跳到主要內容

臺灣博碩士論文加值系統

(3.87.33.97) 您好!臺灣時間:2022/01/27 16:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:余重信
研究生(外文):Zhong-Xin Yu
論文名稱:有限體積法模擬不可壓縮之內外流場
論文名稱(外文):Finite Volume scheme for Incompressible Flows and it application to Internal and External flows
指導教授:林三益林三益引用關係
指導教授(外文):San-Yih Lin
學位類別:博士
校院名稱:國立成功大學
系所名稱:航空太空工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:188
中文關鍵詞:人工壓縮因子法不可壓縮流圓球動態格點
外文關鍵詞:artificial comressibilityincompressible Flowsspheredynamic grid
相關次數:
  • 被引用被引用:6
  • 點閱點閱:677
  • 評分評分:
  • 下載下載:121
  • 收藏至我的研究室書目清單書目收藏:0
有限體積法模擬不可壓縮之內外流場
學 生:余重信
指導教授:林三益
中文摘要
本文主要是發展一個數值方法來解不可壓縮的那唯爾-史托克方程式(Navier-Stokes Equation)。在數值方法上,方程式的對流項是使用三階的有限體積法計算,黏滯項為二階的有限體積法。關於非定常流場則是採用二階的克朗克-尼克森(Crank-Nicolson)時間積分。人工壓縮因子法主要是將不可壓縮的那唯爾-史托克方程式由橢圓方程式轉成雙曲線方程式。為了加速數值方法的收斂性,本文將介紹比較三種隱式的DDADI時間積分及一種顯式的朗奇-庫達法的時間積分(Runge-Kutta time Integration)。數值方法的結果顯示空間上的準確度約為2.6階,時間上的準確度約為1.7階。為了節省電腦的運算時間,本文將採用平行計算,而平行計算的結果顯示當計算區塊有適當的分割時,大多數的物理問題都能有不錯的收斂性。本文加入了代數紊流模型來模擬高雷諾數的潛體流場。關於加速物體的流場則是採用動態格點法來加以解決,幾何守恆律的部份在本文也有加以考慮。
流體流經一個圓球的流場是本文研究的重點,該流場的尾流結構依照雷諾數的不同大至上可分為五個範圍,包括了定常流且無分離點發生、定常且為軸對稱分離流、定常非軸對稱分離流,非定常流且有一個尾流主頻,非定常流但是有兩個尾流主頻。本文研究的雷諾數範圍在20到400之間,其結果跟實驗數據比對十分的接近。雷諾數400的流場的現象則由三維流線加以討論。本文的另一個研究的重點在彎管的流場,四種不同幾何外型的彎管流場及其渦流的強度在本文將加以討論,而管內的壓力降及分離流的範圍也將加以比較。本文也將討論人工壓縮因子法在自然對流流場的應用,所討論的物理問題是三維的封閉立方體場,不同的奴塞爾值(Nusselt number)及壁面溫度分佈將加以討論。
Finite Volume Scheme for Incompressible Flows and its Application to
Internal and External Flows
Student : Zhong-Xin Yu
Adviser : San-Yih Lin
ABSTRACT
A numerical method to solve the incompressible Navier-Stokes equations is presented in this thesis. The method uses a third-order upwind finite volume scheme to discretize the convective terms and second-order finite volume method to discretize the viscous terms. For the unsteady flows, the second-order Crank-Nicolson method is used for time integration. The artificial compressibility method is used to solve the incompressible Navier-Stokes equations by a hyperbolic-dominated system of equations. To enhance the convergent rate of the full method, three types of DDADI schemes are introduced and compared in this thesis. An explicit Runge-Kutta method and three implicit DDADI methods, IM1, IM2, and IM3, are then introduced. The numerical results show the whole scheme is about 2.6th order in space and 1.7 order in time. To save the CPU time costing, multizone computations and MPI techniques are investigated here. For a suitable zone-communication structure, the method obtains good convergent rate for most physical problems. The algebra turbulence model is applied in the method to simulate flows over a submerged blunt body under high Reynolds numbers. Dynamic grid method is used to simulate flows over a moving body. The geometric conservation low is taken care.
