跳到主要內容

臺灣博碩士論文加值系統

(54.224.133.198) 您好!臺灣時間:2022/01/29 21:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳冠邦
研究生(外文):Chen Guan-Bang
論文名稱:氣化生質能於白金蜂巢式反應器之觸媒燃燒研究
論文名稱(外文):Catalytic Combustion of Gasified Biomass in a Platinum Monolith Honeycomb Reactor
指導教授:趙怡欽
指導教授(外文):Chao Yei-Chin
學位類別:博士
校院名稱:國立成功大學
系所名稱:航空太空工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:171
中文關鍵詞:觸媒燃燒氣化生質能白金蜂巢式觸媒
外文關鍵詞:catalytic combustiongasified biomassplatinumhoneycomb catalyst
相關次數:
  • 被引用被引用:6
  • 點閱點閱:692
  • 評分評分:
  • 下載下載:136
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要探討多種混合燃料包括氣化生質能(gasified biomass)於白金蜂巢式觸媒反應器內的點燃與燃燒特性,主要成分包含氫氣、一氧化碳和甲烷。由於實驗無法量測近壁面與蜂巢管道內的反應現象,因此發展一二維完整Navier-Stokes管道流場程式配合多步驟化學反應(multi-step chemical mechanism)與取自不同文獻經整理之燃料對白金觸媒之表面化學反應機構(surface mechanism)進行模擬,為求模擬真實之點燃過程,於模擬中其觸媒壁面溫度並非如一般預先給定,而是求解壁面與氣相間之能量方程式,所得模擬預測結果並與實驗值或文獻中數據互相驗證。
首先,以數值模擬探討不同單一或混合燃料於白金壁面停滯流場(stagnation flow)的點燃特性,並調整壁面化學反應機構與文獻上單一燃料實驗值比較驗證符合,結果顯示點燃溫度會隨著應變率(strain rate)增加而提高,而氫氣的變化並不大,氫氣最易點燃而甲烷最難。在混合燃料方面,由於CO具有最大的表面吸附機率,混和燃料點燃溫度主要由CO所主導,CO會造成氫氣的延遲點燃,但兩者同時點燃且點燃溫度低於單一CO燃料的溫度,H2與CO反應所釋放的熱量會幫助甲烷的點燃,而氣化生質能的點燃溫度與H2/CO 混合時相近,然而同時點燃與否主要是受到濃度與應變率影響,高應變率造成燃料更快速擴散到壁面,使得壁溫提高有助點燃,然而點燃溫度卻也隨應變率而提高,這兩個特性決定甲烷是否隨其他燃料同時點燃,而這些點燃特性可由壁面覆蓋率加以解釋。
接著將此一反應機構用於二維管道模擬並配合蜂巢式觸媒實驗,由於模擬中忽略washcoat的效應,無法進行暫態點燃溫度的預測,然而實驗結果顯示點燃特性與之前停滯流場相同,證實了多種燃料的點燃現象主要由不同燃料及氧氣彼此競爭白金活性區(active sites)所造成,不隨流場不同而異。另外在多燃料與生質能蜂巢觸媒燃燒之結果發現,在H2/CH4 , CO/CH4 與氣化生質能中,出口溫度在高速時會隨時間出現二段上升趨勢,顯示甲烷的點燃確實受到其他燃料所釋放的熱量足夠與否所決定,而的在測試條件下,實驗結果也發現CO點燃溫度隨著入口速度增加而降低,甲烷點燃溫度卻隨入口速度增加而增加,這是因為CO與CH4的吸附能力分別大於和小於O2所致。穩態操作顯示氫氣在所有測試條件下都能完全反應,而CO 與 CH4 的反應會隨速度的增加(停滯時間的減少)降低,在H2/CH4 , CO/CH4 與氣化生質能的測試中出口溫度由於甲烷的點燃而大幅提昇甚至超過觸媒最大工作溫度,模擬結果顯示反應主要發生在近壁面處,而此局部高壁溫會造成觸媒局部燒結(sintering)或活性衰退,總之,生質能於蜂巢式白金觸媒之燃燒器之設計與操作條件之區間可由:CO濃度對點燃的關係,停滯時間與甲烷濃度對出口燃料轉化率,以及觸媒本身的燒結(或操作)溫度等所共同規範限定。

In this work, the characteristics of catalytic combustion of single and multi fuels including gasified biomass are investigated both experimentally and numerically. Since gasified biomass is primary composed of three different fuels (methane, hydrogen and carbon monoxide), the interaction between these ingredients will affect its ignition and combustion operation characteristics. In the numerical simulation, a two-dimensional channel flow code with the multi-step gas-phase reaction mechanism and a surface reaction mechanism compiled from literature is developed to clarify the unclear detailed interaction mechanism of the main species of the gasified biomass on the surface. In the simulation in order to simulate the ignition process in real situation, instead of prescribing a uniform value, the surface temperatures are solved directly through the energy equation coupled the system.
