跳到主要內容

臺灣博碩士論文加值系統

(54.173.214.227) 您好!臺灣時間:2022/01/29 15:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇淑惠
研究生(外文):S. H. Su
論文名稱:急性運動對小鼠肺巨噬細胞吞噬能力之影響及其調控機制
論文名稱(外文):Effects of acute exercise on bronchoalveolar macrophage phagocytosis anmd its underlying mechanisms
指導教授:任卓穎
指導教授(外文):C. J. Jen
學位類別:博士
校院名稱:國立成功大學
系所名稱:基礎醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2001
畢業學年度:90
語文別:中文
中文關鍵詞:急性劇烈運動肺巨噬細胞吞噬能力清道夫接受體一氧化氮
外文關鍵詞:Acute severe exerciseBronchoalveolar macrophagePhagocytosisScavenger receptornitric oxide
相關次數:
  • 被引用被引用:1
  • 點閱點閱:2116
  • 評分評分:
  • 下載下載:546
  • 收藏至我的研究室書目清單書目收藏:1
運動能調節個體之免疫能力,因此多應用於健康的維持,也作為某些疾病的推薦療法之一,但其調節機制仍不清楚。流行病學上調查發現個體之上呼吸道感染率與其運動狀態相關,動物實驗的報告也指出運動對肺部腫瘤細胞的生長及擴散有抑制現象。而且,經運動處理之小鼠其腹腔巨噬細胞的腫瘤毒殺能力及吞噬活性會增強,也促進肺巨噬細胞(bronchoalveolar macrophage, BAM)移除腫瘤細胞的能力。因此本研究在探討肺巨噬細胞的多項生物活性於個體運動後所產生的變化,及其可能之調控機制。
以八至十週齡之雄性C57BL/6及BALB/c純株小鼠為實驗對象,他們分別屬於Th1-及Th2-prototypical品系,隨機分為控制組、急性中度或劇烈運動組,其中運動組小鼠於傳動式跑步機上持續跑步直至達所需的運動強度,速度由9 m/min 開始,每隔三分鐘增速一次,總運動期間介於三十至五十分鐘內。各組小鼠經由重複之肺部沖取收集得之細胞95% 以上皆為巨噬細胞,並無血液白血球滲入肺的現象,且兩種品系間並無差異。急性中度運動並不影響小鼠肺巨噬細胞的吞噬活性,但劇烈運動則呈現促進作用。BALB/c小鼠於劇烈運動剛結束時其肺巨噬細胞的變化最明顯,包括吞噬無調理顆粒之能力、表面接受體之表現及刺激性因子之釋出均受到促進,另外其surfactant protein-A(SP-A)媒介之抗體及補體調理顆粒吞噬活性也受到促進。對無調理顆粒之吞噬主要經由scavenger receptor A type I/II及macrophage receptor with collagenous structure(MARCO)的表現增加而增強,此兩類清道夫受體可媒介肺巨噬細胞與環境顆粒或微生物間的結合,尤其MARCO於劇烈運動造成之吞噬促進扮演重要角色。再者complement receptor type 3(CR3)與intercellular adhesion molecule-1(ICAM-1)的表現增多也具促進性調節作用,兩分子間結合可造成帶CR3之細胞吞噬活性增加。劇烈運動組肺巨噬細胞之四小時培養上清液能刺激吞噬達一倍左右,而劇烈運動對其吞噬無調理顆粒之促進於跑步結束後一小時仍明顯,四小時後才回到基礎值,可能與肺巨噬細胞本身釋出之刺激因子有關。此外,運動時pulmonary surfactant分泌增加,劇烈運動小鼠之surfactant能增強肺巨噬細胞吞噬活性,且其肺巨噬細胞與SP-A的結合活性較高,對SP-A cycling也較快,可能因而使吞噬抗體及補體調理顆粒之能力增強。
相對的,劇烈運動並不促進C57BL/6小鼠肺巨噬細胞活性,包括吞噬無調理與抗體/補體調理顆粒之能力以及MARCO之表現。比較C57BL/6及BALB/c小鼠肺巨噬細胞(前者簡稱為M-1 BAMs;後者簡稱為M-2 BAMs),在無運動刺激的情形下,M-1 BAMs吞噬無調理顆粒之能力、MARCO表現量及nitric oxide(NO)的生成均較M-2 BAMs強,而吞噬抗體或補體調理顆粒之能力則無差異。利用MARCO中和性抗體能抑制M-1 BAMs吞噬無調理顆粒能力達80%,於M-2 BAMs則介於15-50%,顯示MARCO參與M-1 BAMs之吞噬高於M-2 BAMs。另外,控制組M-1 BAMs之培養上清液能造成明顯之吞噬抑制作用,培養時添加L-NAME能消彌此抑制作用,若是添加L-arginine則更促進之,顯示M-1 BAMs釋出之抑制因子為NO所調控,且這些培養上清液所含之NO代謝物- nitrite and nitrate的量,與其所造成之吞噬抑制強度呈密切正相關。然而劇烈運動組M-1 BAMs之培養上清液並無抑制作用,其nitrite/nitrate濃度與控制組相當,可能因刺激因子的生成而拮抗NO調控之抑制活性。同時發現nitrite及nitrate也具有吞噬抑制作用。綜上所述,肺巨噬細胞可經由調節MARCO的表現及NO的生成,來控制本身吞噬無調理顆粒之能力,前者促進而後者抑制;再者,先天之遺傳差異將可能使不同個體對運動刺激呈現不同的反應。

Since physical activity affects the immune competency of individuals by unknown mechanism, we investigated the effect of acute exercise on phagocytosis of bronchoalveolar macrophages (BAMs). Male BALB/c mice, 8-10 weeks old, ran on a treadmill to exhaustion (severe exercise, SE), or at a final speed of 17 m/min for 30 min (moderate exercise, ME). Although either exercise protocol induced differential leukocytosis, 95% leukocytes from lung lavages of all groups were BAMs. The BAM phagocytic capacity of unopsonized beads increased immediately after SE but not after ME, and gradually returned to the basal level after 4 hr. SE upregulates the macrophage scavenger receptors (SR-A type I/II and MARCO), CR3, and ICAM-1, but not FcgRs. While the blocking effect of MARCO antibody was most pronounced, that of ICAM-1 antibody was totally reversed by crosslinking of CR3. Our results showed that SE, but not ME, activated BAMs, and that the enhanced BAM phagocytosis of unopsonized particles was mainly mediated by scavenger receptors and ICAM-1/CR3.
