跳到主要內容

臺灣博碩士論文加值系統

(23.20.20.52) 您好!臺灣時間:2022/01/24 19:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳榮華
研究生(外文):Rong-Hwa Chen
論文名稱:破裂安山岩體放射性核種傳輸之研究
論文名稱(外文):Radionuclide Transport in Fractured Andesite Rock Mass
指導教授:李振誥李振誥引用關係
指導教授(外文):Cheng-Haw Lee
學位類別:博士
校院名稱:國立成功大學
系所名稱:資源工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:90
語文別:中文
論文頁數:146
中文關鍵詞:破裂岩體地下水核種傳輸連續模式
外文關鍵詞:Fractured rocksGroundwaterRadionuclide transportContinuum model
相關次數:
  • 被引用被引用:10
  • 點閱點閱:589
  • 評分評分:
  • 下載下載:81
  • 收藏至我的研究室書目清單書目收藏:3
本文主要是以當量孔隙模式來推估破裂張量及透水張量之主軸方向,並利用空間投影法將現地破裂面形成垂直正交之破裂面網路系統,同時估計破裂面張量之主軸方向與大小,並以連續體之概念模式來分析此破裂面網路之溶質傳輸行為。本文採用一維之移流-延散及三維之擴散模式來模擬破裂面幾何參數、水力參數及傳輸參數對溶質傳輸特性之敏感性分析,並以蘭嶼破裂安山岩體作為案例分析。另外亦應用模式探討低/高放射性核廢料處置場核種污染物傳輸。
文中首先於蘭嶼現地進行破裂面調查,以推估破裂面幾何參數,包括組數、平均方位、間距與頻率、痕跡線長度等,再以當量孔隙介質模式推估現地之平均透水係數。再者,RQD-內寬-透水係數模式推估正交破裂岩體之透水係數,最後,利用現地岩體雙環試驗推估透水係數及水力內寬,結果顯示三種方法推估之透水係數相近。
溶質傳輸參數敏感性分析結果顯示,當較短之傳輸時間時,岩基孔隙率對於對於溶質傳輸影響小,可忽略不計;較長之傳輸時間時,則不可忽略,尤其是對於強吸附性之溶質。地下水流速對溶質傳輸距離具有關鍵性之影響;延散度較大,溶質傳輸得較遠且峰值濃度遞減較快,然而不同之延散度,其50%之濃度出現在相近之時間與位置;溶質之半衰期對於濃度遞減具有很大之影響性。
對於低放射性核廢料傳輸模擬結果,顯示若比較銫137和鈷60兩核種在安山岩破裂岩體之傳輸,鈷60之傳輸距離較短且峰值濃度遞減較快,亦即鈷60對於環境污染之危害度將低於銫137。研究中亦顯示雖然此兩核種對於介質有不同之表面吸附能力,鈷之吸附能力遠大於銫,此結論與 Liu et al. (1991)以蘭嶼安山岩經過粉碎後進行批次法之靜態吸附試驗類同。
對於高放射性核廢料243Am和239Pu兩核種傳輸模擬結果,顯示若以核種初始強度為10000 Bq/L時,當243Am經過1000年傳輸,其峰值濃度降為初始濃度之12%,約1250Bq/L,其濃度中心位於距污染源10公尺處。因此243Am之強吸附性是造安山岩中濃度大幅下降之主因,其峰值濃度遞減至低於10Bq/L,則需時19000年。另一方面,239Pu經過10000年傳輸,其核種濃度中心遷移至距污染源6200公尺處,其峰值濃度為170Bq/L,當傳輸時間達46000年時,其核種濃度中心遷移至距污染源27000公尺處,其峰值濃度為10Bq/L。
Radionuclide transport in fractured rock mass is simulated by using a conceptual model with a continuum equivalent orthogonal fractured network. The conceptual model accounts explicitly for an equivalent porous model to estimate the principal direction of crack tensor and permeability tensor. Then, translation of the fracture sets onto the principal coordinate system is applied by using a projection technique.
The transport model is adopted one-dimensional advection-dispersion transport mechanism in fracture and three-dimensional diffusion mechanism into rock matrix. The solution was used to perform sensitivity analysis with fracture geometric parameters, hydraulic parameters and solute transport parameters. In addition, the conceptual model carries out the case studies with fractured andesite rock mass at the Lan-Yu site, Taiwan. The application of this model is to simulate the transport behaviors for low and high level radioactive waste repositories.
At first, investigation of the fracture geometric parameters is applied on the filed case at Lan-Yu site, including the fracture sets, the mean orientation, the spacing and the frequency, the trace length etc. In addition, three methods, equivalent porous model, RQD-aperture-hydraulic conductivity model and double-rings infiltrometer test in situ, are carried out to estimate the hydraulic conductivity.
