEEE J. Quantum Electron., QE-22:pp. 294—301, 1986.
[40] T. Sano. Antimode dynamics and chaotic itinerancy in the coherence collapse of semiconductor lasers with optical feedback. Phys. Rev. A, 50:pp. 2719—2726, 1994.
[41] G. H. M. van Tartwijk, A. M. Levine and D. Lenstra. Sisyphus e®ect in semiconductor lasers with optical feedback. IEEE J. Sel. Top. Quantum Electron., 1:pp. 466—472, 1995.
[42] I. Fischer, G. H. M. van Tartwijk, A. M. Levine, W. Els¨asser, E. O. G¨obel, and D. Lenstra. Fast pulsing and chaotic itinerancy with a drift in coherence collapse of semiconductor lasers. Phys. Rev. Lett., 76:pp. 220—223, 1996.
[43] G. Huyet, S. Balle, M. Giudici, C. Green, G. Giacomelli, and J. R. Tredicce. Low frequency fluctuations and multimode operation of a semiconductor laser with optical feedback. Opt. Commun., 149:pp. 341—347, 1998.
[44] K. Petermann. Laser Diode Modulation and Noise. Kluwer Academic, Tokyo, 1991.
[45] J.-S. Lih, J.-Y. Ko, J.-L. Chern, and I.-M. Jiang. Determinism test and noise estimate for a complex time series. Europhys. Lett., 40:pp. 7—12, 1999.
[46] J.-Y. Ko, J.-S. Lih, M.-C. Ho, C.-C. Tsai, and J.-L. Chern. Determinism test, noise estimate and hidden frequency recognition: the singular value decompositionapproach. Chinese J. Phys., 37:pp. 449—465, 1999.
[47] H. Temkin, N. A. Olsson, J. H. Abeles, R. A. Logan, and M. B. Panish. Reflection noise in index-guided InGaAs lasers. IEEE J. Quantum Electron, QE-22:pp. 286—293, 1986.
[48] J. Ohtsubo. Feedback induced instability and chaos in semiconductor lasers and their applications. Opt. Rev., 6:pp. 1—15, 1999.
[49] G. P. Agrawal and N. K. Dutta. Semiconductor Lasers. Van Norstrand Reinhold, New York, 2nd edition, 1993.
[50] A. Brignon, L. Loiseau, C. Larat, J.-P. Huignard, and J.-P. Pocholle. Phase conjugation in a continuous-wave diode-pumped Nd:YVO4 laser. Appl. Phys. B, 69:pp. 159—260, 1999.
[51] G. P. Agrawal. Line narrowing in a single-mode injection laser due to external optical feedback. IEEE J. Quantum Electron., QE-20:pp. 468—471, 1984.
[52] R. Wyatt and W. J. Delin. 10 khz linewidth 1.5 um InGaAsP external cavity laser with 55 nm tuning range. Electron. Lett., 19:pp. 110—112, 1983.
[53] G. A. Acket, D. Lenstra, A. J. den Boef, and B. H. Verbeek. The influence of feedback intensity on lohgitudinal mode propertise and optical noise in indexguided
semiconductor lasers. IEEE J. Quantum Electron., QE-20:pp. 1163—1170, 1984.
[54] E. Patzak, H. Olesen, A. Sugimura, S. Saito, and T. Mukai. Spectral linewidth reduction in semiconductor lasers by an external cavity with weak optical feedback. Electron. Lett., 19:pp. 938—940, 1983.
[55] J. Honerkamp. Stochastic Dynamical Systems. VCH, New York, 1994.
[56] K. Otsuka. Nonlinear Dynamics in Optical Complex Systems. Klwer Academic, Tokyo, 2000.
[57] A. Lasota and M. C. Mackey. Chaos, Fractals, and Noise. Springer-Verlag, New York, 1994.
[58] H. Kantz and T. Schreiber. Nonlinear Time Series Analysis. Cambridge Univ., New York, 1997.
[59] H. G. Schuster. Deterministic Chaos: an Introduction. VCH, New York, 1995.
[60] J.-L. Chern and T. C. Chow. Nonstationary characteristic of probability association in chaos. Phys. Lett. A, 192:pp. 34—42, 1994.
[61] S. Parthasarathy and S. Rajasekar. Probability distribution characteristics of chaos in a simple population model and the Bonhoe®er-van der Pol oscillator. Phys. Rev. E, 58:pp. 6839—9842, 1996.
[62] J.-L. Chern, T.-C. Hsiao, J.-S. Lih, L.-E. Li, and K. Otsuka. Synchronized chaos and intermitted synchronization. Chinese J. Phys., 36:pp. 667—676, 1998.
[63] J.-L. Chern, F.-J. Kao, and I.-M. Jiang. Transition between nonstationary and stationary chaos. Phys. Lett. A, 218:pp. 268—274, 1996.
[64] W. T. Vetteting W. H. Press, S. A. Tenkolsky and B. P. Flannery. Numerical Receipes in Fortran: the Art of Scientific Computing. Cambridge Univ., Cambridge, 1992.