The pulmonary surfactant plays an important role in the lung and is additional secreted during the physical exercise. Although BAM phagocytosis of IgG/C’-opsonized particles was unaffected by SE in the absence of surfactant, that was enhanced significantly by the autogenous surfactant in post-SE BALB/c mice. In addition, the surfactant from post-SE, but not control, groups increased the BAM phagocytosis of unopsonized particles. The surfactant-mediated increase in BAM phagocytosis of IgG/C’-opsonized particles was inhibited by mannose, maltose, and antibodies against surfactant protein-A (SP-A) in a dose-dependent manner. The phagocytic capacity of post-SE BAMs was affected by higher concentrations of inhibitors, including mannose and antibodies, than that in the control BAMs. The amount of surface and intracellular SP-A those binding to partial SP-A receptors of BAMs were increased after SE. Moreover, the dynamic changes of BAM-associated SP-A during a 30-min incubation with surfactant presented in post-SE, but not control, groups. Therefore, we postulated that the SE-enhanced interaction between surfactant SP-A and BAMs could facilitate the BAM phagocytosis of IgG/C’-opsonized particles.
Macrophages from prototypical Th1 strains (e.g., C57BL/6) and Th2 strains (e.g., BALB/c) are classified as M-1 and M-2 phenotypes. We investigated the different phagocytic responses between M-1 and M-2 BAMs under resting and two various exercise conditions. At rest, M-1 BAMs showed higher phagocytic capacity of unopsonized particles, higher expression of MARCO, and higher generation of NO than M-2 BAMs. Severe exercise, but not moderate exercise, significantly enhanced both phagocytosis of unopsonized particles and expression of MARCO in M-2 BAMs. In contrast, M-1 BAMs were unaffected by either exercise protocol. The phagocytosis of unopsonized particles was largely mediated by MARCO, especially in M-1 BAMs. Secreted products from cultured M-2 BAMs isolated after severe exercise, but not those from M-1 BAMs, enhanced BAM phagocytosis. The cultured M-1 BAMs secreted phagocytosis inhibitors and this effect could be blocked by NO antagonists. Moreover, the extent of phagocytosis suppression induced by M-1 BAM-secreted products correlated with the levels of nitrite/nitrate. Exogenous NO donors as well as NO derivatives, nitrite and nitrate, suppressed the BAM phagocytosis. We propose that while the severe exercise-enhanced phagocytosis in M-2 BAMs was largely mediated by MARCO upregulation and secretion of stimulators, the lack of exercise effect in M-1 BAMs could be partially due to the constitutive secretion of NO-related suppressors. In conclusion, genetically different mice use different strategies in regulating BAM activity under resting conditions and in response to various exercise paradigms.

中文摘要 …………………………………………………………………………………………… 1
英文摘要 …………………………………………………………………………………………… 3
縮寫 …………………………………………………………………………………………………… 5
壹、緒論
一、運動過程中個體之生理性變化 ………………………………………………… 7
二、運動的條件 …………………………………………………………………………… 7
三、運動對一般個體、運動員或病人的影響 ………………………………… 8
四、運動免疫學研究 …………………………………………………………………… 8
五、肺巨噬細胞的功能與重要性 ………………………………………………… 10
六、Pulmonary Surfactant的功能及角色 ……………………………………… 11
七、已知運動對巨噬細胞功能之影響 …………………………………………… 12
八、本研究期望解決的問題及探討方式 ……………………………………… 13
貳、儀器及裝置 ………………………………………………………………………………… 14
參、實驗動物與材料
一、實驗動物 ……………………………………………………………………………… 16
二、實驗材料 ……………………………………………………………………………… 16
三、一次抗體 ……………………………………………………………………………… 16
四、二次抗體 ……………………………………………………………………………… 17
肆、實驗方法
一、小鼠之跑步流程 …………………………………………………………………… 18
二、周邊血液收集及白血球計數 …………………………………………………… 18
三、Wright氏染色及白血球分類計數 …………………………………………… 20
四、巨噬細胞之收集 …………………………………………………………………… 22
五、吞噬作用(Phagocytosis)分析 ……………………………………………… 24
六、巨噬細胞之培養 …………………………………………………………………… 28
七、細胞免疫螢光染色 ………………………………………………………………… 28
八、共軛焦顯微鏡(Confocal microscope)分析螢光染色分子 ……… 28
九、Nitrite and nitrate(NO2-/NO3-)之測定 …………………………………… 29
十、數據統計 ……………………………………………………………………………… 31
伍、結果
第一部 急性運動對BALB/c小鼠肺巨噬細胞的影響 ……………………… 32
一、肺沖取所得巨噬細胞之異質性 …………………………………………… 32
二、急性運動於BALB/c肺巨噬細胞吞噬活性之作用 ………………… 33
三、劇烈運動對巨噬細胞之表面接受體的影響 …………………………… 34
第二部 Surfactant參與肺巨噬細胞吞噬功能之調節 ………………………… 36
一、急性劇烈運動與Surfactant影響肺巨噬細胞吞噬能力 ………… 36
二、BAM-associated SP-A之含量及其功能 ……………………………… 38
三、BAM-associated SP-A之動態變化 ……………………………………… 38
第三部異種純株小鼠對急性運動之反應差異 ………………………………… 39
一、C57BL/6小鼠vs. BALB/c小鼠 …………………………………………… 39
二、急性運動對M-1 BAMs及M-2 BAMs吞噬能力之影響 ………… 40
三、M-1 BAMs及M-2 BAMs之清道夫接受體
於其吞噬能力之角色 ………………………………………………………… 40
四、M-1 BAMs及M-2 BAMs培養上清液於吞噬活性之影響 ……… 42
五、M-1 BAMs培養上清液之抑制吞噬作用
與一氧化氮(NO)相關 …………………………………………………… 42
六、Nitrite及nitrate具抑制肺巨噬細胞吞噬活性之作用 …………… 43
陸、討論 …………………………………………………………………………………………… 45
柒、參考文獻 ……………………………………………………………………………………… 56
捌、表 ………………………………………………………………………………………………… 71
玖、圖 ………………………………………………………………………………………………… 78
拾、附錄 …………………………………………………………………………………………… 105

1.Vander, A.J., Sherman, J. H., and Luciano, D. S. (1994) Human physiology: the mechanisms of body function. McGraw-Hill, Inc. 463-6.