Results of sensitivity analyses show that the effect of matrix porosity on short migration time is insignificant. On the other hand, on long migration time, it must be considered the effect about strong sorbable solutes. Flow velocity is the most significant for migration distance of solute. The solute for larger dispersivity can be carried away far from source by groundwater flow than that for smaller one, and the peak concentration for larger dispersivity is decreased more quickly than that for small one. However, in comparison of the variable dispersivities, it shows that only the fifty-percent of initial concentration is observed at the nearby locations. It is because the concentration would be decreased quickly for shorter half-life solutes.
Assuming that the initial concentration as a value of 10000 Bq/L for radionuclides in case studies, the simulation results for low level radionuclides 60Co and 137Cs show that the attenuation of concentration was due to radioactive decay and the sorption of fractures. In addition, the peak concentration of 60Co is decreased more obvious than 137Cs. 137Cs requires more time and more distance to reduce the concentration of the contaminant plume under the maximum permissible activity.
The simulation results for high level radiobuclides 243Am and 239Pu show that the peak concentration of 243Am is observed at the 10 m downgradient of the source, and the peak concentration is decreased to a value of 1250 Bq/L after 10000 years. However, to be decreased to below 10 Bq/L, it needs 19000 years to migrate. With similar results of 243Am, the peak concentration of 239Pu is observed at the 6200 m downgradient of the sources and the peak concentration decreased to a valued of 170 Bq/L after 10000 years. In addition, the peak concentration is decreased to below 10 Bq/L, when it has 46000 years to migrate.
摘要
致謝
目錄
表目錄
圖目錄
符號說明
第一章 緒論
1.1 研究背景與目的
1.2 研究方法
1.3 研究架構
第二章 文獻回顧
2.1 破裂面模式
2.1.1 平行板模式
2.2.2 雙孔隙模式
2.1.3 當量孔隙模式
2.1.4 離散破裂面模式
2.1.5 異質連續模式
2.2 破裂面網路模式
2.3 地下水溶質傳輸模式
2.3.1 一維破裂面傳輸模式
2.3.2 二維破裂面傳輸模式
2.3.3 三維破裂面網路傳輸模式
2.4 破裂面幾何參數
2.4.1 組數與方位
2.4.2 間距與頻率
2.4.3 痕跡線長度
2.4.4 破裂面粗糙度
2.5 水力參數
2.5.1 孔隙率
2.5.2 破裂面內寬
2.5.3 透水係數
2.5.4 水力參數之室內試驗結果與分析
2.6 破裂面幾何參數-水力參數-力學偶合行為
2.6.1 破裂面幾何參數與水力參數關係
2.6.2 破裂面幾何參數與力學偶合行為
2.6.3 水力參數與力學偶合行為
2.7 溶質傳輸參數
2.7.1 分子擴散係數
2.7.2 延散度與延散係數
2.7.3 遲滯係數與分佈係數
2.7.4 傳輸參數之室內試驗結果與分析
2.8 蘭嶼地區破裂岩層溶質傳輸
第三章當量破裂岩體網路溶質傳輸模式建立
3.1 破裂面幾何參數分析
3.1.1 破裂面之平均位態
3.1.2 破裂面平均間距及頻率
3.1.3 破裂面痕跡線長度
3.2 破裂面透水係數張量
3.3 破裂岩體當量體積
3.4 破裂面幾何特性與水力參數之相關性
3.5 岩體破裂面網路之溶質傳輸
3.6 參數敏感性分析
3.6.1 具吸附性之岩基
3.6.2 不具吸附性之岩基
第四章研究案例應用與分析
4.1 現地水力參數
4.2 破裂面幾何參數
4.2.1 破裂面組數與平均位態
4.2.2 平均間距與頻率
4.2.3 痕跡線平均長度
4.3 破裂張量與透水係數張量
4.4 岩塊當量體積
4.5 水力參數與破裂面參數關係
4.6 低放射性核廢料處置場之污染物傳輸
4.7 高放射性核廢料處置場之污染物傳輸
第五章結論與建議
5.1 結論
5.2 建議
參考文獻
自述
Abelin H, Neretnieks I, Tunbrant S, Moreno L (1985) Migration in a single fracture: Experiment results and evaluation. Final report, Stripa project, Tech Rep 55-03 Swed Nucl Ful and Waste Manage Co. (SKB) Stochholm.
Andersson J, Dverstorp B (1987) Conditional simulations of fluid flow in three-dimensional networks of discrete fractures. Water Resour Res 23(10): 1876-1886.
