跳到主要內容

臺灣博碩士論文加值系統

(54.225.48.56) 您好!臺灣時間:2022/01/19 22:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇聖斌
研究生(外文):Sheng-Pin Su
論文名稱:離心式葉輪機械的非定常流場研究
論文名稱(外文):THE STUDY OF UNSTEADY FLOWS ON CENTRIFUGAL TURBOMACHINES
指導教授:陳世雄陳世雄引用關係
指導教授(外文):Shih-Hsiung Chen
學位類別:博士
校院名稱:國立成功大學
系所名稱:航空太空工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:191
中文關鍵詞:離心葉輪渦殼非定常流場徑向力舌部
外文關鍵詞:centrifugal impellervoluteunsteady flowfieldradial loadingtongue
相關次數:
  • 被引用被引用:2
  • 點閱點閱:960
  • 評分評分:
  • 下載下載:231
  • 收藏至我的研究室書目清單書目收藏:0
本研究的目的在以數值模擬的方法探討離心葉輪與渦殼之間交互作用所引發的非定常流場現象對於葉輪性能、振動以及噪音的影響。所使用的數值方法為以有限體積法(finite volume method)解析三維非定常雷諾平均(Reynolds-averaged) Navier-Stokes方程式。文中針對一離心葉輪與渦殼分別進行了葉輪單一流道的定常計算、葉輪含渦殼的準定常計算以及葉輪含渦殼的非定常計算,並與實驗比較驗證計算結果,藉此探討葉輪內部流場現象以及渦殼對整體性能及葉輪受力的影響與噪音產生機制。結果顯示,葉輪含渦殼的計算模式較接近實際物理模型,因此對於整體性能的預估較為準確,而且由渦殼內部的流場觀察可發現,在非設計點流量時,由於渦殼的擴散角無法與流量匹配,造成渦殼內的壓力分佈不平均,而導致葉輪受一不平衡徑向力。此外,由渦殼舌部附近的流場觀察可發現葉片與舌部相互運動時而產生交互作用,造成舌部附近流場明顯的壓力擾動應是噪音的主要來源。另外,由不同葉輪半徑與不同舌部間隙的計算結果中顯示,隨著葉輪半徑減小舌部間隙增加,整體性能也明顯降低,而原本葉輪受力最小的設計點流量也隨著葉輪尺寸縮小,受力變大,但原先較低流量,葉輪受力較大的情況反而受力逐漸減小。同時由舌部附近的壓力變化振幅可看出,增加間隙能降低舌部附近的壓力擾動,因此有助於噪音的改善。
The numerical simulation adopted in the present study deals with the investigation of unsteady flowfield characteristics that induced by interactions between the centrifugal impeller and the volute. Effects of the flowfield on impeller performance, vibration, and noise production have therefore been examined. The finite volume method is employed to analyze the three-dimensional Reynolds-averaged Navier-Stokes equations. In a centrifugal turbomachine, the steady calculation of a single impeller passage, as well as the quasi-steady and unsteady calculations of the impeller-volute flowfield are performed respectively. The obtained numerical results are then compared with an experimental measurement to analyze the flowfield phenomena inside the impeller. In addition, effects of the presence of volute on the overall performance, impeller radial loading, and the mechanism of noise production are all examined in detail. The results indicate that the computation considering both the impeller and volute better approximates to realistic physics, and therefore leads to a more accurate assessment of overall performance. Furthermore, some other important findings can be obtained from the observation of the volute flowfield. For the flow rate at the off-design point, the divergent angle of volute is found unable to match that of the flow rate. This thus results in a non-uniform volute pressure distribution, and a subsequent unbalanced impeller radial loading. Additionally, the observation of the flowfield in the vicinity of the volute tongue exhibits a marked pressure fluctuation, which is observed near the tongue. This is caused by the interactions of the blade and volute, and is mainly responsible for noise production. Furthermore, calculations for both various impeller radiuses, and the tongue clearance are conducted. The impending result shows that overall performance is actually degraded with a reduced impeller radius and an increased tongue clearance. As the impeller size is reduced, the design point flow rate, which original gives the minimum impeller loading, results in a larger impeller loading. However, the lower flow rate case originally giving the larger impeller loading alternatively leads to the gradually reduced loading under this situation. Meanwhile, according to the wall pressure variation amplitude (near the tongue), increasing the tongue clearance allows for both pressure fluctuation decreases, as well as further aiding in noise reduction.