2.Baven, P.B., and Hagan, R. D. (1994) Cardiovascular responses to exercise and training. In Oxford Textbook of Sports Medicine (C. W. Mark Harries, William D. Stanish, and Lyle J. Micheli., ed) Oxford University, New York. 161-72.
3.Nobel, B.J. (1986) Individualized exercise prescription. In Physiology of exercise and sport. (N. K. Roberson, ed) Mosby College, St. Louis, Missouri. 257-78.
4.Espersen, G.T., Elbaek, A., Schmidt-Olsen, S., Ejlersen, E., Varming, K., and Grunnet, N. (1996) Short-term changes in the immune system of elite swimmers under competition conditions. Different immunomodulation induced by various types of sport. Scand J Med Sci Sports 6, 156-63.
5.Bruce, R.A., and McDonough, J.R. (1969) Stress testing in screening for cardiovascular disease. Bull N Y Acad Med 45, 1288-305.
6.Pedersen, B.K., Rohde, T., and Zacho, M. (1996) Immunity in athletes. J Sports Med Phys Fitness 36, 236-45.
7.Kohl III, H.W. (2001) Physical activity and cardiovascular disease: evidence for a dose response. Med Sci Sports Exerc 33, S472-83; discussion S493-4.
8.Blair, S.N., Cheng, Y., and Holder, J.S. (2001) Is physical activity or physical fitness more important in defining health benefits? Med Sci Sports Exerc 33, S379-99; discussion S419-20.
9.Kelley, D.E., and Goodpaster, B.H. (2001) Effects of exercise on glucose homeostasis in Type 2 diabetes mellitus. Med Sci Sports Exerc 33, S495-501; discussion S528-9.
10.Dunn, A.L., Trivedi, M.H., and O'Neal, H.A. (2001) Physical activity dose-response effects on outcomes of depression and anxiety. Med Sci Sports Exerc 33, S587-97; discussion 609-10.
11.Mackinnon, L.T. (1998) Future directions in exercise and immunology: regulation and integration. Int J Sports Med 19 Suppl 3, S205-9; discussion S209-11.
12.Shephard, R.J. (1998) Exercise, immune function and HIV infection. J Sports Med Phys Fitness 38, 101-10.
13.Thune, I., and Furberg, A.S. (2001) Physical activity and cancer risk: dose-response and cancer, all sites and site-specific. Med Sci Sports Exerc 33, S530-50; discussion S609-10.
14.McCarthy, D.A., and Dale, M.M. (1988) The leucocytosis of exercise. A review and model. Sports Med 6, 333-63.
15.McCarthy, D.A., Macdonald, I., Grant, M., Marbut, M., Watling, M., Nicholson, S., Deeks, J.J., Wade, A.J., and Perry, J.D. (1992) Studies on the immediate and delayed leucocytosis elicited by brief (30- min) strenuous exercise. Eur J Appl Physiol Occup Physiol 64, 513-7.
16.McCarthy, D.A., Grant, M., Marbut, M., Watling, M., Wade, A.J., Macdonald, I., Nicholson, S., Melsom, R.D., and Perry, J.D. (1991) Brief exercise induces an immediate and a delayed leucocytosis. Br J Sports Med 25, 191-5.
17.Hoffman-Goetz, L., and Pedersen, B.K. (1994) Exercise and the immune system: a model of the stress response? Immunol. Today 15, 382-7.
18.Ostrowski, K., Schjerling, P., and Pedersen, B.K. (2000) Physical activity and plasma interleukin-6 in humans--effect of intensity of exercise. Eur J Appl Physiol 83, 512-5.
19.Pedersen, B.K., and Hoffman-Goetz, L. (2000) Exercise and the immune system: regulation, integration, and adaptation. Physiol Rev 80, 1055-81.
20.Brines, R., Hoffman-Goetz, L., and Pedersen, B.K. (1996) Can you exercise to make your immune system fitter? Immunol. Today 17, 252-4.
21.Hoffman-Goetz, L., MacNeil, B., Arumugam, Y., and Randall Simpson, J. (1992) Differential effects of exercise and housing condition on murine natural killer cell activity and tumor growth. Int. J. Sports Med. 13, 167-71.
22.MacNeil, B., and Hoffman-Goetz, L. (1993) Exercise training and tumor metastases in mice: influence of time of exercise onset. Anticancer Res. 13, 2085-8.
23.Woods, J.A., Davis, J.M., Kohut, M.L., Ghaffar, A., Mayer, E.P., and Pate, R.R. (1994) Effects of exercise on the immune response to cancer. Med Sci Sports Exerc 26, 1109-15.
24.Davis, J.M., Kohut, M.L., Jackson, D.A., Colbert, L.H., Mayer, E.P., and Ghaffar, A. (1998) Exercise effects on lung tumor metastases and in vitro alveolar macrophage antitumor cytotoxicity. Am J Physiol 274, R1454-9.
