跳到主要內容

臺灣博碩士論文加值系統

(54.224.133.198) 您好!臺灣時間:2022/01/29 20:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張郁斌
研究生(外文):Yu-Pin Chang
論文名稱:混合型時延系統之最佳化控制:以進化規劃法為基礎之數位再設計
論文名稱(外文):Optimal Control of Hybrid Time-Delay Systems:Evolutionary Programming Based Digital Redesign
指導教授:蔡聖鴻
指導教授(外文):Jason Sheng-Hong Tsai
學位類別:博士
校院名稱:國立成功大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:90
語文別:英文
論文頁數:127
中文關鍵詞:最佳化控制混合型系統時延系統數位再設計進化規劃法
外文關鍵詞:Optimal ControlHybrid SystemsTime-Delay SystemsDigital RedesignEvolutiomary Programming
相關次數:
  • 被引用被引用:0
  • 點閱點閱:639
  • 評分評分:
  • 下載下載:133
  • 收藏至我的研究室書目清單書目收藏:2
本論文係在於探討混合型時間延遲系統的最佳化控制。主要研究成果可包括以下幾方面:
(一) 針對具有狀態與控制輸入限制之資料取樣、輸入延遲系統,提出最佳化輸出軌跡追蹤設計。利用多重目的之進化規劃法為基礎的數位再設計技術,在受限系統中,實現數位控制器並有效地達到性能之最佳化。
(二) 進一步探討兩個具有狀態與輸入限制、同時有輸入時間延遲的混合串連系統之最佳化軌跡追蹤控制。另一方面,當系統同時考慮存在不確定性與系統限制時,提出一套最佳控制演算法使得輸出軌跡追蹤誤差最小化。此外,針對具有不確定性且同時存在多重狀態和輸入時間延遲的系統,吾人利用數位重新設計的技術結合進化規劃法,完成資料取樣系統的軌跡追蹤設計。
基於進化規劃方法之數位再設計最佳化技術,運用於資料取樣系統所設計出之數位控制律,經由舉例與電腦模擬,證實能夠有效地實現控制目標。相信有助於文獻上於資料取樣時間延遲系統之最佳化設計與控制方面的理論和實現。

This dissertation is dedicated to develop the optimal tracking control of hybrid time-delay nominal/uncertain systems. It includes the following distributions:
(i) The optimal digital tracking design for sampled-data time-delay systems under state and control constraints is proposed. The advanced digital redesign technique based on the multi-objective evolutionary programming (MOEP) is effective to achieve performance optimization under concurrent system constraints.
(ii) The tracking control of cascaded hybrid systems with different input time delays is developed. First, the optimal high-gain analog tracker is designed based on the MOEP optimal search technique, then utilizing the MOEP-based digital redesign approach to determine the relative long sampling period under constraints and associated implementable low-gain digital controller for the hybrid systems.
(iii) Considering the uncertainties and restrictions in time-invariant linear systems, an optimal min-max algorithm to minimize the worst errors between the outputs and the desired signals is proposed.
(iv) A new digital modeling technique involving the Newton’s forward difference formula with EP for sampled-data uncertain systems with general multiple state and input delays is developed. Furthermore, combining the successful digital redesign technology with the MOEP via the min-max method, the best digital tracker is also developed.
MOEP-based optimal digital redesign techniques are utilized in this dissertation to develop digital controllers for hybrid nominal/uncertain systems. The effectiveness of developed digital control laws is demonstrated by illustrative examples. To believe firmly, the advantages of this dissertation are helpful to complete the theories and implements in the literature for optimal control of hybrid time-delayed systems.