ABSTRACT i
CONTENTS iii
LIST OF FIGURES v
NOMENCLATURE xi
CHAPTER
I INTRODUCTION 1
1.1 Background 1
1.2 Literature Review 3
1.3 Motivation 9
1.4 Content Outline 10
II MATHEMATICAL DESCRIPTION 12
2.1 Basic Assumptions 12
2.2 Governing Equations 13
2.3 Turbulence Model 14
2.4 Numerical Method 16
2.4.1 Control Volume 18
2.4.2 Treatment of Pressure and Diffusion Terms 19
2.4.3 Calculation of the Numerical Flux 21
2.4.4 Non-Staggered Grid 23
2.4.5 Solving Algorithm of Matrix 24
2.5 Interactive Grid Generation 25
2.5.1 Elliptic Partial Derivative Method 29
2.5.2 Algebraic Method 31
III NUMERICAL AND PHYSICAL MODEL 34
3.1 Physical Model 34
3.2 Generation of the Computational Grid 35
3.2.1 Single Impeller Passage Grid 36
3.2.2 Impeller-Volute Grid 36
3.3 Boundary Conditions 37
3.3.1 Computation of the Single Impeller Passage 37
3.3.2 Computation of the Impeller-Volute 40
IV RESULTS AND DISCUSSION 43
4.1 Single Impeller Passage Flowfield Computation 43
4.2 Quasi-Steady Impeller-Volute Flowfield Computation 45
4.3 Unsteady Impeller-Volute Flowfield Computation 52
4.4 Unsteady Flow Calculations of Various Tongue Clearances 56
V CONCLUSIONS AND SUGGESTIONS 62
5.1 Conclusions 62
5.2 Suggestions 65
REFERENCES 67
FIGURES 73
PUBLICATION LIST 190
VITA 191
1. Abramian, M. and Howard, J. H. G., “Experimental Investigation of the Steady and Unsteady Relative Flow in a Model Centrifugal Impeller,” ASME, Journal of Turbomachinery, Vol. 116, April 1994, pp. 269 — 279.
2. Adamczyk, J. J., Celestina, M. L., Beach, T. A., and Barnett, M., “Simulation of Three-Dimensional Viscous Flow within a Multistage Turbine,” ASME, Journal of Turbomachinery, Vol. 112, 1990, pp. 370 — 376.
3. Arndt, N., Acosta, A. J., Brennen, C. E. and Caughey T. K., “Rotor- Stator Interaction in a Diffuser Pump,” ASME, Journal of Turbomachinery, Vol. 111, July 1989, pp. 213 — 221.
4. Basson, A. H., Kunz, R. F. and Lakshminarayana, B., “Grid Generation for Three-Dimensional Turbomachinery Geometries Including Tip Clearance,” Journal of Propulsion and Power, Vol. 9, No. 1, Jan-Feb. 1993.
5. Baun, D. O., Kostner, L. and Flack, R. D., “Effect of Relative Impeller-to-Volute Position on Hydraulic Efficiency and Static Radial Force Distribution in a Circular Volute Centrifugal Pump,” ASME, Journal of Fluids Engineering, Vol. 122, September 2000, pp. 598 — 605.
6. Beach, T. A., “An Interactive Grid Generation Procedure for Axial and Radial Flow Turbomachinery,” AIAA Paper 90-0344, Reno. NV. Jan. 1990.
7. Beaudoin, R. J., Miner, S. M. and Flack, R. D., “Laser Velocimeter Measurements in a Centrifugal Pump With a Synchronously Orbiting Impeller,” ASME, Journal of Turbomachinery, Vol. 114, April 1992, pp. 340 —349.
8. Chen, S. H., and Eastland, A. H., “Implicit Euler Method for Three-Dimensional Turbomachinery Flow Calculation,” ASME paper no. 93-GT-37, IGIT Congress and Exposition, Cincinnati, Ohio, May 24 — 27, 1993.
9. Chen, S. H. and Lee, L. C., “Three-Dimensional Unsteady Turbomachinery Flow Analysis,” Fourteenth International Symposium on Airbreathing Engines, Italy, September 1999.
10. Chima, R. V., “Inviscid and Viscous Flows in Cascade with an Explicit Multiple Grid Algorithm,” AIAA Journal, Vol. 23, pp. 1556 — 1563, 1985.
11. Chu, S., Dong, R. and Katz, J., “Relationship Between Unsteady Flow, Pressure Fluctuations, and Noise in a Centrifugal Pump-Part A: Use of PDV Data to Compute the Pressure Field,” ASME, Journal of Fluids Engineering, Vol. 117, March 1995, pp. 24 — 29.
12. Chu, S., Dong, R. and Katz, J., “Relationship Between Unsteady Flow, Pressure Fluctuations, and Noise in a Centrifugal Pump-Part B: Effects of Blade-Tongue Interactions,” ASME, Journal of Fluids Engineering, Vol. 117, March 1995, pp. 30 — 35..