25.Davis, J.M., Kohut, M.L., Colbert, L.H., Jackson, D.A., Ghaffar, A., and Mayer, E.P. (1997) Exercise, alveolar macrophage function, and susceptibility to respiratory infection. J Appl Physiol 83, 1461-6.
26.Bezdicek, P., and Crystal, R.G. (1997) Pulmonary Macrophages. In The Lung: Scientific Foundations (J. B. W. R.G. Crystal, ed) Lippincott-Raven, Philadelphia. 859-75.
27.Zhang, P., Summer, W.R., Bagby, G.J., and Nelson, S. (2000) Innate immunity and pulmonary host defense. Immunol Rev 173, 39-51.
28.Aderem, A., and Underhill, D.M. (1999) Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17, 593-623.
29.Wright, J.R. (1990) Clearance and recycling of pulmonary surfactant. Am J Physiol 259, L1-12.
30.Holt, P.G. (1978) Inhibitory activity of unstimulated alveolar macrophages on T- lymphocyte blastogenic response. Am Rev Respir Dis 118, 791-3.
31.Bhalla, D.K., Hoffman, L.A., and Pearson, A.C. (1996) Modification of macrophage adhesion by ozone: role of cytokines and cell adhesion molecules. Ann N Y Acad Sci 796, 38-46.
32.Antal, J.M., Cunningham, J.V., and Goodrum, K.J. (1992) Opsonin-independent phagocytosis of group B streptococci: role of complement receptor type three. Infect Immun 60, 1114-21.
33.Haworth, R., Platt, N., Keshav, S., Hughes, D., Darley, E., Suzuki, H., Kurihara, Y., Kodama, T., and Gordon, S. (1997) The macrophage scavenger receptor type A is expressed by activated macrophages and protects the host against lethal endotoxic shock. J Exp Med 186, 1431-9.
34.Palecanda, A., Paulauskis, J., Al-Mutairi, E., Imrich, A., Qin, G., Suzuki, H., Kodama, T., Tryggvason, K., Koziel, H., and Kobzik, L. (1999) Role of the scavenger receptor MARCO in alveolar macrophage binding of unopsonized environmental particles. J Exp Med 189, 1497-506.
35.Thomas, C.A., Li, Y., Kodama, T., Suzuki, H., Silverstein, S.C., and El Khoury, J. (2000) Protection from lethal gram-positive infection by macrophage scavenger receptor-dependent phagocytosis. J Exp Med 191, 147-56.
36.Medina, E., Molinari, G., Rohde, M., Haase, B., Chhatwal, G.S., and Guzman, C.A. (1999) Fc-mediated nonspecific binding between fibronectin-binding protein I of Streptococcus pyogenes and human immunoglobulins. J Immunol 163, 3396-402.
37.Huber, V.C., Lynch, J.M., Bucher, D.J., Le, J., and Metzger, D.W. (2001) Fc receptor-mediated phagocytosis makes a significant contribution to clearance of influenza virus infections. J Immunol 166, 7381-8.
38.Fels, A.O., and Cohn, Z.A. (1986) The alveolar macrophage. J Appl Physiol 60, 353-69.
39.van Rooijen, N., and Sanders, A. (1997) Elimination, blocking, and activation of macrophages: three of a kind? J Leukoc Biol 62, 702-9.
40.Gehr, P., Green, F.H., Geiser, M., Im Hof, V., Lee, M.M., and Schurch, S. (1996) Airway surfactant, a primary defense barrier: mechanical and immunological aspects. J Aerosol Med 9, 163-81.
41.Wright, J.R., Benson, B.J., Williams, M.C., Goerke, J., and Clements, J.A. (1984) Protein composition of rabbit alveolar surfactant subfractions. Biochim Biophys Acta 791, 320-32.
42.Gaynor, C.D., McCormack, F.X., Voelker, D.R., McGowan, S.E., and Schlesinger, L.S. (1995) Pulmonary surfactant protein A mediates enhanced phagocytosis of Mycobacterium tuberculosis by a direct interaction with human macrophages. J Immunol 155, 5343-51.
43.Holmskov, U. (1999) Lung surfactant proteins (SP-A and SP-D) in non-adaptive host responses to infection. J Leukoc Biol 66, 747-52.
44.LeVine, A.M., Bruno, M.D., Huelsman, K.M., Ross, G.F., Whitsett, J.A., and Korfhagen, T.R. (1997) Surfactant protein A-deficient mice are susceptible to group B streptococcal infection. J Immunol 158, 4336-40.
45.LeVine, A.M., Kurak, K.E., Bruno, M.D., Stark, J.M., Whitsett, J.A., and Korfhagen, T.R. (1998) Surfactant protein-A-deficient mice are susceptible to Pseudomonas aeruginosa infection. Am J Respir Cell Mol Biol 19, 700-8.
46.LeVine, A.M., Gwozdz, J., Stark, J., Bruno, M., Whitsett, J., and Korfhagen, T. (1999) Surfactant protein-A enhances respiratory syncytial virus clearance in vivo. J Clin Invest 103, 1015-21.
47.LeVine, A.M., and Whitsett, J.A. (2001) Pulmonary collectins and innate host defense of the lung. Microbes Infect 3, 161-6.
48.Crouch, E., Hartshorn, K., and Ofek, I. (2000) Collectins and pulmonary innate immunity. Immunol Rev 173, 52-65.
49.Crouch, E., and Wright, J.R. (2001) Surfactant proteins a and d and pulmonary host defense. Annu Rev Physiol 63, 521-54.
50.Hickman-Davis, J.M., Lindsey, J.R., Zhu, S., and Matalon, S. (1998) Surfactant protein A mediates mycoplasmacidal activity of alveolar macrophages. Am J Physiol 274, L270-7.
