跳到主要內容

臺灣博碩士論文加值系統

(23.20.20.52) 您好!臺灣時間:2022/01/24 19:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳福坤
研究生(外文):Fu-Kun Chen
論文名稱:MPEG-4低率語音編碼器複雜度之簡化
論文名稱(外文):Complexity Reduction for MPEG-4 Low Rate Speech Coders
指導教授:楊家輝楊家輝引用關係
指導教授(外文):Jar-Ferr Yang
學位類別:博士
校院名稱:國立成功大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:90
語文別:英文
論文頁數:139
中文關鍵詞:代數碼激式線性預測編碼器多脈衝最大近似線性預測編碼器計算複雜度可階化傅利葉轉換遞迴架構單一濾波器架構
外文關鍵詞:ACELPMP-MLQComplexity ScalabilityRecursive DFTUnified IIR Structure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:662
  • 評分評分:
  • 下載下載:90
  • 收藏至我的研究室書目清單書目收藏:0
本論文共完成兩個主要研究項目以加速語音壓縮編碼之計算。首先,我們對代數碼激式線性預測編碼器(ACELP)和多脈衝最大近似線性預測編碼器(MP-MLQ)中隨機編碼方式提出簡化法則。其次,對遞迴式離散傅利葉轉換的架構提出簡化演算法,遞迴式離散傅利葉轉換可應用許多訊號分析及壓縮技術。
以設計的指引函數來預測候選位置的技巧,來提出快速代數碼激式線性預測編碼器。減少候選位置的方法,不僅使搜尋的迴圈減少,並且避免不需要的相關函數(Correlation Function)的計算。另一個緊縮候選位置的隨機編碼技巧CMP-MLQ亦被提出來,以漸進式地減少多脈衝最大近似線性預測編碼器的計算量。這些減少候選位置的方法都能有效的減低計算量的需求。實驗證明,提出的候選位置技巧可以在不降低感官上的語音品質條件下,降低50%以上的計算量。基於上述的簡化技巧,我們提出了計算複雜度的可變化觀念。因為為適應不同的工作平台的要求和各種多媒體資源的整合服務,多媒體編碼器的計算複雜度可以變化是必要的。
其次,對於重要的分析工具離散傅利葉轉換。我們提出三種單一無限脈衝響應濾波器型式(Unified IIR Filter)的遞迴式離散傅利葉轉換架構。伴隨著區域性連接與規則模組化的特性優點,所提出的架構亦可以以相同的濾波器計算不同的離散傅利葉轉換係數。而在穩定度的探討上,所提出的演算法若以最佳係數來實現,則可比過去學者提出的架構,有較低的累積誤差上,而這些傳統的遞迴式離散傅利葉轉換架構對不同的離散傅利葉轉換係數則需以不同的濾波器係數來實現。

In this thesis, we conduct two major research topics for reduction of the low rate speech coders. First, the fast stochastic codebook search algorithms for reduction of the algebraic code excited linear predictive (ACELP) and multi-pulse maximum likelihood quantization (MP-MLQ) are proposed. Then, we also suggest three efficient recursive filters for computation of the discrete Fourier transform (DFT), which could be used for many applications in signal analysis and signal compression.
A fast ACELP algorithm is proposed by designing a pilot function to predict the predetermined candidate pulses. With the reduced candidate pulses, we not only reduce the number of search loops but also avoid the computation of unnecessary correlation functions. Then, the condensed stochastic codebook search approach (CMP-MLQ) is suggested to progressively reduce the computation required for the MP-MLQ speech coder, which is used in the G.723.1 coder. By reducing the candidates of the codebook before search procedures, the proposed methods can effectively diminish all the computation required in stochastic codebook searches. Simulation results show that the proposed candidate position approaches can save over 50 percent of the computaiton with perceptually intangible degradation in speech quality. Based on the above reduction techniques, the concept of complexity scalability is proposed. The computational scalability of the multimedia processing and coding is required to match with different working platforms and perform integrated services of media sources.
Secondly, we design three unified IIR filters to recursively compute the discrete Fourier transform (DFT). With the advantage of local connection, regularity, and modularity, the proposed methods can compute all DFT coefficients with the same filter structure. Based on stability behavior, the proposed IIR filter structures with optimal coefficients can achieve more accurate results than the traditional ones whose filter coefficients should be changed for computing the different DFT coefficients.