13. Colding-Jorgensen, J., “Effect of Fluid Forces on Rotor Stability of Centrifugal Compressors and Pumps,” NASA CP-2133, 1980, pp. 249-266.
14. Dawes, W. N., “Development of a Three-Dimensional Navier-Stokes Solver for Application to All Types of Turbomachines,” ASME paper no. 88-Gt-70, 1988.
15. Dawes, W. N., “Toward Improved Throughflow Capability: the use of Three-Dimensional Viscous Flow Solvers in a Multistage Environment,” J. of Turbomachinery, Vol. 114, January 1992, pp. 8 — 17.
16. Delaney, R. A., “Time-Marching Analysis of Steady Transonic Flow in Turbomachinery Cascades Using the Hopscotch Method,” ASME, Journal of Engineering for Power, Vol. 105, April 1983, pp. 272 - 279.
17. Denton, J. D., and Singh, U. K., “Time Marching Methods for Turbomachinery Flow Calculation,” Application of Numerical Methods to Flow Calculations in Turbomachines, VKI Lecture Series, 1979.
18. Denton, J. D., “The Calculation of Three-Dimensional Viscous Flow Through Multistage Turbomachines,” ASME, Journal of Turbomachinery, Vol. 114, January 1992, pp. 18 — 26.
19. Dong, R., Chu, S. and Katz, J., “Effect of Modification to Tongue and Impeller Geometry on Unsteady Flow, Pressure Fluctuations, and Noise in a Centrifugal Pump,” ASME, Journal of Turbomachinery, Vol. 119, July 1997, pp. 506 — 515.
20. Dorney, D. J., Davis, R. L. and Sharma, O. P., “Unsteady Multistage Analysis Using a Loosely Couple Blade Row Approach,” Journal of Propulsion and Power, Vol. 12, No. 2, March 1996.
21. Elholm, T., Ayder, E., “Experimental Study of the Swirling Flow in the Volute of a Centrifugal Pump,” ASME, Journal of Turbomachinery, Vol. 114, April 1992, pp. 366 — 372.
22. Flathers, M. B. and Bache, G. E., “Aerodynamiclly Induced Radial Forces in a Centrifugal Gas Compressor — Part 2: Computational Investigation,” ASME IGIT paper 96-GT-352, 1996.
23. Fongang, R., Colding-Jorgensen, J. and Nordmann, R., “Investigation of Hydrodynamic Forces on Rotating anf Whirling Centrifugal Pump Impellers,” ASME IGIT paper, 1996.
24. Giles, M. B., “Stator-Rotor Interaction in a Transonic Turbine,” AIAA paper 88-3093, 1988.
25. Hah, C., “Navier-Stokes Analysis of Three-Dimensional Unsteady Flows inside Turbine Stages,” AIAA paper no. 92-3211, 28th Joint Propulsion Conference Exhibit, July 6-8 1992, Nashville, TN.
26. Hamkins, C. P. and Flack, R. D., “Laser Velocimeter Measurements in Shrouded and Unshrouded Radial Flow Pump Impellers,” ASME, Journal of Turbomachinery, Vol. 109, January 1987, pp. 70 — 76.
27. Ho, Y. H., and Lakshminarayana, B., “A Loosely Coupled Unsteady Flow Simulation of a Single Stage Compressor,” IJCFD, Vol. 10, 1998, pp. 73-89.
28. Hodson, H. P., “An Inviscid Blade-to-Blade Prediction of Wake-Generated Unsteady Flow,” ASME, Journal of Engineering for Gas Turbines and Power, Vol. 107, April 1985, pp. 337-344.
29. Howard, J. H. G.,Kittmer, C. W., “Measured Passage Velocities in a Radial Impeller With Shrouded and Unshrouded Configurations,” ASME, Journal of Engineering for Power, Vol. 97, APR. 1975, pp. 207 — 213.
30. Howard, J. H. G., and Lennemann, E., “Measured and Predicted Secondary Flows in a Centrifugal Impeller,” ASME, Journal of Engineering for Power, Vol. 93, January 1971, pp.126 — 132.
31. Iversen, H. W., Rolling, R. E. and Carlson, J. J., “Volute Pressure Distribution, Radial Force on the Impeller, and Volute Mixing Losses of a Radial Flow Centrifugal Pump,” ASME, Journal of Engineering for Power, April 1960, pp. 136 — 144.
32. Ives, D. C., and Liutermoza, J. F., “Second-Order Accurate Calculation of Transonic Flow Over Turbomachinery Cascades,” AIAA Paper 78-1149, 1978.