51.Baritussio, A., Alberti, A., Armanini, D., Meloni, F., and Bruttomesso, D. (2000) Different pathways of degradation of SP-A and saturated phosphatidylcholine by alveolar macrophages. Am J Physiol Lung Cell Mol Physiol 279, L91-9.
52.Dong, Q., and Wright, J.R. (1998) Degradation of surfactant protein D by alveolar macrophages. Am J Physiol 274, L97-105.
53.Bates, S.R., and Fisher, A.B. (1996) Surfactant protein A is degraded by alveolar macrophages. Am J Physiol 271, L258-66.
54.Doyle, I.R., Jones, M.E., Barr, H.A., Orgeig, S., Crockett, A.J., McDonald, C.F., and Nicholas, T.E. (1994) Composition of human pulmonary surfactant varies with exercise and level of fitness. Am J Respir Crit Care Med 149, 1619-27.
55.Fehr, H.G., Lotzerich, H., and Michna, H. (1988) The influence of physical exercise on peritoneal macrophage functions: histochemical and phagocytic studies. Int J Sports Med 9, 77-81.
56.Ortega E, C.M., Barriga M, and De la Fuente M. (1992) Stimulation of the phagocytic function in guinea pig peritoneal macrophages by physical activity stress. Eur J Appl Physiol 64, 323-7.
57.Woods, J., Lu, Q., Ceddia, M.A., and Lowder, T. (2000) Special feature for the Olympics: effects of exercise on the immune system: exercise-induced modulation of macrophage function. Immunol Cell Biol 78, 545-53.
58.Woods, J.A., Davis, J.M., Mayer, E.P., Ghaffar, A., and Pate, R.R. (1993) Exercise increases inflammatory macrophage antitumor cytotoxicity. J Appl Physiol 75, 879-86.
59.Woods, J.A., Davis, J.M., Mayer, E.P., Ghaffar, A., and Pate, R.R. (1994) Effects of exercise on macrophage activation for antitumor cytotoxicity. J Appl Physiol 76, 2177-85.
60.Woods, J.A., and Davis, J.M. (1994) Exercise, monocyte/macrophage function, and cancer. Med Sci Sports Exerc 26, 147-56.
61.Lotzerich, H., Fehr, H.G., and Appell, H.J. (1990) Potentiation of cytostatic but not cytolytic activity of murine macrophages after running stress. Int J Sports Med 11, 61-5.
62.Japel, M., Lotzerich, H., and Appell, H.J. (1992) Physical exercise may improve macrophage phagocytic activity of tumor bearing mice. In Vivo 6, 215-8.
63.Ortega, E., Collazos, M.E., Barriga, C., and De la Fuente, M. (1992) Effect of physical activity stress on the phagocytic process of peritoneal macrophages from old guinea pigs. Mech Ageing Dev 65, 157-65.
64.De la Fuente, M., Martin, I., and Ortega, E. (1993) Effect of physical exercise on the phagocytic function of peritoneal macrophages from Swiss mice. Comp Immunol Microbiol Infect Dis 16, 29-37.
65.Fernando, P., Bonen, A., and Hoffman-Goetz, L. (1993) Predicting submaximal oxygen consumption during treadmill running in mice. Can J Physiol Pharmacol 71, 854-7.
66.Daugherty, A., Whitman, S.C., Block, A.E., and Rateri, D.L. (2000) Polymorphism of class A scavenger receptors in C57BL/6 mice. J Lipid Res 41, 1568-77.
67.Simon, H.B. (1984) The immunology of exercise. A brief review. Jama 252, 2735-8.
68.Wang, J.S., Jen, C.J., Kung, H.C., Lin, L.J., Hsiue, T.R., and Chen, H.I. (1994) Different effects of strenuous exercise and moderate exercise on platelet function in men. Circulation 90, 2877-85.
69.Su, S.H., Chen, H.I., and Jen, C.J. (2001) Severe exercise enhances phagocytosis by murine bronchoalveolar macrophages. J Leukoc Biol 69, 75-80.
70.de la Fuente, M., Martin, M.I., and Ortega, E. (1990) Changes in the phagocytic function of peritoneal macrophages from old mice after strenuous physical exercise. Comp Immunol Microbiol Infect Dis 13, 189-98.
71.Ortega, E., Collazos, M.E., Barriga, C., and De la Fuente, M. (1992) Stimulation of the phagocytic function in guinea pig peritoneal macrophages by physical activity stress. Eur J Appl Physiol Occup Physiol 64, 323-7.
72.Forner, M.A., Barriga, C., and Ortega, E. (1996) Exercise-induced stimulation of murine macrophage phagocytosis may be mediated by thyroxine. J Appl Physiol 80, 899-903.
73.Ortega, E., Rodriguez, M.J., Barriga, C., and Forner, M.A. (1996) Corticosterone, prolactin and thyroid hormones as hormonal mediators of the stimulated phagocytic capacity of peritoneal macrophages after high- intensity exercise. Int J Sports Med 17, 149-55.
74.Forner, M.A., Barriga, C., Rodriguez, A.B., and Ortega, E. (1995) A study of the role of corticosterone as a mediator in exercise-induced stimulation of murine macrophage phagocytosis. J Physiol 488, 789-94.
75.Brenner, I., Shek, P.N., Zamecnik, J., and Shephard, R.J. (1998) Stress hormones and the immunological responses to heat and exercise. Int J Sports Med 19, 130-43.
76.Urhausen, A., Gabriel, H., and Kindermann, W. (1995) Blood hormones as markers of training stress and overtraining. Sports Med 20, 251-76.
77.Greiwe, J.S., Hickner, R.C., Shah, S.D., Cryer, P.E., and Holloszy, J.O. (1999) Norepinephrine response to exercise at the same relative intensity before and after endurance exercise training. J Appl Physiol 86, 531-5.
78.Weltman, A., Pritzlaff, C.J., Wideman, L., Weltman, J.Y., Blumer, J.L., Abbott, R.D., Hartman, M.L., and Veldhuis, J.D. (2000) Exercise-dependent growth hormone release is linked to markers of heightened central adrenergic outflow. J Appl Physiol 89, 629-35.