Anonymous (1996) Rock fractures and fluid flow-contemporary understanding and applications. Nation Academy Press, Washington DC, 551p
Arya A, Hewett TA, Larson RG, Lake LW (1988) Dispersion and reservoir heterogeneity. SPEJ-Reservoir Eng 139-148.
Aydin A (2001) Fracture void structure: implication for flow, transport and deformation. 40: 672-677
Bacher GB, Lanney NA, Einstein HH (1977) Ststistical description of rock properties and sampling. Proc 18th U.S. Symp on Rock Mech 1: 56-65
Baecher GB (1983) Statistical analysis of rock mass fracturing. J Math Geol 15: 329-347
Baker JA (1982) Laplace transform solutions for sloute transport in fissured aquifers. Adv Water Resour 5: 98-104.
Bandis SC, Lumsden AC, Barton NR (1983) Fundamentals of rock joint deformation. Int J Rock Mech Min Sci & Geomech Abs 20: 249-268
Bandis SC, Barton NR, Christianson M (1985) Application of joint behavior to rock mechanics problems. Proc Int Symp on Fundamentals of Rock Joints, Bjorliden.
Barenblatt GE, Zheltov IP, Kochina IN (1960) Basic concepts in the theory of homogeneous liquids in fissured rocks. J Appl Math Mech 24(5): 1286-1303.
Barton N, Choubey V (1977) The shear strength of rock joints in theory and in practice. Rock Mech 10: 1-54.
Barton N, Bandis S, Bakhtar K (1985) Strength deformation and conductivity coupling of rock joints. Int J Rock Mech Min Sci & Geomech Abstr 22: 121-140.
Bear J (1972) Dynamics of fluids in porous media. Elsevier, New York.
Bear J (1993) Modeling flow and contaminant transport in fractures rocks. (eds J Bear, CF Teng, G de Marsily) Academic Press, San Diego, pp. 1-36.
Bibby R (1981) Mass transport of solutes in dual-porosity media. Water Resour Res 17: 1075-1081
Brace W F (1980) Permeability of argillaceous and crystalline rocks. Int J Rock Mech Min Sci & Geomech Abstr 17: 241-251.
Brown SR (1987) Fluid flow through rock joints: The effect of surface roughness. J Geophys Res 92(B2): 1337-1347.
Brown SR (1988) Transport properties of a single fracture under shear offset. Eos Trans AGU
Burkholder HC (1976) Methods and data for predicting nuclide migration in geologic media. Int Symp Management of Wastes from the LWR Fuel Cycle, Denver, Colo., USA.
Cacas MC, Ledoux E, de Maesily G, Tillie B, Barbreau A, Durand E, Feuga B, Peaudecerf P (1990a) Modeling fracture flow with a stochastic discrete fracture network: calibration and validation 1, the flow model. Water Resour Res 26: 479-489
Cacas MC, Ledoux E, de Maesily G, Barbreau A, Calmels P, Gaillard B, Margritta R (1990b) Modeling fracture flow with a stochastic discrete fracture network: calibration and validation 2, the transport model. Water Resour Res 26: 491-500
Chen M, Bai M (1998) Modeling stress-dependent permeability for anisotropic fractured porous rocks. Int J Rock Mech Min Sci 35(8): 1113-1119.
Chen CT, Li SH (1997) Radionuclide transport in fractured porous-media: analytical solutions for a system of parallel fractures with a flux-type boundary condition. Nucl Technol 117: 223-233
Chen RH, Lee CH, Chen GS (2001) Evaluation of transport of radioactive contaminant in fractured rock. Environ Geol 41: 440-450.
Chen Z, Narayan SP, Yang Z, Rahman SS (2000) An experimental investigation of hydraulic behaviour of fractures and joints in granitic rock. Int J Rock Mech & Min Sci 37: 1061-1071
Chiang WM, Kinzelbach W (1998) Processing Modflow: A simulation system for modeling groundwater flow and pollution. Updated from http://ourword.compuserve.com/homepages/W-H-Chiang/
Clemo T, Smith L (1997) A hierarchical model for solute transport in fractured media. Water Resour Res 33: 1763-1783
Deng BW, Lee C H, Chang JL (1995) Characterization and Interpretation of Variability of Fracture Pattern in Jointed Andesites, Lan-Yu, Taiwan. J Chinese Inst Engers 18: 787-799
Dershowitz WS, Einstein HH (1988) Characterizing rock joint geometry with joint system models1. Rock Mech and Rock Eng 21: 21-51
Dershowitz WS, Miller I (1995) Dual porosity fracture flow and transport. Geophys Res Lett 22: 1441-1444
Dershowitz WS (1999) Derivation of equivalent pipe network analogures for three- dimensional discrete fracture networks by the boundary element method. Water Resour Res 35: 2685-2691
DiFederico V (1997) Estimates of equivalent aperture for non-Newtonian flow in a rough-wall fracture. Int J Rock Mech & Min Sci 34: 1133-1137
Doolin DM, Mauldon M (2001) Fracture permeability normal to bedding in layered rock masses. Int J Rock Mech & Min Sci 38: 199-210
Dverstorp B, Andersson J (1989) Application of the discrete fracture network concept with field data: possibility of model calibration and validation. Water Resour Res 25(3): 540-550.