33. Kap, A. and Siekmann, H. E., “Numerical Flow Analysis in a Centrifugal Pump for Optimization of the Casing with Regard to Hydraulic Efficiency and Bearing Forces,” Proceedings of the 6th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Vol. 2, 1996, pp. 345-354.
34. Launder, B. E. and Spalding, D. B., “The Numerical Computation of Turbulent Flows,” Comp, Meth. App. Mech. Eng., Vol. 3, 1974, pp. 269-289.
35. Lee, D. and Tsuei, Y. M., “A Formula for Estimation of Truncation Errors of Convective Terms in a Curvilinear Coordinate System,” J. of Computational Physics, Vol. 98, 1992, pp. 90-100.
36. Lee, L. C., Chen, S. H., Su, S. P., and Hsu, W. Y., “An Interactive Grid Generation Method for Turbomachinery Applications,” The 3rd Computational Fluid Dynamics Conference, Taiwan, August 1995.
37. McDonald, G. B., Lenneman, E., and Howard, J. H. G., “Measured and Predicted Flow Near the Exit of a Radial-Flow Impeller,” ASME, Journal of Engineering for Power, Vol. 93, October. 1971, pp. 441 — 446.
38. McDonald, P. W., “The Computation of Transonic Flow Through Two-Dimensional Gas Turbine Cascades,” ASME Paper 71-GT-89, 1971.
39. Miner, S. M., Beaudoin, R. J. and Flack, R. D., “Laser Velocimeter Measurements in a Centrifugal Flow Pump,” ASME, Journal of Turbomachinery, Vol. 111, July 1989, pp. 205 — 212.
40. Miner, S. M., Flack, R. D. and Allaire, P. E., “Two-Dimensional Flow Analysis of a Laboratory Centrifugal Pump,” ASME, Journal of Turbomachinery, Vol. 114, April 1992, pp. 333-339.
41. Ni, R. H., “A Multiple Grid Scheme for Solving the Euler Equations,” AIAA Journal, Vol. 20, no 11, November, 1982.
42. Patankar, S. V., Numerical Heat Transfer, Hemisphere, Washington, D. C., 1980.
43. Prakash, C. and Patankar, S. V., “A Control Volume Based Finite Element Method for Solving the Navier-Stokes Equations Using Equal Order Velocity-Pressure Interpolation,” Numerical Heat Transfer, Vol. 8, 1985, pp. 259-280.
44. Rai, M. M., “Navier-Stokes Simulations of Rotor-Stator Interaction Using Patched and Overlaid Grids,” J. of Propulsion and Power, Vol. 3, No. 5, September 1987, pp.387 — 396.
45. Raithby, G. D., “Skew Upstream Differencing Scheme for Problems Involving Fluid Flow,” Comp. Meth. Appl. Mech. Eng., Vol. 9, 1976, pp. 153-164.
46. Rhie, C. M., and Chow, W. L., “A Numerical Study of the Turbulent Flow Past an Isolated Airfoil with Trailing Edge Separation,” AIAA paper 82-0998, 1982.
47. Ronel, J. and Baliga, B. R., “A Finite Element Method for Unsteady Heat Conduction In Materials With or Without Phase Change,” ASME paper 79-WA-HT-54, Winter Annual Meeting, N. Y. , 1979.
48. Schneider, G. E. and Raw, M. J., “A Skewed, Positive Influence Coefficient Upwinding Procedure for Control-Volume-Based Finite Element Convection-Diffusion Computation,” Numerical Heat Transfer, Vol. 8, 1986, pp. 1-26.
49. Schneider, G. E. and Raw, M. J., “Control-Volute Finite Element Method for Heat Transfer and Fluid Flow Using Co-located Variables — 1. Computational Procedure,” Numerical Heat Transfer, Vol. 11, 1987, pp. 363-390.
50. Steger, J. L., Pulliam, T. H., and Chima, R. V., “An Implicit Finite-Difference Scheme for Inviscid and Viscous Cascade Flow,” AIAA Paper 80-1427, 1980.
51. Thompson, J. F., Warsi, Z. U. A. and Mastin, C. W., “Numerical Grid Generation,” North-Holland, New York, 1982.
52. Van Doormaal, J. P., Turan, A. and Raithby, G. D., “Evaluation of New Techniques for the Calculation of Internal Recirculating Flows,” AIAA paper no. 87-0059, 25th Aerospace Sciences Meeting, Reno, 1987.
53. Wu, C. H., “A General Theory of Three-Dimensional Flow in Subsonic and Supersonic Turbomachines of Axial-Radial and Mixed Flow Type,” NACA TN-2604, 1952.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top