Flow over a sphere is especially interesting in this theme. The wakes structures of flows over a sphere under various Reynolds numbers are roughly classified into five regions. They include no separation occurring in the wake, steady axis symmetry vortex structure in the wake, steady asymmetry vortex structure in the wake, unsteady with single dominated vortex shedding frequency, and two major frequencies existing in the vortex shedding phenomenon. The detailed flow structures under Reynolds number from 20 to 400 are performed and compared with the experimental and numerical data. The evolutions of the vortex shedding under Re=400 are demonstrated by using 3-D instance streamlines. The pipe flow is another important physical problem. Four different geometric configurations are selected to study the vortex structures and strength of the secondary flows in pipes. Comparisons of pressure drop and separation region are performed. Finally, the natural convection problem is selected to exam the abilities of the artificial compressibility method. The natural convection in a cube with different wall temperature is performed. The temperatures distributions and Nusselt numbers are computed. The numerical results show the method work well. The overall results show that the IM1 and IM2 schemes have good convergent rates for both steady and unsteady problems and perform better than the IM3 and explicit Runge-Kutta schemes do.
CONTENTS
ABSTRACT ………………………………………………………………….…………i
CONTENTS……………………………………………………………………………iii
LIST OF TABLES……………………………………………………………………..vi
LIST OF FIGURES……………………………………………………………..…….vii
NOMENCLATURE……………………………………………………..………...….xiv
CHAPTER
I INTRODUCTION……………………………………………………...1
1.1 Formulations of Governing Equations…………………………………………...1
1.2Numerical Schemes………………………………………………………………2
1.3Multizone and Parallel Computations……………………………………………3
1.4Dynamic Grid…………………………………………………………………….4
1.5Turbulence Models……………………………………………………………….5
1.6Flow over a Sphere……………………………………………………………….5
1.7Natural convection………………………………………………………………..7
1.8Contents and Organizations………………………………………………………7
II NUMERICAL FORMULATIONS………………………………………9
2.1 Governing Equations and Artificial Compressibility……………………………..9
2.2 Space Discretization: Finite-Volume Formulation……………………………….10
2.2.1 Treatment of convection terms……………………………………………10
2.2.2 Treatment of viscous terms……………………………………………….13
2.3 Time Integrations: Runge-Kutta time integration and DDADI Algorithm………14
2.3.1 Steady-state Formulation………………………………………………….14
2.3.2 Unsteady formulation……………………………………………………..20
2.4 Implicit Residue Smoothing Method…………………………………………….20
2.5 Boundary Condition………………………………………………………..……21
2.6 Multizone Technique and Boundary Condition at Interface……………….….....22
2.7 Parallel Computation of Mpi………………………………………………..…...23
2.8 Dynamic Grid Formulations…………………………………………………..…24
2.9 Turbulence Model…………………………………………………………….…27
III SCHEME VALIDATIONS………………………………………….…29
3.1 Vortx-Decay Flow in a Cube……………………………………………………29
3.2 Flow over a Sphere……………………………………………………………...30
3.2.1 Convergence rate………………………………………………………….31
3.2.2 Multizone and parallel computations……………………………………...32
3.3 Driven Cavity Flow under Re=100………………………………………………33
3.4 Internal Pipe Flow under Re=1000………………………………………………36
3.5 Algebra Turbulence Model Testing………………………………………………38
3.6 Conclusions………………………………………………………………………39