[65] R. J. Glauber. Quantum Optics. Academic Press, New York, 1969.
[66] H. Haken. Theory of coherence of laser light. Phys. Rev. Lett., 13:pp. 329—331, 1964.
[67] J. A. Fleck JR. Quantum theory of laser radiation I. many-atom effect. Phys. Rev., 149:pp. 309—312, 1966.
[68] M. Scully and W. E. Lamb JR. Quantum theory of an optical maser. Phys. Rev. Lett., 16:pp. 853—855, 1966.
[69] R. D. Hempstead and M. Lax. Classical noise. VI. noise in self-sustained oscillators near threshold. Phys. Rev., 161:pp. 350—366, 1967.
[70] L. Gammaitoni, P. Hanggi, P. Jung, and F. Marchesoni. Stochastic resonance. Rev. Mod. Phys., 70:pp. 233—287, 1998.
[71] R. N. Mantegna and B. Spagnolo. Noise enhanced stability in an unstable system. Phys. Rev. Lett., 76:pp. 563—566, 1996.
[72] M. Dykman, D. Luchinsky, R. Manella, P. Mcclintock, H. Short, N. Stein, and N. Stock. Noise-induce linearisation. Phys. Lett. A, 193:pp. 61—66, 1994.
[73] J.-Y. Ko, J.-L. Chern, R.-R. Hsu, Y.-F. Huang, and H.-Y. Ueng. Noise-induced linearisation and coherence enhancement: Experimental evidence. Europhys. Lett., 42:pp. 383—388, 1998.
[74] D. E. McCumber. Intensity fluctuation in the output of cw laser oscillators. I. Phys. Rev., 141:pp. 306—322, 1966.
[75] H. Henry, P. S. Henry, and M. Lax. Partition fluctuations in nearly singlelongitudinal-mode lasers. J. Lightwave Tech., LT-2:pp. 209—261, 1983.
[76] M. Yamada. Theory of mode competition noise in semiconductor injection lasers. IEEE J. Quantum Electron., QE-22:pp. 1052—1059, 1986.
[77] R. J. Fronen and L. K. Vandamme. Low-frequency intensity noise in semiconductor-lasers. IEEE J. Quantum Electron., QE-24:pp. 724—736, 1988.
[78] T. L. Paoli. Noise characteristic of strip-geometry double-hetrostructure junction laser operating continuously- i. intensity noise at room temperature. IEEE J. Quantum Electron., QE-11:pp. 276—283, 1975.
[79] H. J¨ackl and G. Guekos. High frequency intensity noise spectra of axial mode groups in the radiation from cw GaAlAs diode lasers. Opt. Quantum Electron., 9:pp. 233—239, 1977.
[80] T. Itˆo, S. Machida, K. Nawata, and T. Ikegami. Intensity fluctuation in each longitudinal mode of a multimode AlGaAs laser. IEEE J. Quantum Electron., QE-13:pp. 574—579, 1977.
[81] G Arnold and K. Petermann. Intrinsic noise of semiconductor laser in optical communication system. Opt. Quantum Electron., 12:pp. 207—219, 1980.
[82] F. T. Arechi, G. L. Lippi, G. P. Puccioni, and J. R. Tredicce. Deterministic chaos in laser with injected signal. Opt. Commun., 51:pp. 308—314, 1984.
[83] K. Otsuka, H. Utsu, R. Kawai, K. Ohki, Y. Asakawa, S.-L. Hwong, J.-Y. Ko, and J.-L. Chern. Self-induced spiking oscillations and associate instabilities in a laser-diode-pumped three-mode Nd:YVO4. Japan. J. Appl. Phys., 38:pp.
L1025—L1028, 1999.
[84] K. Otsuka, Y. Asakawa, R. Kawai, S.-L. Hwong, and J.-L. Chern. Locking of relaxation oscillation frequencies and chaos in a free-running two-mode Nd:YVO4 laser. Japan. J. Appl. Phys., 37:pp. L1523—L1526, 1998.
[85] K. Otsuka, J.-Y. Ko, S. Higashihara, and J.-L. Chern. Pulsations induced by quantum interference in a microchip solid-state laser operating on a L-transition. Opt. Lett., 26:pp. 536—538, 2001.
[86] K. Otsuka, J.-Y. Ko, T. Kubota, S.-L. Hwong, T.-S. Lim, J.-L. Chern, B. A. Nguyen, and P. Mandel. Instability in a laser-diode-pumped microchip Nd:YAG laser in a pi-scheme. Opt. Lett., 26:pp. 1060—1602, 2001.
[87] D. Zwillinger. Handbook of Differential Equations. Academic Press, New York, 1989.
[88] D. C. C. Bover. Moment equation methods for nonlinear stochastic systems. J. Math. Anal. and Appl., 65:pp. 306—320, 1978.
[89] K. Sobczhyk. Stochastic Di®erential Equations. Kluwer Academic, Netherland, 1991.
[90] J.-L. Chern and J.-T. Shy. Stability criterion for a laser system. Chinese J. Phys., 27:pp. 455—459, 1989.
