跳到主要內容

臺灣博碩士論文加值系統

(54.83.119.159) 您好!臺灣時間:2022/01/17 10:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃百毅
研究生(外文):Bae -Yih Hwang
論文名稱:雙方程式紊流模式分析平板之過渡流場
論文名稱(外文):Two-Equation Turbulence Models for Transition Flow
指導教授:林三益林三益引用關係
指導教授(外文):San-Yih Lin
學位類別:博士
校院名稱:國立成功大學
系所名稱:航空太空工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:90
語文別:英文
論文頁數:117
中文關鍵詞:層流過渡流紊流間歇參數延遲時間
外文關鍵詞:laminartransitionturbulenceintermittencydecay-time
相關次數:
  • 被引用被引用:1
  • 點閱點閱:284
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本文的目的是發展紊流模式計算那威爾史托克(Navier-Stokes)方程式探討流經平板的過渡流場。數值方法是以有限體積法採用三階上風外插與限制函數,同時使用顯式的三階段的郎吉庫塔(Runge-Kutta)時間積分法。本文提出兩個修正的低雷諾數雙方程式紊流模式,模擬流經平板的過渡邊界層流場。
第一個修正模式,將一個延遲時間函數導入紊流動能方程式中。在層流與紊流中,延遲時間的型態是不同的。他能影響層流與過渡流的紊流能量的增減,並限制渦漩黏滯係數。延遲時間函數的計算法是不同於目前盛行的間歇參數限制渦漩黏滯係數的計算法。這個延遲時間將導入四個標準紊流模式,形成新的紊流模式。計算的結果與平板的實驗值比較。在入口流不同的紊流擾動條件下,估計過渡流場的起始點與流場長度。從結果發現,修正的紊流動能方程式可以影響整個過渡流產生的過程;而且能準確的估計過渡流場的起始點與流場長度。
第二個修正模式,調整並結合三個現有的低雷諾數雙方程式紊流模式中的常數與震盪函數。調整方法是根據這些紊流模式的過渡流場區域的位置,加以分析調整。調整後的計算結果與平板的實驗值比較。比對的物理參數有表面摩擦係數、型態因子、動量厚度雷諾數、擾動量等,結果與實驗值非常吻合。這個修正模式最理想的是不需要在紊流模式中使用過渡流場的起始點與流場長度的經驗公式,而能準確的預測過渡流場的起始點與流場長度。
從整個過度流場的結果,紊流動能方程式中的產生項(production)與消散項(dissipation),在過度流場中同一位置的產生項大於消散項。而且,對於整個流場來說,過度流場區域末端前的位置,產生項是最大的;流場通過了此點後,由於擾動量快速增加,過渡流場後段區域和紊流區域,物理量產生非線性作用。最後在紊流場,產生項與消散項會趨於平衡狀態。
The study applies a Navier-Stokes solver to investigate the bypass transition of the flow over a flat plate. The solver us-es a third-order modified Osher-Chakravarthy(MOC) upwind finite volume method for the space descritization and an explicit thr-ee-stage Runge-Kutta time integration for the time descritizat-ion. The upwind scheme is belonged a MUSCL-type scheme (monoto-nic upwind-centered scheme for conservation laws). Two modified low-Reynolds-number turbulence models are proposed for the p-redictions of transitional boundary-layer flows.
The Modified Model I introduces a representative decay-time function in the turbulence kinetic energy equation. The behavi-ors of the decay-time function are different between the lamin-ar and turbulence regions. It can affect the growth of the tur-bulence energy around the pretransition and transition regions and that can limit the value of eddy viscosity coefficient. The present approach is very different to most transition models t-hat introduce an intermittency parameter to limit the eddy vis-cosity. Based on the decay-time function, the four models: Jon-es-Launder, Launder-Sharma, Chien, and Hoffmann models are mod-ified in this paper. T3A and T3B experiments are selected to t-est the ability of the new turbulence model to predict the tra-nsition onset and length under the influence of freestream tur-bulence intensity level. It found that the modified turbulence kinetic energy equation can wholly reflect the effect of trans-ition process and predicate the transition onset and length co-rrectly.
The Modified Model II is proposed by adjusting model const-ants and damping functions in several standard low-Reynolds-nu-mber turbulence models. It is combining the Jones-Launder, Lou-der-Sharma, and Chien models with adjusting the model constant-s and the damping functions. The adjustment is according to the behaviors of these three models in the transition region. T3AM, T3A, and T3B experiments are selected to test the ability of the modified model II. Comparisons on skin friction distributi-on, sharp factor, Reynolds number based on momentum thickness, mean streamwise velocity, and streamwise velocity fluctuation are performed. The results are very satisfactory throughout the whole flow region. The model is very nice since it doesn''t need to use any correlations of transition onset and length obtained from experimental data.