Firstly, numerical simulation of the catalytic ignition of single and multi-fuels is performed to identify the interaction between primary components of gasified biomass on platinum surface in a stagnation flow with multi-step gas phase and surface phase reaction mechanisms. The inlet mixture includes 2.7% hydrogen, 3.6% carbon monoxide and 1.1% methane, 16% oxygen and nitrogen for the rest. Simulations of single fuel are performed and the results are compared with available experimental data to further tune the surface reaction mechanism. The results show that the ignition temperature increases with strain rates, while the increment for hydrogen is slim. Then the multi-fuels cases are performed. The results show complete different behaviors. For H2/CO mixture, with the existence of H2 CO will ignite at a lower preheat temperature than that for CO single-fuel case and they always ignite simultaneously. On the other hand, catalytic combustion of H2 or CO would help to lower the catalytic ignition temperature for CH4. However, the simultaneous ignition for multi-fuels or gasified biomass would also depend on the fuel concentrations and the strain rate. The existence of other components in the simultaneous multi-fuels and the competitions between different fuels and oxygen for active surface sites change the catalytic ignition behavior. Higher strain rate would result in higher steady state surface temperature but it would also require higher ignition temperature. The competition of these two factors determines simultaneous ignition.
Next, the tuned surface reaction mechanism is used to model the catalytic combustion of single and multi-fuels on platinum honeycomb catalysts and compares with parallel experiments. The fuel is composed of 23% H2, 42%CO and 35% CH4. We measure the outlet temperature and fuel conversion ratio of the catalyst reactor for cases of various residence times and fuel concentrations and the comparison between the numerical results and the experimental data is qualitatively satisfactory. For single fuel cases, the results show that hydrogen can be completely consumed without preheating. Carbon monoxide needs higher preheat temperature (475K-575K) than hydrogen, and the light-off preheat temperature increases with fuel concentration and decreases with residence time. Methane is the least active among these fuels on platinum catalysts. It takes a quite high preheat temperature (above 700K) for methane to ignite but the required preheat temperature decreases with fuel concentration and residence time. For multi-fuels, it is found that carbon monoxide has an inhibiting effect on the reaction of hydrogen, but hydrogen helps carbon monoxide to light off at a lower preheating temperature. Experimental results for different compositions of bi-fuels, H2/CO, H2/CH4, and CO/CH4, show that the ignition reaction of H2/CO mixture reaches steady state faster than any other fuel mixture and they always light-off simultaneously. However, for H2/CH4 and CO/CH4 mixtures, it is obvious that the light off of methane depends on the heat release by hydrogen or carbon monoxide oxidation. The observed two-step rising of the reactor outlet temperature also provides supporting evidence for this phenomenon. The simulation results also show that reaction occurs near the entrance of the channel and generates a high temperature region near the entrance. The conversion ratio of carbon monoxide and methane is obviously affected by residence time.
Finally, we investigate the operational characteristics of catalytic combustion for gasified biomass. The preheat temperature needed for light-off is found to be determined by carbon monoxide, which proves that CO has the largest adsorption probability on platinum surface. The conversion ratio of methane will increase with increasing concentration of hydrogen and carbon monoxide, but it still lower than that of hydrogen and carbon monoxide. Increasing methane concentration will raise the conversion ratio of multi-fuels while the catalyst surface temperature would exceed the softening temperature. In summary, the domain of design and operation conditions for catalytic combustion of gasified biomass on platinum catalysts can be bounded by the carbon monoxide concentration for ignition, the residence time and methane concentration for conversion ratio, and the sinter temperature for operation temperature limits.

