|
[1] H. Haken. Analogy between higher instabilities in fluids and lasers. Phys. Lett., 53A:pp. 77—78, 1975. [2] T. Kimura and K. Otsuka. Response of a cw Nd3+:YAG laser to sinusoidal cavity perturbations. IEEE J. Quantum Electron., QE-6:pp. 764—769, 1970. [3] K. Ikeda. Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system. Opt. Commun., 30:pp. 257—261, 1979. [4] M. J. Feigenbaum. The onset spectrum of turbulence. Phys. Lett., 74A:pp. 375—378, 1979. [5] T. Mukai and K. Otsuka. New route to optical chaos: successive-subharmonicoscillation cascade in a semiconductor laser coupled to an external cavity. Phys. Rev. Lett., 55:pp. 1711—1714, 1985. [6] C. A. Burrus and J. Stone. Single-crystal fiber optical device: a Nd:YAG fiber laser. Appl. Phys. Lett., 26:pp. 318—320, 1975. [7] W. Koechner. Solid-State Laser Engineering. Springer, New York, 5th edition edition, 1999. [8] T. Kushida, H. M. Marcos, and J. E. Geusic. Laser transition cross section and fluorescence branching ratio for Nd:3+ in yttrium aluminum garnet. Phys. Rev., 167:pp. 289—313, 1968. [9] W. F. Krupke, M. D. Shinn, J. E. Marion, J. A. Caird, and S. E. Stokowski. Spectroscopic, optical, and thermomechanical properties of neodymium-doped and chromium-doped gadolinium scandium gallium garnet. J. Opt. Soc. Am. B, 3:pp. 102—114, 1986. [10] P. H. Klein and W. J. Croft. Thermal conductivity, diffusivity, and expansion of Y3Al5O12, and LaF3 in the range 77±—300±k. J. Appl. Phys., 38:pp. 1603—1607, 1967. [11] L. D. Shazer. Vanadate crystal exploit diode-pumped technology. Laser Focus World, pages pp. 88—90, February 1994. [12] J. R. O’Connor. Unusual crystal-field energy level and effcient laser properties of YVO4:Nd. Appl. Phys. Lett., 9:pp. 407—409, 1966. [13] A. Brignon, G. Feugnet, J. P. Huignard, and J.-P. Pocholle. Compact Nd:YAG and Nd:YVO4 amplifiers end-pumped by a high-brightness stacked array. IEEE J. Quantum Electron., 34:pp. 577—585, 1998. [14] R. A. Fields, M. Birnbaum, and C. L. Fincher. Highly effcient Nd:YVO4 diodelaser end-pumped laser. Appl. Phys. Lett., 51:pp. 1885—1886, 1987. [15] K. Otsuka. Ultrahigh sensitivity laser doppler velocimetry with a microchip solid-state laser. Appl. Opt., 33:pp. 1111—1114, 1994. [16] K. Otsuka. Laser-fluctuation measurements in a bath of strong gaussian noise. Appl. Phys., 18:415—149, 1979. [17] K. Otsuka. Effect of external perturbations on LiNdP4O12 lasers. IEEE J. Quantum Electron., QE-15:pp. 655—663, 1979. [18] K Otsuka, J.-Y. Ko, J.-L. Chern, K. Ohki, and H. Utsu. Instabilities in a laserdiode-pumped microchip solid-state laser with feedback. Phys. Rev. A, 60:pp.R3389—R3392, 1999. [19] R. M. May. Simple mathematical models with very complicated dynamics. Nature, 261:pp. 459—467, 1976. [20] M. C. Mackay and L. Glass. Oscillation and chaos in physiological control systems. Science, 197:pp. 287—289, 1977. [21] J. Foss, A. Longtin, B. Mensour, and J. Milton. Multistability and delayed recurrent loops. Phys. Rev. Lett., 76:pp. 708—711, 1996. [22] R. Lang and K. Kobayashi. External optical feedback effects on semiconductor injection laser properties. IEEE J. Quantum Electron., QE-16:pp. 347—355, 1980. [23] K. Petermann. External optical feedback phenomena in semiconductor lasers. IEEE J. Sel. Top. Quantum Electron., 1:pp. 480—489, 1995. [24] A. T. Ryan and G. P. Agrawal. Optical-feedback-induced chaos and its control in multimode semiconductor lasers. IEEE J. Quantum Electron., 30:pp. 668—679, 1994. [25] B. W. Liby and D. Statman. Controling the linewidth of a