Moreover, from the distributions of production and dissipati-on in the turbulence kinetic energy equation, it is found that the values of the production term are bigger than those of the dissipation term. Also the production and dissipation terms ob-tain the maximum values at a position which locates at before the end point of transition. After this point, the nonlinear e-ffect is taken account. Finally, the production and dissipation attain a balance after the end of transition.
授權書
簽署人須知
中文摘要 ......................................................1
誌謝 ..........................................................2
第一章 導論 ...................................................3
第二章 統御方程式和數值方法 ...................................4
第三章 修正模式一 .............................................5
第四章 修正模式二 .............................................6
第五章 結論和未來工作 .........................................7
ABSTRACT ......................................................i
CONTENTS ....................................................iii
LIST OF TABLES ...............................................vi
LIST OF FIGURES .............................................vii
NOMENCLATURE ................................................xiv
I INTRODUCTION ................................................1
1.1 Classifications of Transition ............................1
1.2 Bypass Transition Models .................................2
1.3 Turbulence Models ........................................4
1.4 Modified Models ..........................................5
1.4.1 Modified Model I ......................................5
1.4.2 Modified Model II .....................................6
1.5 Numerical Methods for System of Equations ................7
1.6 Contents and Organization ................................8
II GOVERNING EQUATIONS AND NUMERICAL FORMULATION ..............9
2.1 Introduction .............................................9
2.2 Governing Equations .....................................10
2.3 Numerical Formulations ..................................11
2.4 Modified Osher and Chakravarthy Finite Volune Scheme (MOC
scheme) .................................................12
2.5 Time Integration ........................................13
2.6 Boundary Conditions .....................................15
2.7 Turbulence Models .......................................16
2.7.1 Low-Reynolds-number Two-Equation Model ...............17
2.7.2 Numerical for Equations Methods ....................18
2.7.3 Boundary Condition and Flow Initialization ...........19
2.8 Transition Onset and Length .............................20
III MODIFIED MODEL I .........................................21
3.1 Introduction ............................................22
3.2 Low-Reynolds-Number Turbulence Methods ..................24
3.2.1 Jones-Launder Model .................................25
3.2.1 Launder-Launder Model ................................26
3.2.1 Chien Model ..........................................26
3.2.1 Hoffmann Model .......................................26
3.3 Modified Model I ........................................27
3.3.1 Bypass-Transition Tow-Equation Turbulence ............27
3.3.2 Decay Time and Transition Onset ......................28
3.4 Scheme Validation .......................................30
3.4.1 Grid Independence ....................................30
3.4.2 Compressibility Effect ...............................31
3.4.3 Choice of Inlet position .............................31
3.5 Presentations of Standard Low-Reynolds-Number Turbulence
Methods .................................................32
3.6.1 Presentations of Modified Bypass-Transition Models ....34
3.6.2 Convergence Characteristics ...........................36
3.7 Modified Correlation ....................................36
3.8 Conclusions .............................................37
IV MODIFIED MODEL II .........................................39
4.1 Introduction ............................................39
4.2 Modified Model II .......................................41
4.3 Presentations of Modified Model II ......................42
4.4 Flow Structures and Process of Bypass Transition ........44
4.5 Conclutions .............................................46
V CONCLUSIONS AND RECOMMENDATIONS ............................48
REFERENCES ...................................................52
TABLES .......................................................57
FIGURE .......................................................59
VITA
PUBLICATION LIST
1.Abu-Ghannam, B. J. and Shaw, R. 1980, “Natural Transition of Boundary Layers-The Effects of Turbulence, Pressure Gradie-nt, and Flow History,” Journal of Mechanics Engineering Scie-nce, 22, No. 5, pp. 213-228.
2.Baldwin, B. S. and Lomax, H., 1978, “Thin Layer Approxim-ation and Algebraic Model for Separated Turbulent Flows,” AIAA paper 78-252.
3.Baek, S. G., Chung, M. K. and Lim, H. J., 2001, “ Turb-ulence Model for Prediction Transitional Boundary-Layer Flows Under Zero-Pressure Gradient, ” AIAA Journal, 39, No. 9, pp. 1699-1705.
4.Cebeci, T. and Smith, A. M. O., 1974, “Analysis of Turbul-ent Boundary Layers,” 15, Academic Press.