ABSTRACT xiii
CONTENTS xvi
LIST OF TABLES xviii
LIST OF FIGURES xix
NOMENCLATURE xxv
CHAPTER
I INTRODUCTION 1
1.1 Background 1
1.2 Biomass 4
1.3 Catalytic Combustion 8
1.4 Motivations and Objectives 19
1.5 Thesis Outline 21
II EXPERIMENTAL SETUP 22
2.1 Experimental system 22
2.2 Catalysts 23
2.3 Temperature Measurement System 24
2.4 Concentration Measurement System 25
2.5 Experimental Conditions 25
III NUMERICAL METHOD 27
3.1 Single Channel Model 27
3.1.1 Governing equations 27
3.1.2 Computation domain 31
3.1.3 Catalyst surface boundary conditions 32
3.1.4 Boundary conditions for the gas phase and the substrate 34
3.2 Stagnation-Point Flow 34
3.2.1 Governing equations 34
3.2.2 Boundary conditions 36
IV CHEMICAL REACTION MODEL 38
4.1 Gas Reaction Model 38
4.2 Surface Reaction Model 39
4.3 Transition State Theory for Surface Reactions 41
4.4 Sensitivity Analysis 44
V CATALYTIC IGNITION IN A STAGNATION-POINT FLOW OVER A PLATINUM PLATE 47
5.1 Catalytic Ignition for Single Fuel 48
5.2 Catalytic Ignition for Multi-Fuels 52
5.3 Summary 54
VI CATALYTIC COMBUSTION IN A PLATINUM MONOLITH HONEY -COMB REACTOR 56
6.1 Simulation Test Problems 56
6.2 Catalytic Combustion for Single Fuel 60
6.3 Catalytic Combustion for Multi-Fuels 65
6.4 SUMMARY 71
VII CLOSURES 73
7.1 Conclusions 73
7.2 Future Work 76
APPENDIX 77
REFERENCES 79
TABLES 89
FIGURES 97
PUBLICATION LISTS 169
VITA 170

Anton, A. B., and Cadogan, D. C., 1990, “The Mechanism and Kinetics of Water Formation on Pt(111),” Surface Science Letters, Vol. 239, pp.548-560.
Burch, R., and Loader, P. K., 1994, “Investigate on Pt/Al2O3 and Pd/Al2O3 Catalysts for the Combustion of Methane at Low Concentrations,” Applied Catalysis B: Environmental, Vol. 5,pp.146-164.
Bui, P. A., Vlachos, D. G., and Westmoreland, P. R., 1997, “Catalytic Ignition of Methane/Oxygen Mixtures over Platinum Surfaces: Comparison of Detailed Simulations and Experiments,” Surface Science, Vol. 385, pp.1029-1034.
Brown, N. J., Scheffer, R. W., and Robben, F., 1983, “High-Temperature Oxidation of H2 on a Platinum Catalyst,” Combustion and Flame, Vol. 51, pp.263-277.
Bond, T. C., Noguchi, R. A., Chou, C. P., Mongia, R. K., Chen, J. Y., and Dibble, R. W., 1996, “Catalytic Oxidation of Natural Gas over Supported Platinum Flow Reactor Experiments and Detailed Numerical Modeling,” 26th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp. 1771-1778.
Bruno, C., Walsh, P. M., Santavicca, D., and Bracco, F. V., 1982, “High Temperature Catalytic Combustion of CO-O2-N2, Ar, He, CO2-H2O Mixtures of Platinum,” International Journal of Heat and Mass Transfer, Vol. 26, pp.1109-1120.
Bui, P. A., Vlachos, D. G., and Westmoreland, P. R., 1996, “Homogeneous Ignition of Hydrogen-Air Mixtures over Platinum,” 26th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp. 1763-1770.
Baukal, C. E., and Gebhart, B., 1997, “Surface Condition Effects on Flame Impingement Heat Transfer,” Experimental Thermal and Fluid Science, Vol. 15, pp.323-335.
Bond, G. C., 1987, Heterogeneous Catalysis: Principles and Applications. 2nd Ed., Clarendon Press, Oxford.
Campbell, C. T., Ertl, G., Kuipers, H., and Segner, J., 1980, “Amolecular Beam Study of the Catalytic Oxidation of CO on a Pt(111) Surface,” Journal of Chemical Physics, Vol. 73, pp.5862-5873.