semiconductor laser with photorefractive phase conjugate feedback. IEEE J. Quantum Electron., 33:pp. 835—838, 1996. [26] N. Kikuchi, Y. Liu and J. Ohtsubo. Chaos control and noise suppression in external-cavity semiconductor lasers. IEEE J. Quantum Electron., 33:pp. 56-65, 1997. [27] S. I. Turovets, J. Dellunde, and K. A. Shore. Nonlinear dynamics of a laser diode subjected to both optical and electronic feedback. J. Opt. Soc. Am. B, 14:pp. 200—208, 1997. [28] J. Wieland, C. R. Mirasso, and D. Lenstra. Prevention of coherence collapse in diode lasers by dynamic targeting. Opt. Lett., 22:pp. 469—471, 1997. [29] Y. Kitaoka, H. Sato, K. Mizuuchi, K. Yamamoto, and M. Kato. Intensity noise of laser diodes with optical feedback. IEEE J. Quantum Electron., 32:pp. 822—828, 1996. [30] P. K¨urz and T. Mukai. Frequency stabilization of a semiconductor laser by external phase-conjugate feedback. Opt. Lett., 21:pp. 1369—1371, 1996. [31] C. R. Mirasso, P. Colet, and P. Garcia-Fernandez. Synchronization of chaotic semiconductor lasers: Application to encoded communications. IEEE Photonics Technol. Lett., 8:pp. 299—301, 1996. [32] V. Annovazzi-Lodi, S. Donati, and A. Scire. Synchronization of chaotic injected laser systems and its application to optical cryptography. IEEE J. Quantum Electron., 33:pp. 953—959, 1996. [33] J. Martin-Regalado, G. H. M. van Tarwijk, S. Balle, and M. San Miguel. Mode control and pattern stabilization in broad-area laser by optical feedback. Phys. Rev. A, 54:pp. 5386—5393, 1996. [34] M. Homar, J. V. Moloney, and M. San Miguel. Travelling wave model of a multimode Fabry-Perot laser in free running and external cavity configurations. IEEE J. Quantum Electron., 32:pp. 553—566, 1996. [35] J. Dellunde, M. C. Torrent, C. R. Mirasso, E. Hernandez-Garcia, and J. M. Sancho. Analytical calculations of switch-on time and timing jitter in diode lasers subjected to optical feedback and external light injection. Opt. Commun., 115:pp. 523—527, 1995. [36] G. H. M. van Tartwijk and M. San Miguel. Optical feedback on self-pulsating semiconductor lasers. IEEE J. Quantum Electron., 32:pp. 1191—1202, 1996. [37] J. Mørk, B. Tromborg, and P. L. Christiansen. Bistability and low-frequency fluctuations in semiconductor lasers with optical feedback: a theoretical analysis. IEEE J. Quantum Electron., 24:pp. 123—133, 1988. [38] A. Hohl, H. J. C. van der Linden, and R. Roy. Determinism and stochasticity of power-dropout events in semiconductor lasers with optical feedback. Opt. Lett., 20:pp. 2396—2398, 1995. [39] C. H. Henry and R. F. Kazarinov. Instability of semiconductor lasers due to optical feedback from distant reflectors. IEEE J. Quantum Electron., QE-22:pp. 294—301, 1986. [40] T. Sano. Antimode dynamics and chaotic itinerancy in the coherence collapse of semiconductor lasers with optical feedback. Phys. Rev. A, 50:pp. 2719—2726, 1994. [41] G. H. M. van Tartwijk, A. M. Levine and D. Lenstra. Sisyphus e®ect in semiconductor lasers with optical feedback. IEEE J. Sel. Top. Quantum Electron., 1:pp. 466—472, 1995. [42] I. Fischer, G. H. M. van Tartwijk, A. M. Levine, W. Els¨asser, E. O. G¨obel, and D. Lenstra. Fast pulsing and chaotic itinerancy with a drift in coherence collapse of semiconductor lasers. Phys. Rev. Lett., 76:pp. 220—223, 1996. [43] G. Huyet, S. Balle, M. Giudici, C. Green, G. Giacomelli, and J. R. Tredicce. Low frequency fluctuations and multimode operation of a semiconductor laser with optical feedback. Opt. Commun., 149:pp. 341—347, 1998. [44] K. Petermann. Laser Diode Modulation and Noise. Kluwer Academic, Tokyo, 1991. [45] J.