IV SIMULATION OF INTERNAL AND EXTERNAL FLOWS…………40
4.1 Introduction………………………………………………………………………40
4.2 Three-Dimensional Driven Cavity flow………………………………………….40
4.3 Flow Over a Sphere………………………………………………………………41
4.3.1 Introduction………………………………………………………………...41
4.3.2 Steady axis symmetry flow without separation…………………………….43
4.3.3 Steady axis symmetric flow with separation……………………………….44
4.3.4 Steady axis asymmetric flow…………………………………………….…44
4.3.5 Time periodic flow…………………………………………………………45
4.4 Flow in a pipe……………………………………………………………………49
4.4.1 Flow field under Re=1000……………………………………………….49
4.4.2 Flow field under Re=400…………………………………………………52
4.5 Flow over a Submerged Blunt Body……………………………………………..52
4.6 Application of Dynamic Grid…………………………………………………….53
4.6.1 Steady-state flow of a submerged blunt body under uniform speed……...53
4.6.2 Accelerating submerge blunt body………………………………………..54
4.7 Conclusion………………………………………………………………………..55
V NATURAL CONVECTION PROBLEM……………………………….57
5.1 Governing Equations…………………………………………………………….57
5.2 Natural Convection in a Cube…………………………………………………..59
5.2.1 Linear wall temperature distribution problem (LTD problem)…………...59
5.2.2 Adiabatic wall temperature problem……………………………….……..60
5.3 Conclusion………………………………………………………………………62
VI CONCLUSIONS AND FURTHER WORKS………………………….63
6.1 Conclusions……………………………………………………………………..63
6.2 Future Work……………………………………………………………………..64
REFERENCE………………………………………………………………..66
TABLES……………………………………………………………………..74
FIGURES……………………………………………………………………76
VITA………………………………………………………………………..187
Publication List……………………………………………………………..188
Reference
1Achenbach, E., 1974, “Vortex Shedding from Spheres,” J. Fluid Mech., Vol. 62, pp. 209.
2Baldwin, B. S. and Lomax, H., 1978, “Thin-Layer Approximation and Algebraic Model for Separated Turbulent Flow,” AIAA Paper 78-0527.
3Bardina, J. and Lombar, C. K., 1987, “three Dimensional Hyperbolic Flow Simulations with the CSCM Implicit Upwind Navier-Stokes Method,” AIAA Paper 87-1114.
4Beam, R. M., and Warming, R. F., 1978 “ An Implicit Factored Scheme for the Compressible Navier-Stokes Equations,” AIAA Journal, Vol. 16, pp. 393-402.
5Cebeci, T. and Bradshaw, P., 1984, “Physical and Computational Aspects Review of Fluid Heat Transfer,” New York: Springer Verlag.
6Cebeci, T., Hirsh, R.S., Keller, H. B., and Williams, P. G., 1981, “Studies of numerical methods for the plane Navier-Stokes equations,” Computer Methods in Applied Mechanics and Engineering, Vol. 27, pp. 13-44.
7Cebeci, T. and Bradshaw, P., 1984, “Analysis of Turbulent Boundary Layers,” New York: Academic Press.
8Chakraverthy S. R., 1982, “Euler Equation, Implicit Schemes and Implicit Boundary Conditions,” AIAA Paper.
9Changhang, J. I., and Kwak, D., 1984, “ On the Method of Pseudo Compressibility for Numerically Solving Incompressible Flows,” AIAA paper 84-0252.
10Chima, R. V. and Johnson, G. M., 1985, “ Efficient Solution of the Euler and Navier-Stokes Equations with a Vectorized Multiple-Grid Algorithm,” AIAA Journal, Vol. 23, pp. 23-32.
11Choi, D. and MerkleC. L., 1985, “Application of Time Iterative Schemes to Incompressible Flow,” AIAA Journal, Vol. 23, 1518-1524.
12Chorin, A. J., 1967, “ A Numerical Method for Solving Incompressible Viscous Flow Problem,” J. Comput. Phys., Vol. 2, pp. 12-26.
13Dick, E., 1988, “A flux vector splitting method for steady Navier-Stokes equation,” Int. Journal Numerical Methods Fluids, Vol. 8, pp. 317-326.