[91] H. S. Wall. Theory of continued Fractions. Van Norstand, New York, 1984.
[92] K. Coffman, W. D. McCormick, and H. L. Swinney. Multiplicity in a chemicalreaction with one-dimensional dynamics. Phys. Rev Lett., 56:pp. 999—1002, 1986.
[93] S. H. Strogatz and I. Stewart. Coupled oscillators and biological synchronization. Sci. Am., 269:pp. 102—109, 1993.
[94] S. Schafer, M. G. Rosenblum, J. Kurths, and H. H. Abel. Heartbeat synchronized with ventilation. Nature, 392:pp. 239—240, 1998.
[95] U. Ernst, K. Pawelzik, and T. Geisel. Synchronization induced by temporal delays in pulse-coupled oscillators. Phys. Rev. Lett., 74:pp. 1570—1573, 1995.
[96] R. Roy and K. S. Thornburg. Experimental synchronization of chaotic lasers. Phys. Rev. Lett., 74:pp. 2009—2012, 1994.
[97] T. Sugawara, M. Tachikawa, T. Tsukamoto, and T. Shimizu. Observation of synchronization in laser chaos. Phys. Rev. Lett., 72:pp. 3502—3505, 1994.
[98] L. M. Pecora and T. L. Carroll. Synchronization in chaotic systems. Phys. Rev. Lett., 64:pp. 821—824, 1990.
[99] G. D. VanWiggeren and R. Roy. Communication with chaotic lasers. Science, 279:pp. 1198—1200, 1998.
[100] G. D. VanWiggeren and R. Roy. Optical communication with chaotic waveforms. Phys. Rev. Lett., 81:pp. 3547—3550, 1998.
[101] H. G. Winful and L. Rahman. Synchronized chaos and spatiotemporal chaos in arrays of coupled lasers. Phys. Rev. Lett., 65:pp. 1575—1578, 1990.
[102] K. M. Cuomo and A. V. Oppenheim. Circuit implementation of synchronized chaos with applications to communications. Phys. Rev. Lett., 71:pp. 65—68, 1993.
[103] J.-L. Chern and J. K. McIver. An e®ect of coupling strength between the elements in a mapping system-possibility of different routes to chaos. Phys. Lett. A, 151:pp. 150—156, 1990.
[104] A. Uchida, M. Shinozuka, T. Ogawa, and F. Kannari. Experiments on chaos synchronization in two separate microchip lasers. Opt. Lett., 24:pp. 890—892, 1999.
[105] A. Uchida, M. Shinozuka, T. Ogawa, and F. Kannari. Accuracy of chaos synchronization in Nd:YVO4 microchip lasers. Phys. Rev. E, 62:pp. 1960—1971, 2000.
[106] K. Otsuka, R. Kawai, S.-L. Hwong, J.-Y. Ko, and J.-L. Chern. Synchronization of mutually coupled self-mixing modulated lasers. Phys. Rev. Lett, pp. 84:pp. 3049—3052, 2000.
[107] S.-L. Hwong, W.-L. Tsai, T.-S. Lim, and J.-L. Chern. Influences of pump-beam focusing conditions on a laser- diode-pumped microchip Nd:YVO4 laser. Jpn J. Appl. Phys., 38:pp. L1330—L1332, 1999.
[108] L. Fabiny, P. Colet, R. Roy, and D. Lenstra. Coherence and phase dynamics of spatially coupled solid-state lasers. Phys. Rev. A, 47:pp. 4287—4296, 1993.
[109] Y. Liu and P. Davis. Synchronization of chaotic mode hopping. Opt. Lett., 25:pp. 475—477, 2000.
[110] M. Moller, B. Forsmann, and W. Lange. Instabilities in coupled Nd:YVO4 microchip lasers. Quantum Semiclass. Opt., 10:pp. 839—848, 1998.
[111] D. S. Broomhead and G. P. King. Extracting qualitative dynamics from experimental-data. Physica D, 20:pp. 217—236, 1986.
[112] A. M. Albano, J. Muesch, C. Schwartz, A. I. Mees, and R. E. Papp. Singularvalue decomposition and the grassberger-procaccia algorithm. Phys. Rev. A, 38:pp. 3017—3026, 1988.
[113] R. Brown, P. Bryant, and H. D. Abarbanel. Computing the lyapunov spectrum of a dynamic system from an observed time-series. Phys. Rev. A, 43:pp. 2787—2806, 1991.
[114] R. Stoop and J. Parisi. Calculation of lyapunov exponents avoiding spurious elements. Physica D, 50:pp. 89—94, 1991.
[115] R. Cawley and G. H. Hsu. Local-geometric-projection method for noisereduction in chaotic maps and flows. Phys. Rev. A, 46:pp. 3057—3082, 1992.
[116] F. Takens. Lecture Notes in Math. Springer-Verlag, New York, 1981.
[117] T. Saucer, J. A. Yorke, M. Casdagli. Embedology. J. Stat. Phys., 65:pp. 579—616, 1991.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top