Chao, Y.C., and Chen, G.B., 2001, “Ignition Hysteresis of Hydrogen-Air Mixture in a Platinum Monolith Honeycomb Reactor”, The 3rd Asia-Pacific Conference on Combustion, (ASPACC 2001), June 24-27, Seoul, Korea.
Collins, D. M., Lee, J. B., and Spicer, W. E., 1976, “ A Photoemission and Thermal Desorption Study of Carbon Monoxide and Oxygen Adsorption on Platinum,” Surface Science, Vol. 55, pp.389-402.
Choudhary, V. R., Prabhakar, B., Rajput, A. M., and Mamman, A. S., 1998, “ Oxidative Conversion of Methane to CO and H2 over Pt or Pd Containing Alkaline and Rare Earth Oxide Catalysts,” Fuel, Vol. 77, pp.1477-1481.
Chou, C. P., Chen, J. Y., Evans, G. H., and Winters, W. S., 2000, “Numerical Studies of Methane Catalytic Combustion Inside a Monolith Honeycomb Reactor Using Multi-Step Surface Reactions,” Combustion Science and Technology, Vol. 150, pp.27-58.
Cho, P., and Law, C. K., 1986, “Catalytic Ignition of Fuel/Oxygen/Nitrogen Mixtures over Platinum,” Combustion and Flame, Vol. 66, pp.159-170.
Coltrin, M. E., Kee, R. J., Rupley, F. M., and Meeks, E., 1996, “Surface-Chemkin-III: A Fortran Package for Analyzing Heterogeneous Chemical Kinetics at a Solid-Surface-Gas-Phase Interface,” Sandia Report SAND96-8217, Sandia National Laboratories, Livermore, CA.
Coltrin, M. E., Kee, R. J., Evans, G. H., Meeks, E., Rupley, F. M., and Grcar, J. F., 1996, “A Program for Modeling One-Dimensional Rotating-Disk/Stagnation-Flow Chemical Vapor Deposition Reactors,” SANDIA 91- 8003, Sandia National Laboratories, Livermore, CA.
Deutschmann, O., Maier, L. I., Riedel, U., Stroemman, A. H., and Dibble, R. W., 2000, “Hydrogen Assisted Catalytic Combustion of Methane on Platinum,” Catalysis Today, Vol. 59, pp.141-150.
Deutschmann, O., Foralski, C. T., Schmidt, L. D., Raja, L. L., Kee, R. J., and Warnatz, J., 1998, “Comparison of Navior-Stokes, Boundary-Layer, and Plug-Flow models for Simulating Flow in a Catalytic-Combustion Honeycomb Channel,” Work in Progress Poster, 27th Symposium (International) on Combustion, The Combustion Institute.
Dumesic, J. A., 1993, The Microkinetics of Heterogeneous Catalysis. American Chemical Society, Washington, DC.
Dogwiler, U., Mantzaras, J., Benz, P., Kaeppeli, B., and Bombach, R., 1998, “Homogeneous Ignition of Methane-Air Mixtures over Platinum:Comparison of Measurements and Detailed Numerical Predictions,” 27th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp. 2275-2282
Deutschmann, O., Behrendt, F., and Warnatz, J., 1998, “Formal treatment of Catalytic Combustion and Catalytic Conversion of Methane,” Catalysis Today, Vol. 46, pp.155-163.
Deutschmann, O., Behrendt, F., and Warnatz, J., 1994, “Modelling and Simulation of Heterogeneous Oxidation of Methane on a Platinum Foil,” Catalysis Today, Vol.21, pp.461-470.
Dalla Betta, R. A., Schlatter, J. C., Yee, D. K., Loffler, D. G., and Shoji, T., 1995, “Catalytic Combustion technology to Achieve Ultra Low NOx Emissions: Catalytic Design and Performance Characteristics,” Catalysis Today, Vol. 26, pp.329-335.
Deutschmann, O., Schmidt, R., Behrendt, F., and Warnatz, J., 1996, “Numerical Modeling of Catalytic Ignition,” 26th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp. 1747-1754.
Dixon-Lewis, G., “Flame Structure and Flame Reaction Kinetics II. Transport Phenomena in Multicomponent Systems,” Proceeding of the Royal Society, A., 307:111-135, 1968.