14Frederick W. R. and Willmarth W. W., 1971, “Some Experimenatl Resulu on Sphere and Disk Drag,” AIAA Journal, Vol. 9, No. 2.
15Freitas, C. J., Street, R. L., Findikakis, A. N., and Koseff J. R., 1985, “Numerical Simulation of Three-Dimensional Flow in a Cavity,” Int. Journal Numerical Methods Fluids, Vol. 8, pp. 617-641.
16Fusegi T., Hyun J. M., Kuwahara K., and Farouk B., 1990, “A Numerical Study of Three-Dimensional Natural Convection in a Differentiall Heated Cubical Enclosure,” Int. J. Heat and Mass Transfer, Vol 34, No. 76, pp. 1543-1557.
17Ghia, U. and Sokhey, J. S., 1977, “Laminar Incompressible Viscous Flow in Curved Ducts of Rectangular Cross Sections,” Trans. ASME, Journal of Fluids Engineering, Vol. 99, pp. 640-648.
18Ghia, U., Ghia, K., Rubin, S., and Khosla, P. K., 1981, “Study of Incompressible Flow Separation using Primitive Variables,” Computer and Fluids, Vol. 9, pp. 123-142.
19Harlow, F. H. and Welch, J. E., 1965, “Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface,” physics of Fluids, Vol. 8, pp. 2182-2189.
20Hartwich, P. M. and Hsu, C. H., 1987, “High Resolution Upwind Schemes for the Three-Dimensional Incompressible Navier-Stokes Equation,” AIAA paper 87-0547.
21Hirsh, R. S., 1975, “Higher Order Accurate Difference Solutions of Fluid Mechanics Problem by a Compact Differencing Technique,” J. Comput. Phys.,Vol. 19, pp. 90-109.
22Issa, R. I., 1985, “ Solution of the Implicit Discretised Fluid Flow Equation by Operator-Splitter,” J. of Comp. Phys., Vol. 62, pp.
23Jameson, A., 1985, “Multigrid Algorithms for Compressible Flow Calculations,” Multigrid Method II, Lecture Notes in Math., Vol. 1228, pp.166.
24Jameson A., Schmidt, W., and turkel, E., 1981, “Numerical Simulation of the Euler Equations by finite Volume Methods Using Runge-Kutta Yime Stepping Schemes,” AIAA Paper 81-1259.
25Jameson, A. and Yoon, S., 1987, “ Lower-Upper Implicit Schemes with Multiple Grids for the Euler Equations,” AIAA Journal, Vol. 25, pp. 929-935.
26Johnson, T. A. and Patel, V. C., 1999, “Flow past a Sphere up to a Reynolds Number of 300,” J. Fluid Mech., vol. 378, pp. 19-70.
27Jorgenson P. and Chima, R., 1989, “ An Unconditional Stable Runge-Kutta Method for Unsteady Flows,” AIAA Papers 89-0205.
28Kim, H. J. and Durbin, P. A., 1988, “Observations of the Frequencies in a Sphere Wake and of Drag Increase by Acoustic Excitation,” Phys. Fluids, Vol. 31, pp. 3260.
29Klopfer G. H., Hung C. M., Van der Wijngaart R. F., and Onufer J. T., 1998, “A Diagonalized Diagonal Dominant Scheme and Subiteration Correction,”, AIAA paper 98-2824.
30Kwak, D., Chang, J. L., Shank, S. P., and Chakravarthy, S., 1986. “A three-dimensional incompressible Navier-Stokes flow solver using primitive variables,” AIAA Journal, Vol. 24, pp. 390-396.
31Klopfer, G. H. and Yoon, S., 1993, “Multizonal Navier-Stokes Code with the LU-SGS Scheme,” AIAA Paper 93-2965.