Abstract (Chinese) i
Abstract (English) ii
Symbols and Abbreviations iii
Acknowledgment iv
Contents v
List of Figures vii
List of Tables ix
Chapter
1 Introduction
1.1 Motivation …………………………………………………………………. 1
1.2 Literature survey ..…………………………………………………………. 3
1.3 Scope of the Dissertation .…………………………………………………. 4
2 Evolutionary Programming
2.1 QRS vs. PRS ……………………………………………………………….. 8
2.2 General concept of evolutionary programming algorithm ..……………….. 8
3 Optimal Tracking Design for Sampled-Data Systems with Input Time Delay under State and Control Constraints
3.1 Introduction ………………………………………………………………… 12
3.2 Optimal LQ tracking design via MOEP for analog systems under state constraints …………………………………………………………………. 13
3.3 Optimal digital redesign for sampled-data systems with input time-delay
under state and control constraints ………………………………………... 18
3.4 Illustrative examples ………………………………………………………. 27
3.5 Summary …………………………………………………………………... 33
4 Optimal Digital Design of Hybrid Cascaded Systems with Input Time Delays under State and Control Constraints
4.1 Introduction ………………………………………………………………… 49
4.2 Optimal design of cascaded systems under state constraints ……………… 50
4.3 MOEP-based optimal tracking design for hybrid cascaded systems with
input time delays under state and control constraints …………………….. 55
4.4 An illustrative example …………………………………………………… 65
4.5 Summary …………………………………………………………………... 68
5 Optimal Tracking Design of Uncertain Sampled-Data Systems with Input Time Delay under State and Control Constraints
5.1 Introduction ………………………………………………………………… 76
5.2 Optimal tracking design via MOEP for uncertain analog constrained
system with input delay …………………………………………………… 77
5.3 MOEP-based optimal tracking design for sampled-data uncertain systems
with input time delay under state and control constraints …….…………... 83
5.4 An illustrative example ……………………………………………………. 88
5.5 Summary …………………………………………………………………... 90
6 Digital Redesign of Uncertain Systems with State and Input Delays Using Evolutionary Programming
6.1 Introduction ………………………………………………………………... 97
6.2 Digital modeling of continuous-time state and input delayed uncertain
systems ……………………………………………………………………. 99
6.3 Digital redesign of analog uncertain time-delay systems using EP ……….. 104
6.4 Illustrative examples ………………………………………………………. 111
6.5 Summary …………………………………………………………………... 114
7 Conclusions ……………………………………………………………………. 118
Appendix ……………………………………………………………………………… 120
References ………………………………………………………………………… ......... 122
Vita ..…… ..…………………………………………………………………………….. 126
Publication List ..……….……………………………………………………………. 127

[1] Ackermann, J., Robust Control System with Uncertain Physical Parameters, Springer-Verlag, New York, USA, 1993.
[2] Anderson, B. D. O., “Controller design:moving from theory to practice”, IEEE Control Systems Magazine, Vol. 13, pp.16-25.
[3] Astrom, K. J. and Wittenmark, B., Computer Controlled Systems, Printice-Hall, 1997.
[4] Baeck, T., Hammel, U., and Schwefel, H. P., “Evolutionary Computation:Comments on the History and Current State”, IEEE Trans. Evolutionary Computation, Vol.1, No.1 , pp.3,1997.
[5] Bahill, A. T., “A simple adaptive Smith-predictor for controllingtime-delay systems”, IEEE Control Systems Magazine, Vol.3, pp. 16-22, 1983.
[6] Batman, H., “The control of an elastic fluid”, Bull. Am. Math. Soc., Vol. 51, pp. 601-646, 1964.
[7] Bellman, R., Introduction to Matrix Analysis, McGraw-Hill, New York, 1970.
[8] Berg, J., Hammertt, K., Schwartz, C., and Banda, S., “An Analysis of the destabilizing effect of daisy chained rate limited actuators”, IEEE Trans. Control System Technology, 1996.
[9] Callender, A., Hartree, D. R. and Porter, A., “Time lag in a control system”, Trans. R. Soc., Series A, Col. 235, pp. 415-444, 1935 and op. cit., Vol. 161, pp. 460-476, 1937.
[10] Cao, Y. J., “Eigenvalue Optimisation Problem via Evolutionary Programming”, Electronics Letters, Vol. 33, No. 7,1997.
[11] Chandler, P. R., Mears, M. J., and Pachter, M., “A hybrid LQR/LP approach for addressing actuator saturation in feedback control”, Proc. of the Conference on Decision and Control, Lake Buena Vista, FL, Vol. 4, pp.3860, 1994.
[12] Chen, T. and Francis, B., Optimal Sampled-Data Control Systems, Springer-Verlag, New York, 1995.