Fernandes, N. E., Park, Y. K., and Vlachos, D. G., 1999, “The Autothermal Behavior of Platinum Catralyzed Hydrogen Oxidation: Experiments and Modeling,” Combustion and Flame, Vol. 118, pp.164-178.
Försth, M., Gudmundson, F., Persson, J. L., and Rosén, A., 1999, “The Influence of a Catalytic Surface on the Gas-Phase Combustion of H2 + O2,” Combustion and Flame, Vol. 119, pp.144-153.
Grac, J. F., 1991 “The Twopnt Program for Boundary Value Problems,” SANDIA 91- 8230, Sandia National Laboratories, Livermore, CA.
Griffin, T. A., and Pfefferle, L. D., 1990, “Gas Phase and Catalytic Ignition of Methane and Ethane in Air over Platinum,” AIChE Journal, Vol. 36, pp.861-870.
Goralski, C. T., and Schmidt, L. D., 1999, “Modeling Heterogeneous and Homogeneous Reactions in the High-Temperature Catalytic Combustion of Methane,” Chemical Engineering Science, Vol. 54, pp.5791-5807.
Groppi, G., Tronconi, E., and Forzatti, P., 1996, “Investigations on Catalytic Combustion for Gas Turbine Applications through Mathematical Model Analysis,” Applied Catalysis A: General, Vol. 138, pp.177-197.
Griffin, T. A., Calabrese, M., Pfefferle, L. D., Sappey, A., Copeland, R., and Crosley, R., 1992, “The Influence of Catalytic Activity on the Ignition of Boundary Layer Flow. Part III: Hydroxyl Radical Measurements in Low-Pressure Boundary Layer Flows,” Combustion and Flame, Vol. 90, pp.11-33.
Gudmundson, F., Persson, J. L., Försth, M., Behrendt, F., Kasemo, B., and Rosén, A., 1998, “OH Gas Phase Chemistry Outside a Pt Catalyst,” Journal of Catalysis, Vol. 179, pp.420-430.
Groppi, G., Airoldi, G., Cristiani, C., and Tronconi, E., 2000, “Characteristics of Metallic Structured Catalysts with High Thermal Conductivity,” Catalysis Today, Vol. 60, pp.57-62.
Groppi, G., Lietti, L., Tronconi, E., and Forzatti, P., 1998, “Catalytic Combustion of Gasified biomass over Mn-Substituted Hexaaluminates for Gas Turbine Applications,” Catalysis Today, Vol. 45, pp.159-165.
Griffin, G. J., and Wood, D. G., 1999, “Investigation of Catalytic Combustion Within a Fin Boundary Layer,” Combustion and Flame, Vol. 118, pp.3-12.
Groppi, G., Tronconi, E., and Forzatti, P., 1999, “Mathematical Models of Catalytic Combustors,” Catalysis Reviews: Science and Engineering, Vol. 47, pp.227-254.
Groppi, G., Belloli, A., Tronconi, E., and Forzatti, P., 1995, “A Comparison of Lumped and Distributed Models of Monolith Catalytic Combustors,” Chemical Engineering Science, Vol. 50, pp.2705-2715.
Hellsing, B., Kasemo, B., Ljungström, S., and Rosén, A., 1987, “Kinetic Model and Experimental Results for H2O and OH Production Rates on Pt,” Surface Science, Vol. 189/190, pp.851-860.
Hayes, R. E., and Kolaczkowski, S. T., 1997, Introduction to Catalytic Combustion. Gordon and Breach Science Publishers.
Hickman, D. A., and Schmidt, L. D., 1993, “Steps in CH4 Oxidation on Pt and Rh Surfaces:High-Temperature Reactor Simulations,” AIChE Journal, Vol. 39, pp.1164-1177.
Hsu, D. S. Y., Hoffbauer, M. A., and Lin, M. C., 1987, “Dynamics of OH Desorption from Single Crystal Pt(111) and Polycrystalline Pt Foil Surfaces,” Surface Science, Vol. 184, pp.25-56.
Hustad, J. E., Skreiberg, Ø.and Sønju, O. K., 1995, “Biomass Combustion Research and Utilisation in IEA Countries,” Biomass and Bioenergy, Vol. 9, pp.235-255.