32Leong W. H., Hollands K. G. T., and Brunger A. P., 1999, “Experimental Nusselt Numbers of Cubical-Cavity Benchmark Problem in Natural Convection,” Int. J. of Heat and Mass Transfer, Vol. 42, pp. 1979-1989.
33Liu H. and Kawachi K., 1998, “A Numerical Study of Insect Flight,” Journal of Computational Physics, Vol. 146, pp.124-156.
34MacCormack, R. W., 1997 “ A New Implicit Algorithm for Fluid Flow,” AIAA Paper CP-97-2100.
35Magarvey, R. H. and Bishop, R. L., 1965, “ Vortices in Sphere Wakes,” Can. J. Phys., Vol. 43, pp. 1649.
36Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack Dongarra, 1998, “MPI-The Complete Reference: Volume 1,” The MPI core, second edition.
37Natarajan, R. and Acrivos, A., 1993, “ The Instability of the Steady Flow Past Spheres and Disks,” J. Fluid Mech., Vol.254, pp.323.
38Nakamura, I., 1976, “Steady Wake Behind a Sphere,” Phys. Fluid, Vol. 19, pp. 5.
39Obayashi, S. and Kuwahara, K., 1984, “LU Factorization of an Implicit Scheme for the Compressible Navier-Stokes Equations,” AIAA paper 84-1670.
40Osher S. and Chakraverthy, S., 1985, “Very High Order Accurate TVD Schemes,” ICASE Report No. 84-44 1984.
41Pan, D. and Chakravarthy, S. R., 1989, “Upwind Formulation for Imcompressible Flows,” AIAA Paper 89-0122.
42Patankar, S. V., 1980, “Numerical Heat Transfer and Fluid flows,” McGraw Hill.
43Peutrec Y., G. Lauriat, 1990, “Effects of the Transfer at the Side Walls on Natural Convection in Cavities,” ASME, Journal of Heat Transfer, Vol. 112, pp. 370-378.
44Peyet, R. and Taylor, T. D., 1983, “Computational Methods Method for Fluid Flow,”, New York: Springer Verlag.
45Pulliam,T. H. and Chaussee, D. D., 1981, “A Diagonal Form of an Implicit Approximation Factorization Algorithm,” Journal of Computational Physics, Vol. 39, pp. 347-363.
46Quere Le P., 1991, “accurate Solutions to the Square Thermally Driven Cavity at High Rayleight Number,” Computer Fluid, Vol. 20, No. 1, pp. 29-41.
47Raithby, G. D. and Schneider, G. E., 1970, “Numerical Solution of Problem in Incompressible Fluid Flow: treatment of the velocity-pressure coupling,” Numerical Heat Transfer, Vol. 2, pp. 417-440.
48Raithby, G. D. and Wong H. H., 1981, “Heat Transfer by Natural Convection Across Vertical Air Layers,” Numerical Heat Transfer, Vol. 4, pp. 447-457.
49Rieger, H. and Jameson, A., 1988, “Solution of the Three-dimensional Compressible Euler and Navier-Stokes Equation by an Implicit LU Scheme,” AIAA paper 88-0619.
50Rizzi, A. and Eriksson, L. E., 1985, “ Computation of Inviscid Incompressible Flow with Rotation,” Journal Fluid Mechanics, Vol. 153, pp. 275-312.
51Ross C. E. and Steinman D. A., 1994, “Exact Fully 3D Navier-Stokes Solutions for Benchmarking,” Internal Journal for Numerical Methods in Fluids, Vol. 19, pp. 369-375.
52Sakamoto, H. and Haniu, H., 1990, “A Study on Vortex Shedding from Spheres in a Uniform Flow,” Trans. ASME J. Fluid Engineering, Vol. 112, pp. 386.
53Sakamoto, H. and Haniu, H., 1995, “ The Formulation Mechanism and Shedding Frequency of Vortices from a Sphere in Uniform Shear Flows,” J. Fluid Mech., Vol. 287, pp. 151.