[13] Chosky, N. H., “Time-lag systems-a bibliography”, IRE Trans. Automatic Control, Vol. AC-5, pp. 66-70, 1960.
[14] Dedieu, H., and Ogorzalek, M., “Controlling chaos in Chua’s circuit via sampled inputs, International Journal of Bifurcation and Chaos, Vol. 4, pp.447, 1994.
[15] Durham, W., “Constrained control allocation”, Journal of Guidance, Control, and Dynamics, Vol. 16, No. 4, pp.717, 1993.
[16] Etkin, B., Dynamics of Atmosphere Flight, Wiley, New York, 1972.
[17] Fogel, D., Evolutionary Computation, IEEE Press, 1995.
[18] Fogel D. B., Evolutionary Computation: Toward a New Philosophy of Machine Intelligence, 2nd Ed., IEEE Press, Piscataway, New York, 1999.
[19] Fogel, L. J., Owens, A. J., and Walsh, M. J., Artificial Intelligence through Simulated Evolution, John Wiley and Sons, New York, 1966.
[20] Franklin, G. F., Powell, J. D., and Workman, M. L., Digital Control of Dynamic Systems, Addison-Wesley, New York, 1990.
[21] Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Reading, MA, pp.59, 1989.
[22] Goodwin, G. C. and Middleton, R. H., Digital Control and Estimation, Prentice-Hall, Englewood Cliffs, 1990.
[23] Goodwin, G. C., Graebe, S. F. and Salgado, M. E., Control System Design, Prentice Hall, 2001.
[24] Graham, D., and McRuer, D., “Retrospective essay on nonlinearities in aircraft flight control”, Journal of Guidance, Control, and Dynamics, Vol. 14, No. 6, pp.1089, 1991.
[25] Halton, J. H., “On the efficiency of certain quasi-random sequences of points in evaluating multidimensional integrals,” Numerische Mathematik, Vol. 2, pp. 84-90. with Corrigenda on pp. 196, 1960.
[26] Hammersley, J. M. and Handscomb, D. C., Monte Carlo methods, Methuen & Co. Ltd., London ,1964.
[27] Holland, J. H., Adaptation in Natural and Artificial Systems, Addison-Wesley, Reading, MA, pp.89, 1975.
[28] Houpis, C. H. and Lamont, G. B., Digital Control Systems, McGraw Hill, 1985.
[29] Keller, J. P. and Anderson, B. D. O., “A new approach to the discretization of continuous-time controllers”, IEEE Trans. Automatic Control, Vol. 37, pp.214-223, 1992.
[30] Kosut, R. L., “Design of linear systems with saturating linear control and bounded states, IEEE Trans. Automatic Control, Vol. 28, No.1,pp.121, 1983.
[31] Kuo, B. C., Digital Control Systems, Holt, Rinehart and Winston, New York, 1980.
[32] Lewis, F. L., Optimal Control, Wiley, New York, 1986.
[33] Lewis, F. L., Applied Optimal Control and Estimation, Prentice-Hall, New Jersey, 1992.
[34] Malek-Zavarei, M. and Jamshidi, M., Time-Delay Systems, 1987.
[35] Man, K. F., Tang, K. S., and Kwong, S., Genetic Algorithms, Springer-Verlag, London, 1999.
[36] Mao, C. J. and Yang, J. H., “Decentralized output tracking for linear uncertain interconnected systems”, Automatica, Vol. 31, pp. 151-154, 1995.
[37] Michalewicz, Z., Genetic Algorithms + Data Structures = Evolutionary Programs, Springer-Verlag, 1996.
[38] Oppenheimer, E. P. and Michel, A. N., “Application of interval analysis techniques linear systems”, IEEE Trans. Circuits and Systems, pp. 1243-1256, 1988.
[39] Rafee, N., Chen, T. and Malik, O. P., “A technique for optimal digital redesign of analog controllers”, IEEE Trans. Control Systems Technology, Vol. 5, pp. 89-99, 1995.
[40] Ralston, A., A First Course in Numerical Analysis, McGraw-Hill, 1969.
[41] Schmitendorf, W. E. and Barmish, B. R., “Robust asymptotic tracking for systems with unknown parameters”, Automatica, Vol. 22, pp. 355-360, 1986.