5.Chien, K. Y. 1982, “Predictions of Channel and Boundary-Layer Flows with a Low-Reynolds-Number Turbulence Model,” AIAA Journal, 82-0020.
6.Cho, J. R. and Chung, M. K., 1992, “A Equation Trubule-nce Model,” Journal of Fluid Mechanics, 237, pp. 301-322.
7.Cockbum, B., Lin, S. Y., and Shu, C. W., 1989, “TVB Runge-Kutta Local Projection Discontinuous Galerkin Finite Element M-ethod for Conservation Laws III: One Dimensional Systems,” Jo-urnal of Computational Physics, 84, No. 1, pp. 5-17.
8.Couaillier, V., Eliasson, P., and FaBbender, J., 2000, “E-nhancing Robustness for Advanced Turbulence Models in the Euro-pean Project AVTAC,” AIAA paper 2000-2407.
9.Dewan, A. and Arakeri, J. A., 2000, “Use of Model to Pr-edict Intermittency in Turbulent Boundary-Layers,” Journal of Fluids Engineering, 122, 542-546.
10.Dhawan, S. and Narasimha, R., 1958, “Some Properties of Boundary Layer Flow During Transition From Laminar to Turbulent Motion,” Journal of Fluid Mechanics, 3, pp. 418-436.
11.Eemmons, H. W., 1951, “The laminar-Turbulent Transition in Boundary Layer - Part I,” J. Aero. Sci., 18, pp. 711-712.
12.Gostelow, J. P., Blunden, A. R., and Walker, G. J., 1994, “Effects of Freestream Turbulence and Adverse Pressure Gradients on Boundary Layer Transition,” ASME J. Turbomach., 116, pp. 392-440.
13.Harten, A., 1983, “High Resolution Schemes for Hyperbolic Conservation Laws,” Journal of Computational Physics, 49, pp. 357-393.
14.Hoffmann, G. H., 1975, “Improved Form of the Low-Reynolds Number Turbulence Model,” The Physics of Fluids, 18.
15.Huang, P. G. and Xiong, G., 1998, “Transition and Turbulence Modeling of Low Pressure Turbine Flows,” AIAA paper 98-0339.
16.Hughes, T. J. and Brooks, A., 1982, “A Theoretical Franework for Petrov-Galerkin Methods Discontinuous Weighting Functions,” Finite Elements in Fluids, 4, edited by R. H. Gallagher, D. H. Norrie, J. T. Oden, and O.Z. Zienkiewics, Wil-ey, New York, pp. 57-65.
17.Jameson, A. 1985, “Multigrid Algorithms for Compressible Flow Calculations,” Multigrid Method II, Lecture Notes in Mat-hematics, 1228, pp. 166-201.
18.Jones, W. P. and Launder, B. E., 1973, “The Calculation of Low-Reynolds-Number Phenomena with a Two-Equation Model of Turbulence,” Int. J. Heat Mass Transfer, 16, pp. 1119-1130.
19.Johnson, C. and Pitkaranta, J., 1986, “An Analysis of the Discontinuous Galerkin Method for a Scalar Hyperbolic Equation,” Mathematics of Computation, 46, No. 173, pp. 1-26.
20.Launder, B. E. and Sharma, B. I., 1974, “Application of the Energy-Dissipation Model of Turbulence to The calculation of Flow Near a Spinning Disc,” Letters in Heat and Mass Transfer, 1, pp. 131-139.
21.Launder, B. E. and Spalding, D. B. 1974, “The Numerical Computation of Turbulent Flows,” computer Methods in Applied Mechanics and Engineering, 3, pp. 269-289.
22.Lin, S. Y. and Chin, Y. S., 1993a, “Discontinuous Galerk-in finite Element Method fo Ruler and Navier-Stokes Equations,”
AIAA Journal, 31, No. 11, pp. 2016-2026.
23.Lin, S. Y., Wu, T. M., and Chin, Y. S., 1993b, “An Upwind Finite-Volume Scheme with a Triangular Mesh for Conservation Laws,” Journal of Computational Physics, 107, No. 2, pp. 324-337.
24.Lin, S. Y., Chin, Y. S., and Wang, Y. Y., 1994, “Numeric-al Investigations on Two Dimensional Canard-Wing Aerodynamic Interference,” Journal of Aircraft, 31, No. 3, pp. 672-679.
25.Liou, W. W. and Shih, T. H., 1997, “Bypass Transitional Flow Calculations Using a Navier-Stokes Solver and Tow-Equation Models,” AIAA paper 97-2738.