1. Introduction1
1.1Voice Transmission Technology1
1.2Voice over Internet Protocol (VoIP) System6
1.3Low Rate Speech Coding Standards8
1.4Organization of Thesis12
2. Low Rate Speech Coding Algorithms15
2.1 MPEG Low Rate Speech Coders15
2.2 HVXC of MPEG-4 Standard16
2.3 Analysis-by-Synthesis Coding ¾ CELP Model18
2.4 MPEG/ITU Conjugate-Structure CELP algorithms20
2.4.1 ITU-T Recommendation G.723.1 and G.729 23
2.4.2 Linear Prediction Analysis and Quantization25
2.4.3 Adaptive Codebook Search Algorithm29
2.4.4 Stochastic Codebook Compensation35
3. Fast ACELP Algorithms39
3.1 Overview of ACELP Speech Coder39
3.2 Traditional ACELP Codebook Search40
3.2.1 Algebraic-Code-Excited Linear Prediction Coding41
3.2.2Focused Search Method43
3.2.3Depth-First Tree Search Method44
3.3 Candidate Position Methods46
3.3.1 Prediction of Excited Pulses47
3.3.2 Candidate Position Method50
3.3.3 Dynamic Candidate Position Method53
3.4 Computational Complexity54
3.5 Simulation Results57
3.6 Diminutive Conclusion61
4. Complexity Scalability for Stochastic Codebook Compensation63
4.1 Overview of MPEG/ITU G.723.163
4.2 Stochastic Codebook Search in G.723.166
4.2.1 Standardized ACELP Codebook Search66
4.2.2 Standardized MP-MLQ Codebook Search68
4.3 Condensed Candidates for Stochastic Codebook70
4.3.1 Maximum-Take-Precedence ACELP (MTP-ACELP) method71
4.3.2 Candidate MP-MLQ (CMP-MLQ) Method77
4.4 Simulation Results80
4.4.1 Simulation for MTP-ACELP over G.723.181
4.4.2 Simulation for CMP-MLQ over G.723.182
4.4.3 Simulation for MTP-ACELP over G.72983
4.5 Diminutive Conclusions84
5. Recursive Implementation of DFT Tool for Coding Techniques85
5.1 Discrete Fourier Transformation (DFT) Analysis Tool85
5.2 Goertzel's recursive DFT algorithm86
5.3 Recursive DFT with Unified IIR Structure88
5.3.1 Direct Fixed-Coefficient Recursive DFT (DFR-DFT) 88
5.3.2 Fast Fixed-Coefficient Recursive DFT (FFR-DFT) 92
5.4 Programmable Recursive DFT by using Unitary Filter (PR-DFT) 98
5.4.1 Congruence Algorithm98
5.4.2 Optimal Coefficients Selection99
5.5 Simulation Results100
5.5.1 Simulation for DFR-DFT and FFR-DFT101
5.5.2 Simulation for PR-DFT101
5.6 Diminutive Conclusions102
6. Conclusions114
Bibliography117
Appendix125
Publication List138
Autobiography139