-S. Lih, J.-Y. Ko, J.-L. Chern, and I.-M. Jiang. Determinism test and noise estimate for a complex time series. Europhys. Lett., 40:pp. 7—12, 1999. [46] J.-Y. Ko, J.-S. Lih, M.-C. Ho, C.-C. Tsai, and J.-L. Chern. Determinism test, noise estimate and hidden frequency recognition: the singular value decompositionapproach. Chinese J. Phys., 37:pp. 449—465, 1999. [47] H. Temkin, N. A. Olsson, J. H. Abeles, R. A. Logan, and M. B. Panish. Reflection noise in index-guided InGaAs lasers. IEEE J. Quantum Electron, QE-22:pp. 286—293, 1986. [48] J. Ohtsubo. Feedback induced instability and chaos in semiconductor lasers and their applications. Opt. Rev., 6:pp. 1—15, 1999. [49] G. P. Agrawal and N. K. Dutta. Semiconductor Lasers. Van Norstrand Reinhold, New York, 2nd edition, 1993. [50] A. Brignon, L. Loiseau, C. Larat, J.-P. Huignard, and J.-P. Pocholle. Phase conjugation in a continuous-wave diode-pumped Nd:YVO4 laser. Appl. Phys. B, 69:pp. 159—260, 1999. [51] G. P. Agrawal. Line narrowing in a single-mode injection laser due to external optical feedback. IEEE J. Quantum Electron., QE-20:pp. 468—471, 1984. [52] R. Wyatt and W. J. Delin. 10 khz linewidth 1.5 um InGaAsP external cavity laser with 55 nm tuning range. Electron. Lett., 19:pp. 110—112, 1983. [53] G. A. Acket, D. Lenstra, A. J. den Boef, and B. H. Verbeek. The influence of feedback intensity on lohgitudinal mode propertise and optical noise in indexguided semiconductor lasers. IEEE J. Quantum Electron., QE-20:pp. 1163—1170, 1984. [54] E. Patzak, H. Olesen, A. Sugimura, S. Saito, and T. Mukai. Spectral linewidth reduction in semiconductor lasers by an external cavity with weak optical feedback. Electron. Lett., 19:pp. 938—940, 1983. [55] J. Honerkamp. Stochastic Dynamical Systems. VCH, New York, 1994. [56] K. Otsuka. Nonlinear Dynamics in Optical Complex Systems. Klwer Academic, Tokyo, 2000. [57] A. Lasota and M. C. Mackey. Chaos, Fractals, and Noise. Springer-Verlag, New York, 1994. [58] H. Kantz and T. Schreiber. Nonlinear Time Series Analysis. Cambridge Univ., New York, 1997. [59] H. G. Schuster. Deterministic Chaos: an Introduction. VCH, New York, 1995. [60] J.-L. Chern and T. C. Chow. Nonstationary characteristic of probability association in chaos. Phys. Lett. A, 192:pp. 34—42, 1994. [61] S. Parthasarathy and S. Rajasekar. Probability distribution characteristics of chaos in a simple population model and the Bonhoe®er-van der Pol oscillator. Phys. Rev. E, 58:pp. 6839—9842, 1996. [62] J.-L. Chern, T.-C. Hsiao, J.-S. Lih, L.-E. Li, and K. Otsuka. Synchronized chaos and intermitted synchronization. Chinese J. Phys., 36:pp. 667—676, 1998. [63] J.-L. Chern, F.-J. Kao, and I.-M. Jiang. Transition between nonstationary and stationary chaos. Phys. Lett. A, 218:pp. 268—274, 1996. [64] W. T. Vetteting W. H. Press, S. A. Tenkolsky and B. P. Flannery. Numerical Receipes in Fortran: the Art of Scientific Computing. Cambridge Univ., Cambridge, 1992. [65] R. J. Glauber. Quantum Optics. Academic Press, New York, 1969. [66] H. Haken. Theory of coherence of laser light. Phys. Rev. Lett., 13:pp. 329—331, 1964. [67] J. A. Fleck JR. Quantum theory of laser radiation I. many-atom effect. Phys. Rev., 149:pp. 309—312, 1966. [68] M. Scully and W. E. Lamb JR. Quantum theory of an optical maser. Phys. Rev. Lett., 16:pp. 853—855, 1966. [69] R. D. Hempstead and M. Lax. Classical noise. VI. noise in self-sustained oscillators near threshold. Phys. Rev., 161:pp. 350—366, 1967. [70] L. Gammaitoni, P. Hanggi, P. Jung, and F. Marchesoni. Stochastic resonance. Rev. Mod. Phys., 70:pp. 233—287, 1998. [71] R. N. Mantegna and B. Spagnolo. Noise enhanced stability in an unstable system. Phys. Rev. Lett., 76:pp. 563—566, 1996. [72] M. Dykman, D. Luchinsky, R. Manella, P. Mcclintock, H. Short, N. Stein, and N. Stock. Noise-induce linearisation. Phys. Lett. A, 193:pp. 61—66, 1994. [73] J.