54Shirayma S., 1992, “Flow Past a Sphere: Topological Transitions of the Vorticity Field,” AIAA Journal, Vol. 30, No.2.
55Shunichi Wakitani, 2001, “ Numerical Study of Three-Dimensional Oscillatory Natural Convection at Low Prandtl Number in Retangular Enclosures,” ASME, journal of Heat Transfer, Vol. 123, pp. 77-83.
56Soh, W. Y., 1987, “Time Marching Solution of Incompressible Navier-Stokes Equations for Internal,” Journal Computational Physics, Vol. 70, pp. 232-252.
57Steinthorsen, E. and Shih, T. I-P, 1993, “Method for Reducing Approximation-Factorization Errors in Two- and Three-Factored Schemes,” SIAM J. Sci. Comput., Vol. 14, pp. 1212-1236.
58Sterger, J. L. and Kulter P., 1977, “Implicit Finite-Difference Procedures for Computation of Vortex Wakes,” AIAA Journal, Vol. 15, pp. 581-590.
59Tanda, S., 1956, “Experimental Investigation of the Wake Behind a Sphere at a Low Reynolds Numbers,” J. Phys. Soc. Japan, Vol. 11, pp. 1104.
60Ta Phuoc Loc, 1980, “ Numerical Analysis of Unsteady Secondary Vortices Generated by an Impulsively Started Circilar Cylinder,” J. Fluid Mech., Vol. 100, pp. 111-128.
61Temma, R., 1977, “Navier-Stokes Equations,” Amsterdam: North Holland Publishing Co..
62Thomas P. D. and Lombard C.K., 1979, “ Geometric Conservation Law and its Application to flow Computation on Moving Grids,’ AIAA Journal, vol. 17, pp.1030.
63Tomboulides, A. G., 1993, “Direct and Large-Eddy Simulation of Wake Flows: Flow Past a Sphere,” PhD thesis, Princeton University.
64Tomboulids A. G., Orszag S. A., 2000, “Numerical Investigation of Transitional and Wake Turbulent Flow past a Sphere,” J. Fluid Mech., Vol. 46, pp. 45-73.
65VanDoormaal, J. P. and Raithby G. D., 1984, “Enhancement of the SIMPLE Method for Predicting Incompressible Fluid Flow,” Numerical Heat Transfer, Vol.7, pp. 147-163.
66Van Leer, B., 1979, “Toward the Ultimate Conservative Difference Scheme V, A second-Order Sequel to Godunov’s scheme,” J. Comp. Phys., Vol. 32, pp. 101-136.
67Vext N. S., 1996, “Unsteady Aerodynamic Model of flapping Wings,” AIAA Journal, Vol. 34, pp. 1435.
68Visbal M. R. and Shang J. S., 1987, “On the Formulation and Control of Dynamic Stall Vortex on a Pitching Airfoil,” AIAA Journal, Vol. 20, pp.1313.
69William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill Nitzberg, William Saphir, and Marc Snir, 1998, “The Complete Reference: Volume 2”, The MPI-2 Extensions.
70Wu, J. S. and Faeth, G. M., 1993, “Sphere Wakes in Still Surroundings at Intermediate Reynolds Number,” AIAA Journal, Vol. 33, pp. 1448.
71Yee, H. C., Beam, R. M., and Warming, R. F., 1982, “Boundary approximation for Implicit Schemes for On-dimensional Inviscid Equations of Gas Dynamic,” AIAA journal, Vol. 20, pp. 1203-1211.
72Yoon S. and Chang L., 1989, “ LU-SGS Implicit Algorithm for Three-Dimensional Incompressible Navier-Stokes Equation with Source Term,” AIAA Paper CP-89-1964.
73Yoon, S. and Jameson, A., 1987, “Lower-Upper symmetric Gauss Seidel Method for the Euler and Navier-Stokes Equation,” AIAA Journal, Vol. 26, pp. 1025-1026.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top