Elsworth D (1986) A model to evaluate the transient hydraulic response of three dimensional sparsely fractured rock masses. Water Resour Res 22: 1809-1819
Freeze RA, Cherry JA (1979) Groundwater, Prentice-Hall Inc, Englewood Cllifs, New Jersey.
Gale JE (1987) Comparison of couple fracture deformation and fluid flow models with direct measurements of fracture pore structure and stress-flow properities. 28th US Symp on Rock Mech. Tucson, 1213-1222.
Gale JE (1982) The effects of fracture type (induced versus natural) on the stress-fracture closure-fracture permeability relationships. Proc 23rd U S Symp On Rock Mech, Univ California Berkeley, pp 290-298.
Gelhar LW, Welty C, Rehfeldt KR (1992) A critical review of data on field-scale dispersion in aquifers. Water Resour Res 28: 1955-1974
Goodman RE (1976) Methods of geological engineering in discontinuous rock, West Publishing Co., 58-90
Green HW, Ampt GA (1911) Studies on soil physics. part I. The flow of air and water through soil,” J Agr Sci 4: 1-24.
Grisk G E, Pickens J F (1980) Solute transport through fractured media: the effect of matrix diffusion. Water Resour Res 16(4): 719-730.
Hadermann J, Heer W (1996) The Grimsel (Switzerland) migration experiment: integrating field experiments, laboratory investigations and modelling. J Contam Hydrol 21: 87-100
Hakami E (1995) Aperture distribution of rock fractures. Ph.D. Thesis, Division of Engineering Geology, Royal Inst Tech, Stockholm
Hakami E, Larsson E (1996) Aperture measurements and flow experiments on a single natural fracture. Int J Rock Mech & Min Sci 33:395-404
Hölttä P, Siitari-Kauppi M, Hakanen M, Tukiainen V (2001) Attempt to model laboratory-scale diffusion and retardation data. J Contam Hydrol 47:139-148
Hsieh PA, Neuman SP, Stiles GK, Simpon ES (1985) Field determination of the three-dimensional hydraulic conductivity tensor of anisotropic media, 2, methodology and application to fractured rocks. Water Resour Res 21: 1667-1676.
Huang H (1991) On a one dimensional tracer model. Groundwater 29: 18-21.
Hundson JA, Priest SD (1979) Discontinuities and rock mass geometry. Int J Rock Mech Min Sci & Geomech Abstr 16: 339-362.
IMSL User’s Manual (1991) FORTRAN subroutines for mathematical applications, IMSL, Inc., Texas, 921 pp
Jiao JJ (1993) Data-analyses methods for determining two-dimensional dispersive parameters. Groundwater 31: 57-67.
Karzulovic A, Goodman RE (1985) Determination of principal joint frequencies. Int J Rock Mech Min Sci. & Geomech Abst 22: 471-473
Kazi A, Sen Z (1985) Volumetric RQD: An Index of rock quality. Proc Int Symp on Fundam of Rock Joints, Björkliden, Sweden, pp 95-102
Kimura H, Munakata M (1991) Analysis of tracer movement in single fracture in granite core (INTRAVAL Case 2). J Nucl Sci & Technol 28: 1115-1127
Kulatilake PHSW, Wu TH (1984) Estimation of mean trace length of discontinuities. Rock Mech Rock Eng 17: 215-232.
Lapcevic PA, Novakowski KS, Sudicky EA (1999) The interpretation of a tracer experiment conducted in a single fracture under conditions of natural groundwater flow. Water Resour Res 35: 2301-2312
Laslett GM (1982) Censoring and edge effects in areal and line transect sampling of rock joint traces. Math Geol 14: 125-140
Lapcevic PA, Novakowski K, Sudicky EA (1999) The interpretation of a tracer conducted in a single fracture under conditions of natural groundwater flow. Water Resour Res 35: 2301-2312
Lee CH, Farmer I. (1993) Fluid fluid in discontinuous rocks. Chapman Hall, London 169P
Lee CH, Teng SP (1993) An analytical model for radionuclide transport in a single fracture: considering nonequilibrium matrix sorption. Nucl Technol 101: 67-78
Lee CH, Lin BS, Yu JL (1994) Dispersion and connectivity in flow through fractured network. J Chinese Inst Engers 17: 521-535
Lee CH, Chang JL, Deng BW (1995) A continuum approach for estimating permeability in naturally fractured rocks. Eng Geol 39: 71-85
Lee CH, Chang JL, Hsu KT (1996) Investigation of hydraulic aperture at surface-exposed rock fractures in situ. Geotech 46: 343-349
Lin BS, Lee CH (1998) Percolation and dispersion of mass transport in saturated fractured network. Water Resour Manage 12: 409-432
Lin BS, Lee CH, Yu JL (2000) Analysis of groundwater seepage of tunnels in fractured rock. J Chinese Inst Engers 23: 155-160
Liu J, Elsworth D, Brady BH (1999) Linking stress-dependent effective porosity and hydraulic conductivity fields to RMR. Int J Rock Mech & Mine Sci 36: 581-596
Liu WC, Lo JG, Tsai CM (1991) Sorption of Cs, Sr and Co on andesite and coral limestone. Radiochim Acta 52/53: 169-175
Long JCS (1985) A model for steady fluid flow in random three- dimensional networks of disk shaped fracture. Water Resour Res 21: 1105-1115
Long JCS, Remer JS, Wilson CR, Witherspoon PA (1982) Porous media equivalents for networks of discontinuous fractures. Water Resour Res 18(3): 645-658.
Long JCS, Witherspoon PA (1985) The relationship of degree of interconnection to permeability in fracture networks. J Geophys Res 90 (B4): 3087-3098.
Louis C (1969) A study of groundwater flow in jointed rock and its inflence on the stability of rock masses. Rock Mech Report, Imperial College.
Lowell RP (1989) Contaminant transport in a single fracture: periodic boundary and flow conditions. Water Resour Res 25(5): 774-780.
Mauldon M (1998) Estimating mean fracture trace length and density from observations in convex windows. Rock Mech Rock Eng 31: 201-216
McLaren RG, Forsyth PA, Sudicky EA, VanderKwaak JE, Schwartz FW, Kessler JH (2000) Flow and transport in fractures tuff at Yucca Mountain: numerical experiments on fast preferential flow mechanisms. J Contam Hydrol 43: 211-238
Miller SM (1983) A statistical method to evaluate homogeneity of structural populations. Math Geol 15: 317-328
Moreno L, Rasmuson A (1986) Contaminant transport through a fractured porous rock: impact of the inlet boundary condition on the concentration profile in the rock matrix. Water Resour Res 22(12): 1728-1730.
Moreno L, Tsang YW, Tsang CF, Hale F, Neretnieks I (1988) Flow and tracer transport in a single fracture: A stochastic model and its relation to some field observations. Water Resour Res 24: 2033-2048
Neretnieks I (1980) Diffusion in the rock matrix: an important factor in radionuclide retardation. J Geophy Res 85:4379-4397.
Neretnieks I (1983) A note on fracture flow mechanisms in the ground. Water Resour Res 19: 363-370
Neretnieks I, Eriksen T, Täivi P (1982) Tracer movement in a single fissure in granitic rock: Some experimental results and their interpretation. Water Resour Res 18: 849-858
Neuman SP (1987) Stocastic continuum representation of fracture network concept. Proc 28th US Symp On Rock Mech, Univ Arizona, Tucson.
Neuman SP (1990) Universal scaling of hydraulic conductivities and dispersivities in geologic media. Water Resour Res 26: 1749-1758
Neuman SP (1993) Comment on “A critical review of data on field-scale dispersion in aquifers” by LW Gelhar, C Welty, KR Rehfeldt. Water Resour Res 29: 1863-1865
Neuzil CE, Tracy JV (1981) Flow through fractures. Water Resour Res 17(1): 191-199.
Nordqvist AW, Tsang YW, Tsang CF, Dverstorp B, Andersson J (1992) A variable aperture fracture network model for flow and transport in fractured rocks. Water Resour Res 28(6): 1703-1713.
Novakowski KS, Evans GV, Lever DA Raven KG (1985) A field example of measuring hydrodynamic dispersion in a single fracture. Water Resour Res 21: 1165-1174
Novakowski KS (1988) Comparison of fracture aperture widths determined from hydraulic measurements and tracer measurements. Proc 4th Can/American Confer Hydrogeo Fluid Flow, Heat Transfer and Mass Transport in Fractured Rock, National Water Well Association, Dublin, Ohio. pp 68-80
Novakowski KS, Lapcevic PA (1994) A field measurement of radial solute transport in fractured rock. Water Resour Res 30: 37-44
Oda M (1985) Permeability tensor for discontinuous rock masses. Geotech 35: 483-495
Oda M (1986) An equivalent continuum model for coupled stress and fluid flow analysis in jointed rock masses. Water Resour Res 22(13): 1845-1856.
Olsson R, Barton N (2001) An improved model for hydromechanical coupling during shearing of rock joints. Int J Rock Mech & Min Sci 38: 317-329
Pahl PJ (1981) Estimating the mean length of discontinuity traces. Int J Rock Mech Min Sci & Geomech abstr 18:221-228
Piggott AR, Elsworth D (1989) Physical and numerical studies of a fractured system model. Water Resour Res 25: 457-462
Pohll G, Hassan AE, Chapman JB, Papelis C, Andricevic R (1999) Modeling ground water flow and radioactive transport in a fractured aquifer. Ground Water 37: 770-784
Priest, SD Hudson JA (1976) Discontinuity spacings in rock. Int J Rock Mech Min Sci 13:135-148
Priest SD, Hudson JA (1981) Estimation of discontinuity space and trace length using scanline survey. Int J Rock Mech Min Sci & Geomech Abstr 18: 183-197
Raven KG, Novakowski KS, Lapcevic PA (1988) Interpretation of field tests of a single fracture using a transient solute storage model. Water Resour Res 24(12): 2019-2032.
Robertson A (1970) The interpretation of geological factors for use in slope stability. Proc Symp on the theoretical background to the planning of open pit mines with special reference to slope stability, 55-71.
Rocha M, Franciss F (1977) Determination of permeability in anistropic rock masses from integral samples.Rock Mech 9 : 55-71.
Rouleau A, Gale JE (1987) Stochastic discrete fracture simulation of groundwater flow into an underground excavation in granite. Int J Rock Mech Min Sci & Geomech Abstr 24(2): 99-112.
Rowe RK (1988) Contaminant migration through groundwater: the role of modelling in the design of barriers. Can Geotech J 25: 778-798
Rowe RK, Booker JR (1989) A semi-analytic model for contaminant migration in a regular two-or three-dimensional fractured network: Conservative Contaminants. Int J Numer & Anal Meth in Geomech 13: 531-550
Rowe RK, Booker JR (1990) A semi-analytic model for contaminant migration in a regular two or three dimensional fractured network: reactive contaminants. Int J Numer & Anal Meth in Geomech 14: 401-425
Rubin H, Jansen D, Forkel C, Köngeter J (1999) Simulation of contaminant transport in fractured permeable formations by multiporosity modeling. J Hydrol 223:107-130
Sauty JP (1980) An analysis of hydrodispersive transfer in aquifer. Water Resour Res 16(1): 145-158.
Sawada A, Uchida M, Shimo M, Yamamoto H, Takahara H, Doe TW (2000) Non-sorbing tracer migrayion experiments in fravtured rock at the Kamaishi Mine, Northeast Japan. Eng Geol 56: 75-96
Schild M, Siegesmund S, Vollbrecht A, Mazurek M (2001) Cheracterization of granite matrix porosity and pore-space geometry by in situ and laboratory methods. Geophys J Int 146: 111-125
Schwartz FW, Smith L, Crowe AS (1983) A stochastic analysis of macroscopic dispersion in fractured media. Water Resour Res 19(5): 1253-1265.
Schwartz FW, Smith L (1988) A continuum approach for modeling mass-transport in fractured media. Water Resour Res 24(8): 1360-1372.
Sen Z (1996) Theroetical RQD-porosity-conductivity-aperture charts Int J Rock Mech Min Sci & Geomech Abstr 33: 173-177
Sen Z, Eissa SA (1991) Volumatic rock quality designation. J Geotech Eng ASCE 117: 1331-1346.
Shanley RJ, Mahtab (1976) Delineation and analysis of clusters in orientation data. Math Geol 8: 9-13
Shen B, Barton N (1997) The disturbed zone around tunnels in jointed rock masses. Int J Rock Mech Mine Sci & Geomech Abstr 34(1): 117-125.
Silliman SE (1989) Interpretation of the difference between aperture estimates derived from hydraulic and tracer tests in a single fracture. Water Resour Res 25: 2275-2283
Singhal BBS, Gupta RP (1999) Applied hydrogeology of fractured rocks. Kluwer Academic Publishers, Netherlands, 400p
Smith L, Schwartz FW (1984) An analysis of the inflence of fracture geometry on mass transport in fractured media. Water Resour Res 20(9): 1241-1252.