-Y. Ko, J.-L. Chern, R.-R. Hsu, Y.-F. Huang, and H.-Y. Ueng. Noise-induced linearisation and coherence enhancement: Experimental evidence. Europhys. Lett., 42:pp. 383—388, 1998. [74] D. E. McCumber. Intensity fluctuation in the output of cw laser oscillators. I. Phys. Rev., 141:pp. 306—322, 1966. [75] H. Henry, P. S. Henry, and M. Lax. Partition fluctuations in nearly singlelongitudinal-mode lasers. J. Lightwave Tech., LT-2:pp. 209—261, 1983. [76] M. Yamada. Theory of mode competition noise in semiconductor injection lasers. IEEE J. Quantum Electron., QE-22:pp. 1052—1059, 1986. [77] R. J. Fronen and L. K. Vandamme. Low-frequency intensity noise in semiconductor-lasers. IEEE J. Quantum Electron., QE-24:pp. 724—736, 1988. [78] T. L. Paoli. Noise characteristic of strip-geometry double-hetrostructure junction laser operating continuously- i. intensity noise at room temperature. IEEE J. Quantum Electron., QE-11:pp. 276—283, 1975. [79] H. J¨ackl and G. Guekos. High frequency intensity noise spectra of axial mode groups in the radiation from cw GaAlAs diode lasers. Opt. Quantum Electron., 9:pp. 233—239, 1977. [80] T. Itˆo, S. Machida, K. Nawata, and T. Ikegami. Intensity fluctuation in each longitudinal mode of a multimode AlGaAs laser. IEEE J. Quantum Electron., QE-13:pp. 574—579, 1977. [81] G Arnold and K. Petermann. Intrinsic noise of semiconductor laser in optical communication system. Opt. Quantum Electron., 12:pp. 207—219, 1980. [82] F. T. Arechi, G. L. Lippi, G. P. Puccioni, and J. R. Tredicce. Deterministic chaos in laser with injected signal. Opt. Commun., 51:pp. 308—314, 1984. [83] K. Otsuka, H. Utsu, R. Kawai, K. Ohki, Y. Asakawa, S.-L. Hwong, J.-Y. Ko, and J.-L. Chern. Self-induced spiking oscillations and associate instabilities in a laser-diode-pumped three-mode Nd:YVO4. Japan. J. Appl. Phys., 38:pp. L1025—L1028, 1999. [84] K. Otsuka, Y. Asakawa, R. Kawai, S.-L. Hwong, and J.-L. Chern. Locking of relaxation oscillation frequencies and chaos in a free-running two-mode Nd:YVO4 laser. Japan. J. Appl. Phys., 37:pp. L1523—L1526, 1998. [85] K. Otsuka, J.-Y. Ko, S. Higashihara, and J.-L. Chern. Pulsations induced by quantum interference in a microchip solid-state laser operating on a L-transition. Opt. Lett., 26:pp. 536—538, 2001. [86] K. Otsuka, J.-Y. Ko, T. Kubota, S.-L. Hwong, T.-S. Lim, J.-L. Chern, B. A. Nguyen, and P. Mandel. Instability in a laser-diode-pumped microchip Nd:YAG laser in a pi-scheme. Opt. Lett., 26:pp. 1060—1602, 2001. [87] D. Zwillinger. Handbook of Differential Equations. Academic Press, New York, 1989. [88] D. C. C. Bover. Moment equation methods for nonlinear stochastic systems. J. Math. Anal. and Appl., 65:pp. 306—320, 1978. [89] K. Sobczhyk. Stochastic Di®erential Equations. Kluwer Academic, Netherland, 1991. [90] J.-L. Chern and J.