[1]G. Thomsen and Y. Jani, “Internet telephony: going like crazy”, IEEE Spectrum, Vol. 37, No. 5, pp. 52-58, May 2000.
[2]M. Hassan, A. Nayandoro and M. Atiquzzaman, “Internet telephony: services, techni-cal challenges and products”, IEEE Communications Magazine, pp. 96-103, April 2000.
[3]S. Dixit, Y. Guo and Z. Antoniou, “Resource management and quality of service in third generation wireless networks”, IEEE Communications Magazine, Vol. 39, Issue: 2, pp. 125 —133, Feb. 2001.
[4]A. M. Kondoz, “Digital Speech-Coding for Low Bit Rate Communications Systems”, by John Wiley & Sons Ltd., 1994.
[5]ETSI, Digital cellular telecommunications system (Phase 2+): Half rate speech transcoding (GSM 06.20 version 5.1.1), ETSI 300 969, May 1998.
[6]ISO/IEC 14496-3, Information technology — very low bitrate audio-visual coding, Part 3: Audio, Subpart 1-3, March 1998.
[7]ITU-T Recommendation G.723.1, Dual Rate Speech Coder for Multimedia Commu-nications Transmitting at 5.3 and 6.3 kbit/s, March 1996.
[8]C. Laflamme, J-P. Adoul, H. Y. Su and S. Morissette, “On reducing computational complexity of codebook search in CELP coder through the use of algebraic codes”, Acoustics, Speech, and Signal Processing, International Conference, Vol. 1, pp. 177-180, 1990.
[9]ITU-T Recommendation G.729, Coding of speech at 8 kbit/s using conjugate-structure algebraic-code-excited linear prediction (CS-ACELP), March 1996.
[10]ITU-T Recommendation G.729 - Annex A: Reduced complexity 8 kbit/s CS-ACELP speech codec, March 1996.
[11]ITU-T Recommendation G.729 - Annex E: 11.8 kbit/s CS-ACELP speech coding al-gorithm, September 1998.
[12]R. Salami, C. Laflamme, B. Bessette and J-P. Adoul, “ITU-T G.729 Annex A: Reduce Complexity 8kb/s CS-ACELP Codec for Digital Simultaneous Voice and Data”, IEEE Communications Magazine, Vol. 35, No. 9, pp. 56-63, 1997.
[13]ETSI, Digital cellular telecommunications system (Phase 2): Enhanced Full Rate (EFR) speech transcoding (GSM 06.60 version 6.0.0), ETSI EN 300 726, 1997
[14]R. Salami, C. Laflamme, B. Bessette and J-P. Adoul, “Description of GSM enhanced full rate speech codec”, ICC '97 Montreal, Towards the Knowledge Millennium, IEEE International Conference, Vol. 2, pp. 725-729, 1997.
[15]R. Hagen, E. Ekudden, B. Johansson and W. B. Kleijn, “Removal of sparse-excitation artifacts in CELP”, Proceedings of the IEEE International Conference, Vol. 1, pp. 145-148, 1998.
[16]M. A. Ramirez and M. Gerken, “A multistage search of algebraic CELP codebooks”, Acoustics, Speech, and Signal Processing, Proceedings of IEEE International Con-ference, Vol.1, pp. 17-20,1999.
[17]M. A. Ramirez and M. Gerken, “Efficient algebraic multipulse search”, ITS '98 Pro-ceedings, SBT/IEEE International Telecommunications Symposium, Vol. 1, pp. 231-236, 1998.
[18]N. K. Ha, “A fast search method of algebraic codebook by reordering search se-quence”, Acoustics, Speech, and Signal Processing, Proceedings of IEEE Interna-tional Conference, Vol. 1, pp. 21-24, 1999.
[19]L. R. Rabiner and R. W. Schafer, “Digital Processing of Speech Signals”, (Bell Labo-ratories, Incorporated, 1978)
[20]H. Akaike, “A new look at the statistical model identification”, IEEE Trans. Auto-matic control, Vol. 19, No. 6, pp. 716-723, 1974.
[21]M. Wax and T. Kailath, “Detection of signals by information theoretic criteria”, IEEE Trans. ASSP, Vol. 33, No. 2, pp. 387-392, 1985.
[22]S. Dixit, Y. Guo and Z. Antoniou, “Resource management and quality of service in third generation wireless networks”, IEEE Communications Magazine, Vol. 39, Issue: 2, pp. 125 —133, Feb. 2001.
[23]ISO/IEC 14496-3, Information technology — very low bitrate audio-visual coding, Part 3: Audio, Subpart 1-3, March 1998.
[24]ETSI, Digital cellular telecommunications system (Phase 2+): Half rate speech transcoding (GSM 06.20 version 5.1.1), ETSI 300 969, May 1998.
[25]S. M. Lee, S. Park and Y. Jang, “Cost-effective implementation of ITU-T G.723.1 on a DSP chip”, Proceedings of 1997 IEEE International Symposium on Consumer Elec-tronics, pp. 31—34, 1997.
[26]S. Singhal and B. S. Atal, “Amplitude optimization and pitch prediction in multipulse coders” IEEE Transactions on Acoustics, Speech and Signal Processing, Vol.373, pp. 317-327, March 1989.
[27]F. K. Chen, J. F. Yang and Y. L. Yan, “Candidate scheme for fast ACELP search”, IEE Processings - Vision, Image and Signal Processing, Sept. 2000. (Accepted)
[28]F. Beritelli, S. Casale and A. L. Corte, “A new efficient approach to the optimization of a low-complexity multipulse speech coder” Singapore ICCS '94. Conference Pro-ceedings, Vol.3, pp. 888-892, 1994.
[29]F. K. Chen and J. F. Yang, “Maximum-Take-Precedence ACELP: a low complexity search method", IEEE International Conference on Acoustics, Speech, and Signal Processing, Salt Lake City, USA, Vol. 2, pp.693-696, May, 2001.
[30]F. K. Chen and J. F. Yang, “Candidate scheme for MP-MLQ search in G.723.1", Pro-ceedings of third IEEE Signal Processing Workshop on Signal processing advances in wireless communications, Taoyuan, