跳到主要內容

臺灣博碩士論文加值系統

(3.90.139.113) 您好!臺灣時間:2022/01/16 17:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:朱書宏
研究生(外文):Shu-Hong Chu
論文名稱:小型液態火箭三維氣相燃燒流場之數值模擬
論文名稱(外文):Three-Dimensional Numerical Simulations on the Gas-Phase Combustion Flowfield of a Small Liquid Rocket
指導教授:江滄柳
指導教授(外文):Tsung-Leo Jiang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:79
中文關鍵詞:雙推進劑小型液態火箭氣相燃燒流場區塊結構格點數值模擬k-e紊流模式斂散噴嘴化學反應模式
外文關鍵詞:bipropellantsmall liquid rocketgas-phase combustion flowblock-structured grid systemnumerical simulationsk-e turbulence modelconvergent-divergent nozzlechemical reaction model
相關次數:
  • 被引用被引用:3
  • 點閱點閱:562
  • 評分評分:
  • 下載下載:107
  • 收藏至我的研究室書目清單書目收藏:0
雙推進劑液體火箭引擎燃燒室的注油及燃燒過程中,同時存在有液態噴流﹑噴霧液滴、及油料與氧化劑之蒸汽,其流場為一複雜且具高度紊性之燃燒流場。本論文以小型雙推進劑液體火箭燃燒室為模擬目標,成功地建立一三維氣相燃燒流場之電腦模擬程式,並以此程式探討各種參數組合對氣相燃燒流場及燃燒室壁溫之影響。數值模擬所採用之數學及物理模式包括:氣相計算模式、k-e紊流模式以及化學反應模式。三維格點的建立則採用區塊結構格點,進行模擬之流場包含燃燒室本身及後方斂散噴嘴等區域。由數值模擬結果可知,增加冷卻用燃油比例會造成燃燒室局部最高溫度及壓力之下降,而縮小後方噴嘴喉部面積則會造成壓力及溫度之上升。注油角度之改變則影響火焰發生之位置及火焰溫度,燃燒室壓力則隨NTO噴注角度之改變有較明顯之變化。
The combustion flow of a bipropellant liquid rocket is highly complex and turbulent. It is characterized by the interactions of the liquid jet, spray droplets, vapors of both fuel and oxidizer. In the present thesis, a small bipropellant liquid rocket combustor is numerically investigated, using a newly developed computer simulation code for the three-dimensional, gas-phase combustion flow. The effects of various combinations of parameters on the flow and combustion characteristics of the gas-phase flow have been explored. The physical models adopted include the k-e turbulence model and the chemical reaction model. The three-dimensional computational mesh is generated by means of the multiple block-structured grid system. The computational domain consists of the combustor and the attached convergent-divergent nozzle. Influences of the injection angle, cooling fuel ratio, and the variation of nozzle throat area on the combustion flow characteristics have been successfully studied in the study. The calculated results indicate that the increase of the cooling fuel ratio leads to the decrease of local maximum temperature and chamber pressure; while decreasing the nozzle throat area results in the increase of chamber pressure and temperature. Moreover, the flame position and chamber pressure are also affected by the change of the injection angle.
第一章 導論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 CFD技術應用在雙推進燃料燃燒分析 2
1.2.2 自燃性推進劑燃燒模式之研究 4
1.3 研究動機 7
第二章 物理及數學模式 8
2.1 基本假設 8
2.2 紊流模式 8
2.3 邊牆函數 9
2.4 氣相流場統御方程式 9
2.5 化學反應模式 11
2.5.1 動態化學反應 12
2.5.2 平衡化學反應 13
第三章 數值方法與格點系統 15
3.1 簡介 15
3.2 計算程序 15
3.3 格點系統 16
第四章 結果與討論 19
4.1 燃燒模式之比較 20
4.2 改變冷卻用燃油噴注量之影響 21
4.3 噴嘴喉部面積之影響 23
4.4 注油角度改變之影響 24
第五章 結論與未來工作 26
參考文獻 28
[1] P. Y. Liang, S. Fisher and Y. M. Chang,“Comprehensive Modeling of a Liquid Rocket Combustion Chamber,”Journal of Propulsion and Power, Vol. 2, No. 2, pp97-104, 1986.
[2] P. Y. Liang, R. J. Jensen and Y. M. Chang,“Numerical Analysis of SSME Preburner Injector Atomization and Combustion Process,”Journal of Propulsion and Power, Vol. 3, No. 6, pp.508-514, 1987.
[3] L. C. Cloutman, J. K. Dukowicz, J. D. Ramshaw and A. A. Amsden, “CONCHAS-SPRAY:A Computer Code for Reactive Flows with Fuel Sprays,”Los Alamos National Lab., Los Alamos, NM, Rept. LA-9294-MS, May 1982.
[4] H. H. Chiu, T. L. Jiang, G. F. Berry, and E. J. Croke,“Analytical Prediction of Combustion Performance Characteristic of Bipropellant Liquid Rocket Engine Combustor,”23rd JANNAF Combustion Meeting, NASA Langley Research Center, Hampton, Virginia, October 1986.
[5] T. L. Jiang and H. H. Chiu,“Bipropellant Combustion in a Liquid Rocket Combustion Chamber,”Journal of Propulsion and Power, Vol. 8, pp. 995-1003, 1992.
[6] T. L. Jiang, "Computer Simulation System of a Liquid-propellant Rocket Combustor (III)," Defense Technology Coordination Council, Report NSC-84-2623-D-006-004, 1995.
[7] M. L. Louis and S. M. Jeng, “Bipropellant Spray Combustion Modeling in Small Rocket Engines,” AIAA/SAE/ASME/ASEE, 27th Joint Propulsion Conference, June 24-26, 1991.
[8] J. D. Naber and R. D. Reitz, ”Modeling Engine Spray/Wall Impingement,” SAE 880107.
[9] H. H. Chiu, T. L. Jiang, A. N. Krebsbach and K. W. Gross,“Numerical Analysis of Bipropellant Combustion in Orbital Maneuvering Vehicle Thrust Chamber,”AIAA Paper 90-0045, Jan. 1990.
[10] W. S. Nie and F. C. Zhuang, “Hypergolic propellant rocket engine combustion instability studies,” Journal of Propulsion Technology, Vol.21 No.4, 2000.
[11] R. N. Eulner, D. E. White and L. M. Wood, “High Speed Shadow and Schlieren Photographs of the Combustion of N2O4/50%/N2H4-50% UDMH in a Small Windowed Combustion Chamber,” 5th ICRPG Combustion Conference, PIA Publication No. 183, October 1-3, 1968.
[12] R. F. Sawyer, “The Hydrazine-Nitrogen Tetroxide Reaction, A Comparison of Experimental Observations,” 3rd Combustion Conference, CPIA Publication Np. 138 Vol 1, February 1967.
[13] T. L. Jiang, C. C. Liu, W. S. Chen, “Convective Fuel Droplet Burning Accompanied by an Oxidizer Droplet,” Combust. Sci. and Tech, 1994, Vol 97, pp. 271-301.
[14] T. L. Jiang, W. Huang, and C. C. Liu, “Experimental and Numerical Investigations of Fuel Droplet Burning Accompanied by an Oxidizer Droplet,” Journal of the Chinese Society of Mechanical Engineers, Vol.17, No.4, pp.373-385, 1996.
[15] B. J. Matthews, R. F. Wuerker and R. F. Kemp, “Holography of Injection and Combustion Phenomena,”6th ICRPG Combustion Conference, CPIA Publication No. 192, Vol. 1, December 1969.
[16] D. D. Evans, H. B. Stanford, and R. W. Riebling, ''The Effect of Injector-Element Scale on the Mixing and Combustion of Nitrogen Tetroxide-Hydrazine Propellants,’’ Technical Report 32-1178, Jet Propulsion Laboratory, California Institute of Technology, 1967.
[17] L. B. Zung, and J. R. White, ''Combustion Process of Impinging Hypergolic Propellants,’’ NASA CR-1704, 1971.
[18] R. Lecourt, R. Foucaud, G. Lavergne, P. Berthoumieu, and P. Millan, ''Hypergolic Propellant Burning Spray Visualization by Laser Sheet Method. Application to Droplet Size and Liquid Concentration Measurements,’’ Third Symposium on Experimental and Numerical Flow Visualization, 1993 ASME Winter Annual Meeting, USA, 1993.
[19] JANAF Thermochemical Tables, 2nd ed., U.S. Standard Reference Data System NSRDS-NBS 37, June 1971.
[20] H. Miyajina, T. Mitani, S. Sato, S. Ueda, K. Tani, T. Hiraiwa, K. Ito, K. Kusaka, M. Izumikawa, K. Kisara, T. Kumagai, N. Sakuranaka, T. Saito, and M. Takahashi, ''Studies on Scramjet Nozzles,’’ Technical Report of National Aerospace Laboratory TR-1149, 1992.
[21] A. A. Amsden, “KIVA-3:A KIVA Program with Block-Structured Mesh for Complex Geometries,” Los Alamos National Laboratory Report LA-12503-MS, 1993.
[22] T. L. Jiang, “Numerical Analyses on the Combustor Performance of Various Side-Dump Liquid-Fueled Ramjets (I),” 國推會研究計劃報告書, NSC 88-2623-D-006-011, 1999.
[23] A. A. Amsden, P. J. O’Rourke, and T. D. Butler, “KIVA-II : A Computer Program for Chemically Reactive Flows with Sprays,” Los Alamos National Laboratory Report LA-11560-MS, 1989.
[24] S. Menon and W. H. Jou, “Large-Eddy Simulations of Combustion Instability in an Axisymmetric Ramjet Combustor,” Combustion Science and Technology, Vol. 75, pp. 53-72, 1991.
[25] R. H. Yen and T. H. Ko, “Effects of Side-Inlet Angle in a Three- Dimensional Side-Dump Combustor,” Journal of Propulsion and Power, Vol. 9, No. 5, 1993.
[26] D. G. Sloan, P. J. Smith and L. D. Smoot, “Modeling of Swirling in Turbulent Flow Systems,” Progress in Energy and Combustion Science, Vol. 12, pp. 163-250, 1986.
[27] B. E. Launder and D. B. Spalding, “The Numerical Computation of Turbulent Flows,” Computer Methods in Applied Mechanics and Engineering, Vol. 3, pp. 269-289, 1974.
[28] C. W. Hirt, A. A. Amsden, and J. L. Cook, J. Comput. Phys., Vol. 14, pp. 227, 1974.
[29] W. E. Pracht, J. Comput. Phys., Vol. 17, pp.132, 1975.
[30] S. V. Patankar, “Numerical Heat Transfer and Fluid Flow,” Hemisphere, Washington, D.C., 1980.
[31] Philip G. Hill and Carl R. Peterson, Mechanics and Thermodynamics of
Propulsion, 2nd edition.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top