-T. Shy. Stability criterion for a laser system. Chinese J. Phys., 27:pp. 455—459, 1989. [91] H. S. Wall. Theory of continued Fractions. Van Norstand, New York, 1984. [92] K. Coffman, W. D. McCormick, and H. L. Swinney. Multiplicity in a chemicalreaction with one-dimensional dynamics. Phys. Rev Lett., 56:pp. 999—1002, 1986. [93] S. H. Strogatz and I. Stewart. Coupled oscillators and biological synchronization. Sci. Am., 269:pp. 102—109, 1993. [94] S. Schafer, M. G. Rosenblum, J. Kurths, and H. H. Abel. Heartbeat synchronized with ventilation. Nature, 392:pp. 239—240, 1998. [95] U. Ernst, K. Pawelzik, and T. Geisel. Synchronization induced by temporal delays in pulse-coupled oscillators. Phys. Rev. Lett., 74:pp. 1570—1573, 1995. [96] R. Roy and K. S. Thornburg. Experimental synchronization of chaotic lasers. Phys. Rev. Lett., 74:pp. 2009—2012, 1994. [97] T. Sugawara, M. Tachikawa, T. Tsukamoto, and T. Shimizu. Observation of synchronization in laser chaos. Phys. Rev. Lett., 72:pp. 3502—3505, 1994. [98] L. M. Pecora and T. L. Carroll. Synchronization in chaotic systems. Phys. Rev. Lett., 64:pp. 821—824, 1990. [99] G. D. VanWiggeren and R. Roy. Communication with chaotic lasers. Science, 279:pp. 1198—1200, 1998. [100] G. D. VanWiggeren and R. Roy. Optical communication with chaotic waveforms. Phys. Rev. Lett., 81:pp. 3547—3550, 1998. [101] H. G. Winful and L. Rahman. Synchronized chaos and spatiotemporal chaos in arrays of coupled lasers. Phys. Rev. Lett., 65:pp. 1575—1578, 1990. [102] K. M. Cuomo and A. V. Oppenheim. Circuit implementation of synchronized chaos with applications to communications. Phys. Rev. Lett., 71:pp. 65—68, 1993. [103] J.-L. Chern and J. K. McIver. An e®ect of coupling strength between the elements in a mapping system-possibility of different routes to chaos. Phys. Lett. A, 151:pp. 150—156, 1990. [104] A. Uchida, M. Shinozuka, T. Ogawa, and F. Kannari. Experiments on chaos synchronization in two separate microchip lasers. Opt. Lett., 24:pp. 890—892, 1999. [105] A. Uchida, M. Shinozuka, T. Ogawa, and F. Kannari. Accuracy of chaos synchronization in Nd:YVO4 microchip lasers. Phys. Rev. E, 62:pp. 1960—1971, 2000. [106] K. Otsuka, R. Kawai, S.-L. Hwong, J.-Y. Ko, and J.-L. Chern. Synchronization of mutually coupled self-mixing modulated lasers. Phys. Rev. Lett, pp. 84:pp. 3049—3052, 2000. [107] S.-L. Hwong, W.-L. Tsai, T.-S. Lim, and J.-L. Chern. Influences of pump-beam focusing conditions on a laser- diode-pumped microchip Nd:YVO4 laser. Jpn J. Appl. Phys., 38:pp. L1330—L1332, 1999. [108] L. Fabiny, P. Colet, R. Roy, and D. Lenstra. Coherence and phase dynamics of spatially coupled solid-state lasers. Phys. Rev. A, 47:pp. 4287—4296, 1993. [109] Y. Liu and P. Davis. Synchronization of chaotic mode hopping. Opt. Lett., 25:pp. 475—477, 2000. [110] M. Moller, B. Forsmann, and W. Lange. Instabilities in coupled Nd:YVO4 microchip lasers. Quantum Semiclass. Opt., 10:pp. 839—848, 1998. [111] D. S. Broomhead and G. P. King. Extracting qualitative dynamics from experimental-data. Physica D, 20:pp. 217—236, 1986. [112] A. M. Albano, J. Muesch, C. Schwartz, A. I. Mees, and R. E. Papp. Singularvalue decomposition and the grassberger-procaccia algorithm. Phys. Rev. A, 38:pp. 3017—3026, 1988. [113] R. Brown, P. Bryant, and H. D. Abarbanel. Computing the lyapunov spectrum of a dynamic system from an observed time-series. Phys. Rev. A, 43:pp. 2787—2806, 1991. [114] R. Stoop and J. Parisi. Calculation of lyapunov exponents avoiding spurious elements. Physica D, 50:pp. 89—94, 1991. [115] R. Cawley and G. H. Hsu. Local-geometric-projection method for noisereduction in chaotic maps and flows. Phys. Rev. A, 46:pp. 3057—3082, 1992. [116] F. Takens. Lecture Notes in Math. Springer-Verlag, New York, 1981. [117] T. Saucer, J. A. Yorke, M. Casdagli. Embedology. J. Stat. Phys., 65:pp. 579—616, 1991.
|