79.Platt, N., Suzuki, H., Kurihara, Y., Kodama, T., and Gordon, S. (1996) Role for the class A macrophage scavenger receptor in the phagocytosis of apoptotic thymocytes in vitro. Proc Natl Acad Sci U S A 93, 12456-60.
80.Kodama, T., Doi, T., Suzuki, H., Takahashi, K., Wada, Y., and Gordon, S. (1996) Collagenous macrophage scavenger receptors. Curr Opin Lipidol 7, 287-91.
81.Elomaa, O., Kangas, M., Sahlberg, C., Tuukkanen, J., Sormunen, R., Liakka, A., Thesleff, I., Kraal, G., and Tryggvason, K. (1995) Cloning of a novel bacteria-binding receptor structurally related to scavenger receptors and expressed in a subset of macrophages. Cell 80, 603-9.
82.Kobzik, L. (1995) Lung macrophage uptake of unopsonized environmental particulates. Role of scavenger-type receptors. J Immunol 155, 367-76.
83.van der Laan, L.J., Dopp, E.A., Haworth, R., Pikkarainen, T., Kangas, M., Elomaa, O., Dijkstra, C.D., Gordon, S., Tryggvason, K., and Kraal, G. (1999) Regulation and functional involvement of macrophage scavenger receptor MARCO in clearance of bacteria in vivo. J Immunol 162, 939-47.
84.Zimmerli, S., Edwards, S., and Ernst, J.D. (1996) Selective receptor blockade during phagocytosis does not alter the survival and growth of Mycobacterium tuberculosis in human macrophages. Am J Respir Cell Mol Biol 15, 760-70.
85.de Villiers, W.J., Fraser, I.P., Hughes, D.A., Doyle, A.G., and Gordon, S. (1994) Macrophage-colony-stimulating factor selectively enhances macrophage scavenger receptor expression and function. J Exp Med 180, 705-9.
86.Geng, Y.J., and Hansson, G.K. (1992) Interferon-gamma inhibits scavenger receptor expression and foam cell formation in human monocyte-derived macrophages. J Clin Invest 89, 1322-30.
87.Ito, S., Naito, M., Kobayashi, Y., Takatsuka, H., Jiang, S., Usuda, H., Umezu, H., Hasegawa, G., Arakawa, M., Shultz, L.D., Elomaa, O., and Tryggvason, K. (1999) Roles of a macrophage receptor with collagenous structure (MARCO) in host defense and heterogeneity of splenic marginal zone macrophages. Arch Histol Cytol 62, 83-95.
88.Hashimoto, Y., Suzuki, D., Hamada, K., Okada, H., and Nagao, N. (1996) Changes of expression of complement 3bi receptors on granulocytes after physical exercise in rats. J Sports Med Phys Fitness 36, 275-80.
89.Jordan, J., Beneke, R., Hutler, M., Veith, A., Haller, H., and Luft, F.C. (1997) Moderate exercise leads to decreased expression of beta1 and beta2 integrins on leucocytes. Eur J Appl Physiol Occup Physiol 76, 192-4.
90.Jordan, J., Beneke, R., Hutler, M., Veith, A., Luft, F.C., and Haller, H. (1999) Regulation of MAC-1 (CD11b/CD18) expression on circulating granulocytes in endurance runners. Med Sci Sports Exerc 31, 362-7.
91.Ding, A., Wright, S.D., and Nathan, C. (1987) Activation of mouse peritoneal macrophages by monoclonal antibodies to Mac-1 (complement receptor type 3). J Exp Med 165, 733-49.
92.Nagendra, A.R., Mickelson, J.K., and Smith, C.W. (1997) CD18 integrin and CD54-dependent neutrophil adhesion to cytokine- stimulated human hepatocytes. Am J Physiol 272, G408-16.
93.Zeni, F., Parent, C., Correa, R., Natanson, C., Freeman, B., Fontana, J., Quezado, M., Danner, R.L., Fitz, Y., Richmond, S., Gerstenberger, E., Banks, S.M., and Eichacker, P.Q. (1999) ICAM-1 and CD11b inhibition worsen outcome in rats with E. coli pneumonia. J Appl Physiol 87, 299-307.
94.Ross, G.D., Cain, J.A., Myones, B.L., Newman, S.L., and Lachmann, P.J. (1987) Specificity of membrane complement receptor type three (CR3) for beta- glucans. Complement Inflamm 4, 61-74.
95.Xia, Y., and Ross, G.D. (1999) Generation of recombinant fragments of CD11b expressing the functional beta-glucan-binding lectin site of CR3 (CD11b/CD18). J Immunol 162, 7285-93.
96.Xia, Y., Vetvicka, V., Yan, J., Hanikyrova, M., Mayadas, T., and Ross, G.D. (1999) The beta-glucan-binding lectin site of mouse CR3 (CD11b/CD18) and its function in generating a primed state of the receptor that mediates cytotoxic activation in response to iC3b-opsonized target cells. J Immunol 162, 2281-90.
97.Schmal, H., Czermak, B.J., Lentsch, A.B., Bless, N.M., Beck-Schimmer, B., Friedl, H.P., and Ward, P.A. (1998) Soluble ICAM-1 activates lung macrophages and enhances lung injury. J Immunol 161, 3685-93.
98.Walzog, B., Offermanns, S., Zakrzewicz, A., Gaehtgens, P., and Ley, K. (1996) Beta2 integrins mediate protein tyrosine phosphorylation in human neutrophils. J Leukoc Biol 59, 747-53.
99.Todd III, R.F., and Petty, H.R. (1997) Beta 2 (CD11/CD18) integrins can serve as signaling partners for other leukocyte receptors. J Lab Clin Med 129, 492-8.