[42] Sergey, E. L., “Aircraft flight control system design under state and control bounds”, IEEE Trans. Aerospace and Electronic Systems, Vol. 34, No. 1, pp.257, 1998.
[43] Sherwood, G. E. F. and Taylor, A. E., Calculus, Prentice-Hall, Englewood Cliffs, N. J., pp. 170-171, 1952.
[44] Shen, J. C., Chen, B. S. and Kung, F. C., “Memoryless stabilization of uncertain dynamic delay systems: Riccati equation approach”, IEEE Trans. Automatic Control, Vol. 36, pp. 638-640, 1991.
[45] Shieh, L. S., Chen, G and Tsai, J. S. H., “Hybrid suboptimal control of multi-rate multi-loop sampled-data systems”, Int. J. Systems and Science, Vol. 23, pp. 839-854, 1992.
[46] Shieh, L. S., Did, H. M. and Ganesan, S., “Linear quadratic regulators with eigenvalue placement in a specific region”, Automatica, Vol. 24, pp. 819-823, 1988.
[47] Shieh, L. S., Wang, W. M. and Panicker, M. K. A., “Design of PAM and PWM digital controllers for cascaded analog systems”, ISA Trans., Vol. 37, pp. 201-213, 1998.
[48] Shieh, L. S., Zhang, J. L. and Coleman, N. P., “Optimal digital redesign of continuous-time controllers”, Computer Mathematics and Applications, Vol. 22, pp. 25-35, 1991.
[49] Shieh, L. S., Zhang, J. L. and Sunkel, J. W., “A new approach to the digital redesign of continuous-time controllers”, Control-Theory and Advanced Technology, Vol. 8, pp. 37-57, 1992.
[50] Shieh, L. S., Zhao, X. M., and Zhang, J. L., “Locally optimal-digital redesign of continuous-time systems”, IEEE Trans. Industrial Electronics, Vol. 36, pp.511, 1989.
[51] Shieh, L. S., Wang, W. M. and Tasi, J. S. H., “Digital redesign of controller via bilinear approximation method for state-delayed systems”, Int. J. Control, Vol. 70, pp. 665-683, 1998.
[52] Shieh, L. S., Chang, Y. F. and Yates, R. E., “ A dominant-data matching method for digital control systems modeling and design”, IEEE Trans. Industrial Electronics Control Instruments., Vol. 28, pp. 390, 1981.
[53] Shieh, L. S., Zou, X., and Tsai, J. S. H., “Model conversion of continuous-time uncertain systems via the interval geometric-series method”, IEEE Trans. Circuits and Systems-I: Fundamental Theory and Applications, pp. 851-854, 1996.
[54] Trinh, H. and Aldeen, M., “Stabilization of uncertain dynamic delay systems by memoryless feedback controllers”, Int. J. Control, Vol. 59, pp. 1525-1542, 1994.
[55] Trinh, H. and Aldeen, M., “Output tracking for linear uncertain time-delay systems”, IEE Proc. Control Theory Applications, Vol. 143, 1996.
[56] Tsai, J. S. H., Chen, C. M. and Shieh, L. S., “Digital redesign of the cascaded continuous-time controller: time-domain approach”, Control-Theory Advanced Techniques, Vol. 17, pp. 643-661, 1991.
[57] Tsai, J. S. H., Shieh, L. S., Zhang, J. L. and Coleman, N. P., “Digital redesign of pseudo-continuous-time suboptimal regulators for large-scale discrete system”, Control-Theory Advanced Techniques, Vol. 5, pp. 37-65, 1989.
[58] Tsay, S. C., Fomg, I. K. and Kuo, T. S., “Robust linear quadratic optimal control for systems with linear uncertainties”, Int. J. Control, Vol. 53, pp. 81-96, 1991.
[59] Van Loan, C. F., “Computing integrals involving the matrix exponential”, IEEE Trans. Automatic Control, Vol. 23, pp.395, 1978.
[60] Weiss, R., “Transporting lag- an annotated bibliography”, IRE Trans. Automatic Control, Vol. 4, pp. 56-68, 1959.
[61] Yao, X., Liu, Y., and Lin, G., “Evolutionary programming made faster”, IEEE Trans. Evolutionary Computation, Vol. 3, 1999.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