26.Liu, S. Z. and Tsai, H. M., 1998, “ Simulation of Bounda-ry Layer Transition with a Modified Model,” AIAA paper 98-0340.
27.Lu, P. J. and Yeh, D. Y., 1993, “Transonic Flutter Suppr-ession Using Active Acoustic Excitations,” AIAA Paper 93-3285.
28.Mayle, R. E., 1991, “The Role of Laminar-Turbulent Transition in Gas Turbine Engines,” ASME J. Turbomach., 113, pp. 509-537.
29.Mayle, R. E. and Schulz, A., 1997, “The Path to Predicti-ng Bypass Transition,” ASME J. Turbomach., 119, pp. 405-410.
30.Mayle, R. E., Dullenkopf, K., and Schulz, A., 1998, “The Turbulence That Matters,” ASME J. Turbomach., 120, pp. 402-409.
31.McDonald, H. and Fish, R. W., 1972, “Practical calculations of Transitional Boundary Layers,” AGARD graph 164.
32.Morkovin, M. V., 1969, “On the Many Faces of Transition,” Viscous Drag Reduction, C. S. Wells, ed., Plenum Press, New York, pp. 1-31.
33.Narasimha, R., 1957, “On the Distribution of Intermitten-cy in the Transition Region of a Boundary Lager,” J. Aero. Sci.
, 24, pp. 711-712.
34.Norris, L. H. and Reynolds, W. C., 1975, “Turbulent Chan-nel Flow with a Moving Wavy Boundary,” FM 10, Stanford Univ., Dept of Mech. Eng.
35.Osher, S., 1984, “Convergence of Generalized MUSCL schem-es,” SIAM Journal of Numerical Analysis, 22, pp. 947-961.
36.Osher, S. and Chakravarthy, S., 1984, “Very High Order Accurate TVD schemes,” ICASE Report, No. 84-44.
37.Roe, P. L. 1981, “Approximate Riemann Solvers, Parameter Vectors and Difference Schemes,’ Journal of Computational Phy-sics, 43, No. 2, pp. 357-372.
38.Savill, A. M., 1993, “Further Progress in The Turbulence Modeling of Bypass Transition,” Engineering Turbulence Modeli-ng and Experiments 2, W. Rodi and F. Martelli, eds., Elsevier Science, pp. 583-592.
39.Schlichting, H., 1979, “Boundary-Layer Theory,” McGraw-Hill, New York.
40.Schubauer, G. B. and Klebanoff, P. S. 1956, “Contributio-ns on the Mechanics of Boundary-Layer Transition,” NACA Report 1289.
41.Schubauer, G. B. and Skramstad, H. K., 1948, “ Laminar Boundary Layer Oscillations and Transition on a Flat Plate,” NACA Report 909.
42.Singer, B. A., 1993, “Modeling the Transition Region” NASA CR-4492.
43.Steelant, J. and Dick, E., 2001, “Modeling of Laminar-Turbulent Transition for High Freestream Turbulence,” Journal of Fluids Engineering, 123, 22-30.
44.Suzen, Y. B. and Huang, P.G., 2000, “Modeling of Flow Tr-ansition Using an Intermittency Transport Equation,” Journal of Fluids Engineering, 122, 273-284.
45.Van Leer, B., 1979, “Toward the Ultimate Conservative Di-fference Scheme V, A Second-Order Sequel to Godunov’s Scheme,”
Journal of Computational Physics, 32, pp. 101-136.
46.Warren, E. S. and Hassan, H. A., 1997, “A Transition Clo-sure Model for Predicting Transition Onset,” AIAA paper 97-5502.
47.Westin, K. J. A. and Henkes. R. A. W. M., 1997, “Applica-tion of Turbulence Models to Bypass Transition,” Journal of F-luids Engineering, 119, pp.859-866.
48.Wilcox, D. C., 1988, “Reassessment of The Scale Determin-ing Equation for Advanced Turbulence Models,” AIAA Journal, 88-0026.
49.Yang, R. J. and Luo, W. J., 1996, “Turbine Blade Heat Tr-ansfer Prediction in Flow Transition Using Two-Equation Mode-l,” Journal of Thermophusics and Heat Transfer, 10, No. 4, pp. 613-620.
50.Yee, H. C., 1987, “Construction of Explicit and Inplicit Symmetric TVD Schemes and Their Applications,” Journal of Com-putational Physics, 68, pp. 151-179.
51.Zeierman, S. and Wolfshtein, M. 1986, “Turbulent Time sc-ale Based Model for Near Wall Turbulence,” AIAA Journal, 24, No. 10, pp. 1606-1610.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top