100.Tenner, A.J., Robinson, S.L., Borchelt, J., and Wright, J.R. (1989) Human pulmonary surfactant protein (SP-A), a protein structurally homologous to C1q, can enhance FcR- and CR1-mediated phagocytosis. J Biol Chem 264, 13923-8.
101.Tino, M.J., and Wright, J.R. (1996) Surfactant protein A stimulates phagocytosis of specific pulmonary pathogens by alveolar macrophages. Am J Physiol 270, L677-88.
102.Tino, M.J., and Wright, J.R. (1999) Surfactant proteins A and D specifically stimulate directed actin-based responses in alveolar macrophages. Am J Physiol 276, L164-74.
103.Geertsma, M.F., Nibbering, P.H., Haagsman, H.P., Daha, M.R., and van Furth, R. (1994) Binding of surfactant protein A to C1q receptors mediates phagocytosis of Staphylococcus aureus by monocytes. Am J Physiol 267, L578-84.
104.Kabha, K., Schmegner, J., Keisari, Y., Parolis, H., Schlepper-Schaeffer, J., and Ofek, I. (1997) SP-A enhances phagocytosis of Klebsiella by interaction with capsular polysaccharides and alveolar macrophages. Am J Physiol 272, L344-52.
105.Mariencheck, W.I., Savov, J., Dong, Q., Tino, M.J., and Wright, J.R. (1999) Surfactant protein A enhances alveolar macrophage phagocytosis of a live, mucoid strain of P. aeruginosa. Am J Physiol 277, L777-86.
106.Hartshorn, K.L., Crouch, E., White, M.R., Colamussi, M.L., Kakkanatt, A., Tauber, B., Shepherd, V., and Sastry, K.N. (1998) Pulmonary surfactant proteins A and D enhance neutrophil uptake of bacteria. Am J Physiol 274, L958-69.
107.Pasula, R., Downing, J.F., Wright, J.R., Kachel, D.L., Davis, T.E., Jr., and Martin, W.J., 2nd (1997) Surfactant protein A (SP-A) mediates attachment of Mycobacterium tuberculosis to murine alveolar macrophages. Am J Respir Cell Mol Biol 17, 209-17.
108.Weikert, L.F., Edwards, K., Chroneos, Z.C., Hager, C., Hoffman, L., and Shepherd, V.L. (1997) SP-A enhances uptake of bacillus Calmette-Guerin by macrophages through a specific SP-A receptor. Am J Physiol 272, L989-95.
109.van Iwaarden, J.F., van Strijp, J.A., Ebskamp, M.J., Welmers, A.C., Verhoef, J., and van Golde, L.M. (1991) Surfactant protein A is opsonin in phagocytosis of herpes simplex virus type 1 by rat alveolar macrophages. Am J Physiol 261, L204-9.
110.McNeely, T.B., and Coonrod, J.D. (1994) Aggregation and opsonization of type A but not type B Hemophilus influenzae by surfactant protein A. Am J Respir Cell Mol Biol 11, 114-22.
111.Barr, F.E., Pedigo, H., Johnson, T.R., and Shepherd, V.L. (2000) Surfactant protein-A enhances uptake of respiratory syncytial virus by monocytes and U937 macrophages. Am J Respir Cell Mol Biol 23, 586-92.
112.Linke, M.J., Harris, C.E., Korfhagen, T.R., McCormack, F.X., Ashbaugh, A.D., Steele, P., Whitsett, J.A., and Walzer, P.D. (2001) Immunosuppressed surfactant protein A-deficient mice have increased susceptibility to Pneumocystis carinii infection. J Infect Dis 183, 943-52.
113.Rosseau, S., Hammerl, P., Maus, U., Gunther, A., Seeger, W., Grimminger, F., and Lohmeyer, J. (1999) Surfactant protein A down-regulates proinflammatory cytokine production evoked by Candida albicans in human alveolar macrophages and monocytes. J Immunol 163, 4495-502.
114.Kremlev, S.G., Umstead, T.M., and Phelps, D.S. (1997) Surfactant protein A regulates cytokine production in the monocytic cell line THP-1. Am J Physiol 272, L996-1004.
115.Li, J., Gao, E., and Mendelson, C.R. (1998) Cyclic AMP-responsive expression of the surfactant protein-A gene is mediated by increased DNA binding and transcriptional activity of thyroid transcription factor-1. J Biol Chem 273, 4592-600.
116.Scavo, L.M., Ertsey, R., and Gao, B.Q. (1998) Human surfactant proteins A1 and A2 are differentially regulated during development and by soluble factors. Am J Physiol 275, L653-69.
117.Dhar, V., Hallman, M., Lappalainen, U., and Bry, K. (1997) Interleukin-1 alpha upregulates the expression of surfactant protein-A in rabbit lung explants. Biol Neonate 71, 46-52.
118.Pryhuber, G.S., Khalak, R., and Zhao, Q. (1998) Regulation of surfactant proteins A and B by TNF-alpha and phorbol ester independent of NF-kappa B. Am J Physiol 274, L289-95.
119.Chroneos, Z.C., Abdolrasulnia, R., Whitsett, J.A., Rice, W.R., and Shepherd, V.L. (1996) Purification of a cell-surface receptor for surfactant protein A. J Biol Chem 271, 16375-83.
120.Ohmer-Schrock, D., Schlatterer, C., Plattner, H., and Schlepper-Schafer, J. (1993) Interaction of lung surfactant protein A with alveolar macrophages. Microsc Res Tech 26, 374-80.
121.Wright, J.R. (1997) Immunomodulatory functions of surfactant. Physiol Rev 77, 931-62.
122.Reid, K.B. (1998) Functional roles of the lung surfactant proteins SP-A and SP-D in innate immunity. Immunobiology 199, 200-7.