Ikeda, H., Libby, P. A., and Williams, F. A., 1993, “Catalytic Combustion of Hydrogen-Air Mixtures in Stagnation Flows,” Combustion and Flame, Vol. 93, pp.138 -148.
Ikeda, H., Sata, J., and Williams, F. A., 1995, “Surfaces Kinetics for Catalytic Combustion of Hydrogen-Air Mixtures on Platinum at Atmosphere Pressure in Stagnation Flows,” Surface Science, Vol. 326, pp.11-26.
Johansson, E. M., and Järås, S. G., 1999, “Circumventing Fuel-NOx Formation in Catalytic Combustion of Gasified Biomass,” Catalysis Today, Vol. 47, pp.359-367.
Johansson, E. M., Berg. M., Kjellström, J., and Järås, S. G., 1999, “Catalytic Combustion of Gasified Biomass: Poisoning by Sulphur in the Feed,” Applied Catalysis B: Environmental, Vol. 20, pp.319-332.
Kee, R. J., Rupley, F. M., Meeks, E., and Miller, J. A., 1996, “Chemkin-III: A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical and Plasma Kinetics,” Sandia Report SAND96-8216, Sandia National Laboratories, Livermore, CA.
Kee, R. J., Dixon-Lewis, G., Warnatz, J., Coltrin, M. E., and Miller, J. A., 1991, “ A Fortran Computer Code Package for the Evaluation of Gas-Phase Multicomponent Transport Properties,” Sandia Report SAND86-8246, Sandia National Laboratories, Livermore, CA.
Kissel-Osterrieder, B., Behrendt, F., and Warnatz, J., 1998, “Detailed Modeling of the Oxidation of CO on Platinum: A Monte-Carlo Model,” 27th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp. 2267-2274.
Klass, D. L., 1998, Biomass for renewable Energy, Fuels, and Chemicals. Academic Press.
Ljungström, S., Kasemo, B., Rosën, A., Wahnström, T., and Fridell, E., 1989, “An Experimental Study of the Kinetics of OH and H2O Formation on Pt in the H2 + O2 Reaction,” Surface Science, Vol.216, pp.63-92.
Moallemi, F., Batley, G., Dupont, V., Foster, T. J., Pourkashanian, M., and Williams, A., 1999, “Chemical Modelling and Measurements of the Catalytic Combustion of CH4/ Air Mixtures on Platinum and Palladium Catalysts,” Catalysis Today, Vol. 47, pp.235-244.
Markatou, P., Pfefferle, L. D., and Smooke, M. D., 1993, “A Computational Study of Methane-Air Combustion over HeatedCatalytic and Non-Catalytic Surfaces,” Combustion and Flame, Vol. 93, pp.185-201.
Markatou, P., Pfefferle, L. D., and Smooke, M. D., 1991, “The Influence of Surface Chemistry on the Development of Minor Species Profiles in the Premixed Boundary Layer Combustion of an H2/Air Mixture,” Combustion Science and Technology, Vol. 79, pp.247-268.
Norton, P. R., and Richards, P. J., 1974, “Hydrogen Isotope Chemisorption and Equilibration on Platinum,” Surface Science, Vol. 41, pp.293-311.
Norton, P. R., and Richards, P. J., 1974, “ The Heat of Adsorption of Hydrogen on Platinum,” Surface Science, Vol. 44, pp.129-140.
Ozawa, Y., Fujii, T., Kikumoto, S., Sata, M., Fukuxawa, H., Saiga, M., and Watanabe, S., 1995, “Development of a Low NOx Catalytic Combustor for a Gas Turbine,” Catalysis Today, Vol. 26, pp.351-357.
Park, Y. K., Bui, P. A., and Vlachos, D. G., 1998, “Operation Regimes in Catalytic Combustion: H2/Air Mixtures near Pt,” AIChE Journal, Vol. 44, pp.2035-2043.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow. Hemisphere, Washimgton.
Pfefferle, W. C., and Pfefferle, L. D., 1986, “ Catalytic Stabilized Combustion,” Prog. Energy Combust. Sci., Vol. 12, pp.25-41.
Quick, L. M., and Kamitomai, S., 1995, “Catalytic Combustion Reactor Design and Test Results,” Catalysis Today, Vol. 26, pp.303-308.