Smith L, Mase CW, Schwartz FW (1987) Estimation of fracture aperture using hydraulic and tracer test. Proc 28th Symp on Rock Mech US, Univ Ariz Tucson.
Snow DT (1965) A parallel plate model of fractured permeable media. Ph D dissertation, University of California, Berkely.
Snow DT (1968) Rock fracture spacings, openings and porosities. J Soil Mech Found Div ASCE 94(SM1): 73-91.
Snow DT (1969) Anisotropic permeability of fractured media. Water Resour Res 5: 1273-1289.
Snow DT (1970) The fracture and aperture of fracture in rock. Int J Rock Mech Min Sci & Geomech Abstr 7: 23-40
Song JJ, Lee CI (2001) Estimation of joint length distribution using window sampling. Int J Rock Mech & Min Sci 38: 519-528
Sudicky EA, Frind EO (1982) Contaminant transport in fractured porous media: Analytical solutions for a system of parallel fractures. Water Resour Res 18: 1634-1642
Sudicky EA (1990) The Laplace transform Galerkin technique for efficient time-continuous solution of solute transport in double-porosity media. Geoderma 46: 209-232
Sudicky EA, MaLaren RG (1992) The Laplace transform Galerkin technique for large-scale simulation of mass transport in discretely fractured porous formations. Water Resour Res 28: 499-514
Tannant DD, Kaiser PK, Chan DH (1993) Effect of tunnel excavation on transmissivity distributions and flow in a fracture zone. Can Geotech J 30: 155-169.
Tang DH, Frind EO, Sudicky EA (1981) Contaminant transport in fractured porous media : analytical solution for a single fracture. Water Resour Res 17: 555-564
Tsang YW (1992) Usage of “equivalent aperture” for rock fractures as derived from hydraulic and tracer tests. Water Resour Res 28: 145-155
Tsang YW, Tsang CF (1987) Channel model of flow through fractured media. Water Resour Res 23: 467-479
Tsang YW, Tsang CF, Neretineks I, Moreno L (1988) Flow and tracer transport in fractured media: a variable aperture channel model and its properties. Water Resour Res 24(12): 2049-2060.
Tsang YW, Witherspoon PA (1981) Hrdro-mechanical behavior of a deformable rock fracture subject to normal stress. J Geophys Res 86(B10): 9287-9298.
Vandergraaf TT, Drew DJ, Masuda S (1996) Radionuclide migration experiments in a natural fracture in a quarried block of granite. J Contam Hydrol 21: 153-164
Vilks P, Frost LH, Bachinski DB (1997) Field-scale colloid migration experiments in a granite fracture. J Contam Hydrol 26: 203-214
Vilks P, Baik Mh (2001) Laboratory migration experiments with radionuclides and natural colloids in a granite fracture. J Contam Hydrol 47: 197-210
Wallis PE, King MS (1980) Discontinuity spacing in a crystalline rock. Int J Rock Mech Min Sci & Geomech Abstr 17: 63-66
Wang JSY, Trautz RC, Cook PJ, Finsterle S, James AL, Birkholzer J (1999) Field tests and model analyses of seepage into drifts. J Contam Hydrol 38: 323-347.
Weast RC (1977) Handbook of chemistry and physics. 5th ed. Chemical Rubber Company Press, Boca Raton, Fla.
Wei ZQ, Egger P, Descoeudres F (1995) Permeability prediction for jointed rock masses. Int J Rock Mech Min Sci & Geomech Abstr 32(3): 251-261.
Weiss LE (1972) The minor structures of deformed rock. Springer-Verlag, NY
Wels C, Smith L (1994) Retardation of sorbing solutes in fractured media. Water Resour Res 30: 2547-2563
Wels C, Smith L, Vandergraaf TT (1996) Influence of specific surface area on transport of sorbing solutes in fractures: an experimental analysis. Water Resour Res 32: 1943-1954
Wels C, Smith L, Beckie R (1997) The influence of surface sorption on dispersion in parallel plate fractures. J Contam Hydrol 28: 95-114.
Witherspoon PA, Wang JCY, Iwall K, Gale JE (1980) Validity of cubic law for fluid flow in a deformable rock fracture. Water Resour Res 16: 1016-1024
Xiao YX, Lee CF, Wang SJ (1999) Assessment of an equivalent porous medium for coupled stress and fluid flow in fractured rock. Int J Rock Mech & Mine Sci 36: 871-881
Zhang L, Einstein HH (1998) Estimating the mean trace length of rock discontinuities. Rock Mech Rock Eng 31: 217-235
Zhang X, Sanderson DJ, Harkness RM, Last NC (1996) Evaluation of 2-D permeability tensor of fractured masses. Int J Rock Mech Min Sci & Geomech Abstr 33: 17-37
Zhang X, Sanderson DJ (1999) Scale up of two-dimensional conductivity tensor for heterogenous fracture networks. Eng Geol 53: 83-99
Zimmerman RW, Chen G, Hadgu T, Bodvarsson GS (1993) A numerical dual-porosity model with semi-analytical treatment of fracture matrix flow. Water Resour Res 29(7): 2127-2137.