123.Borron, P., McCormack, F.X., Elhalwagi, B.M., Chroneos, Z.C., Lewis, J.F., Zhu, S., Wright, J.R., Shepherd, V.L., Possmayer, F., Inchley, K., and Fraher, L.J. (1998) Surfactant protein A inhibits T cell proliferation via its collagen- like tail and a 210-kDa receptor. Am J Physiol 275, L679-86.
124.McCormack, F.X., Calvert, H.M., Watson, P.A., Smith, D.L., Mason, R.J., and Voelker, D.R. (1994) The structure and function of surfactant protein A. Hydroxyproline- and carbohydrate-deficient mutant proteins. J Biol Chem 269, 5833-41.
125.Strayer, D.S., Korutla, L., and Thomas, A.P. (1997) Surfactant protein-A receptor-mediated inhibition of calcium signaling in alveolar type II cells. Recept Signal Transduct 7, 111-20.
126.Pison, U., Wright, J.R., and Hawgood, S. (1992) Specific binding of surfactant apoprotein SP-A to rat alveolar macrophages. Am J Physiol 262, L412-7.
127.Malhotra, R., Thiel, S., Reid, K.B., and Sim, R.B. (1990) Human leukocyte C1q receptor binds other soluble proteins with collagen domains. J Exp Med 172, 955-9.
128.Malhotra, R., Haurum, J., Thiel, S., and Sim, R.B. (1992) Interaction of C1q receptor with lung surfactant protein A. Eur J Immunol 22, 1437-45.
129.Chroneos, Z., and Shepherd, V.L. (1995) Differential regulation of the mannose and SP-A receptors on macrophages. Am J Physiol 269, L721-6.
130.Korutla, L., and Strayer, D.S. (1999) SP-A as a cytokine: surfactant protein-A-regulated transcription of surfactant proteins and other genes. J Cell Physiol 178, 379-86.
131.Kraal, G., van der Laan, L.J., Elomaa, O., and Tryggvason, K. (2000) The macrophage receptor MARCO. Microbes Infect 2, 313-6.
132.Gaston, B., Drazen, J.M., Loscalzo, J., and Stamler, J.S. (1994) The biology of nitrogen oxides in the airways. Am J Respir Crit Care Med 149, 538-51.
133.Arnelle, D.R., and Stamler, J.S. (1995) NO+, NO, and NO- donation by S-nitrosothiols: implications for regulation of physiological functions by S-nitrosylation and acceleration of disulfide formation. Arch Biochem Biophys 318, 279-85.
134.Kalns, J., Parker, J., Bruno, J., Holwitt, E., Piepmeier, E., and Kiel, J. (1998) Nitrate reductase alters 3-nitrotyrosine accumulation and cell cycle progression in LPS + IFN-gamma-stimulated RAW 264.7 cells. Nitric Oxide 2, 366-74.
135.Hazen, S.L., Zhang, R., Shen, Z., Wu, W., Podrez, E.A., MacPherson, J.C., Schmitt, D., Mitra, S.N., Mukhopadhyay, C., Chen, Y., Cohen, P.A., Hoff, H.F., and Abu-Soud, H.M. (1999) Formation of nitric oxide-derived oxidants by myeloperoxidase in monocytes: pathways for monocyte-mediated protein nitration and lipid peroxidation In vivo. Circ Res 85, 950-8.
136.Souza, J.M., Daikhin, E., Yudkoff, M., Raman, C.S., and Ischiropoulos, H. (1999) Factors determining the selectivity of protein tyrosine nitration. Arch Biochem Biophys 371, 169-78.
137.Podrez, E.A., Schmitt, D., Hoff, H.F., and Hazen, S.L. (1999) Myeloperoxidase- generated reactive nitrogen species convert LDL into an atherogenic form in vitro. J Clin Invest 103, 1547-60.
138.Masuda, M., Mower, H.F., Pignatelli, B., Celan, I., Friesen, M.D., Nishino, H., and Ohshima, H. (2000) Formation of N-nitrosamines and N-nitramines by the reaction of secondary amines with peroxynitrite and other reactive nitrogen species: comparison with nitrotyrosine formation. Chem Res Toxicol 13, 301-8.
139.Forman, H.J., and Thomas, M.J. (1986) Oxidant production and bactericidal activity of phagocytes. Annu Rev Physiol 48, 669-80.
140.Wu, W., Chen, Y., and Hazen, S.L. (1999) Eosinophil peroxidase nitrates protein tyrosyl residues. Implications for oxidative damage by nitrating intermediates in eosinophilic inflammatory disorders. J Biol Chem 274, 25933-44.
141.Lefkowitz, S.S., Gelderman, M.P., Lefkowitz, D.L., Moguilevsky, N., and Bollen, A. (1996) Phagocytosis and intracellular killing of Candida albicans by macrophages exposed to myeloperoxidase. J Infect Dis 173, 1202-7.
142.Gow, A.J., and Ischiropoulos, H. (2001) Nitric oxide chemistry and cellular signaling. J Cell Physiol 187, 277-82.
143.Clancy, R., Varenika, B., Huang, W., Ballou, L., Attur, M., Amin, A.R., and Abramson, S.B. (2000) Nitric oxide synthase/COX cross-talk: nitric oxide activates COX-1 but inhibits COX-2-derived prostaglandin production. J Immunol 165, 1582-7.
144.Canning, B.J., Hmieleski, R.R., Spannhake, E.W., and Jakab, G.J. (1991) Ozone reduces murine alveolar and peritoneal macrophage phagocytosis: the role of prostanoids. Am J Physiol 261, L277-82.
145.Bilyk, N., and Holt, P.G. (1995) Cytokine modulation of the immunosuppressive phenotype of pulmonary alveolar macrophage populations. Immunology 86, 231-7.
146.Kuroda, E., Sugiura, T., Zeki, K., Yoshida, Y., and Yamashita, U. (2000) Sensitivity difference to the suppressive effect of prostaglandin E2 among mouse strains: a possible mechanism to polarize Th2 type response in BALB/c mice. J Immunol 164, 2386-95.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top