Rinnemo, M., Kulginov, D., Johansson, S., Wong, K. L., Zhdanov, V. P., and Kasemo, B., 1997, “Catalytic ignition in the CO-O2 reaction on Platinum: Experiment and Simulations,” Surface Science, Vol. 376, pp.297-309.
Rinnemo, M., Deutschmann, O., Behrendt, F., and Kasemo, B., 1997, “Experimental and Numerical Investigation of the Catalytic Ignition of Mixtures of Hydrogen and Oxygen on Platinum,” Combustion and Flame, Vol. 111, pp.312-326.
Raja, L. L., Kee, R. J., and Petzold, L. R., 1998, “Simulation of the Transient, Compressible, Gas-Dynamic Behavior of Catalytic-Combustion Ignition in Stagnation Flows,” 27th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp. 2249-2257.
Reynolds, W.C., 1986, STANJAN program manual, 3rd ed., Stanford University.
Sazonov, V. A., Ismagilov, Z. R., and Prokudina, N. A., 1999, “Catalytic Combustion of Lean Methane-Air Mixtures,” Catalysis Today, Vol. 49, pp.149-153.
Schefer, R. W., Robben, F., and Cheng, R. K., 1980, “Catalyzed Combustion of H2/Air Mixtures in a Flat-Plate Boundary Layer: I. Experimental Results,” Combustion and Flame, Vol. 38, pp.51-63.
Sheu, W. J., Chen, K. C., and Liou, N. C., 1998, “Critical Rate of Catalytic Reactions at Gas-Phase Ignition of Non-Premixed Stagnation-Point Flows,” Combustion Science and Technology, Vol. 137, pp.101-120.
Treviño, C., Prince, J. C., and Tejero, J., 1999, “Catalytic Ignition of Dry Carbon Monoxide in a Stagnation-Point Flow,” Combustion and Flame, Vol.119, pp.505-512.
Treviño, C., and Prince, J. C., 2000, “Catalytic Combustion of Dry Carbon Monoxide by External Power Activation,” Surface Science, Vol. 449, pp.61-74.
Völter, J., Procop, M., and Berndt, H., 1973, “Oxygen Chemisorption on Platinum,” Surface Science, Vol. 39, pp.453-455.
Veser, G., Ziauddin, M., and Schmidt, L. D., 1999, “Ignition in Alkane Oxidation on Noble-Metal Catalysts,” Catalysis Today, Vol. 47, pp.219-228.
Veser, G., and Frauhammer, J., 2000, “Modelling Steady State and Ignition during Catalytic Methane Oxidation in a Monolith Reactor,” Chemical Engineering Science, Vol. 55, pp.2271-2286.
Warnatz, J., Allendorf, M. D., Kee, R. J., and Coltrin, M. E., 1994, “A Model of Elementary Chemistry and Fluid Mechanics in the Combustion of Hydrogen on Platinum Surfaces,” Combustion and Flame, Vol. 96, pp.393-406.
Williams, W. R., Stenzel, M. T., Song, X., and Schmidt, L. D., 1991, “Bifurcation Behavior in Homogeneous-Heterogeneous Combustion: I. Experimental Results over Platinum,” Combustion and Flame, Vol. 84, pp. 277-291.
Williams, W. R., Marks, C. M., and Schmidt, L. D., 1992, “Steps in the Reaction H2 + O2 H2O on Pt: OH Desorption at High Temperature,” The Journal of Physical Chemistry, Vol. 96, pp.5922-5931.
Yamamoto, H., and Uchida, H., 1998, “Oxidation of Methane over Pt and Pd Supported on Alumina in Lean-Burn Natural-Gas Engine Exhaust,” Catalysis Today, Vol. 45, pp.147-151.
Yan, J., Alvfors, P., Eidensten, L., and Svedberg, G., 1997, “A Future for Biomass,” Mechanical Engineering, pp.94-96.
Zhdanov, V. P., 1991, Elementary Physicochemical Processes on Solid Surfaces. Plenum Press, New York.
Zwinkels, M. F. M., Eloise Heginuz, G. M., Gregertsen, B. H., Sjöström, K., and Järås, S. G., 1997, “Catalytic Combustion of Gasified Biomass over Pt/Al2O3,” Applied Catalysis A: General, Vol. 148, pp.325-341.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top