Zimmerman RW, Bodvarsson GS (1996) Hydraulic conductivity of rock fractures. Transport in Porous Media 23: 1-30
王建力、林宏奕(2000)岩石剪力破裂面粗糙度及其量測之研究,礦冶,44(2):155-163
余進利(1992)破裂面網路地下水流與污染物傳輸之研究,國立成功大學水利及海洋工程研究所博士論文。
林松興(1995)岩體破裂面在正應力下之水力參數探討,國立成功大學資源工程研究所碩士論文。
林碧山(2000)破裂岩體地下水滲流與溶質傳輸,國立成功大學資源工程研究所博士論文。
李振誥、余進利(1991)節理與流動模型,地工技術雜誌,33:68-82。
李振誥(1992,1993,1994)破碎岩體地下水流及污染物傳輸模式之評選及應用於示範場址(一、二、三)-流動與傳輸特性及模式之研究,原能會物管處委託研究報告。
李振誥(1995)破裂岩體水力透水係數張量特性及非保守放射性核種傳輸模式審查技術之建立,原能會物管局委託研究報告
李振誥、張瑞麟、陳時祖、石作岷、李森吉、吳育生(1993)岩體破裂面空間位態組數劃分及各組主頻率與適合度檢定程式之操作手冊,國立成功大學資源工程研究所教材。
李振誥、陳榮華、林碧山(1995)正交破裂面傳輸模式應用於蘭嶼儲存場破裂安山岩體中污染物傳輸之研究,中國環境工程學刊,5(2):149 - 160。
范光照、張郭益(1998)精密量測,高立出版社,台北。
許廣宗(1995)地表補注對破裂岩體入滲行為之研究-應用於蘭嶼地區安山岩體,國立成功大學碩士論文。
郭明錦(1991,1992,1993,1994)放射性廢料設施及其附近地下水示蹤及井壓試驗之設計研究(一、二、三、四),原能會物管處委託研究報告。
郭明錦(1995,1996)放射性廢料設施及其附近地下水示蹤技術之研究及其在場址安全評估審查技術之建立(一、二),原能會物管局委託研究報告。
黃文彥(1992)安山岩含水層中地下水示蹤試驗、延散係數及遲滯係數之研究,國立成功大學礦冶及材料科學研究所。
黃崇琅、李振誥(1997)應用雙孔隙模式於具膚表效應破裂含水層水力性質估計之研究,第七屆大地工程學術研討會,台北金山,p.1113-1120。
陳榮華、李振誥 (1999) 破裂岩體中節理幾何參數與水力參數相關性之研究,礦冶,43(4):75-87。
葉義章(1994)含水層示蹤試驗及其在地下水污染調查之應用,國立成功大學資源工程研究所碩士論文。
葉義章(2001)飽和及未飽和層地下水流動對其溶質傳輸影響之研究-以核研所試驗場址為例,國立成功大學資源工程研究所博士論文。
鄧博維(1997)破裂岩體中不連續面特性與透水係數關係之探討-以蘭嶼地區安山岩體為個案研究,國立成功大學資源工程研究所博士論文。
蔡明謙(1995)岩體節理痕跡線長度及其空間結構變異性分析之研究-以蘭嶼虎頭坡地區安山岩截裡面為例,國立成功大學資源工程研究所碩士論文。
趙振宇(1999)岩石節理面力學性質與導水性偶合行為研究,國立台灣大學土木工程研究所博士論文。
劉振宇(1992,1993,1994)地化模式應用於地下水中放射性核種遷移之研究(一、二、三),原能會物管處委託研究報告。
劉振宇(1995)地化模式應用於地下水中放射性核種遷移之研究-工程障壁之地化傳輸審查技術建立,原能會物管局委託研究報告。
謝敬義(1989)立體投影網的應用,地工技術雜誌,25:84-97。
羅俊光(1988,1989,1990)蘭嶼貯存場下層地質之放射性核種遷移研究(一、二、三),原能會物管處委託研究報告。
羅俊光(1992,1993,1994)放射性核種在地層中遷移之阻滯因子審查技術(一、二、三),原能會物管處委託研究報告。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top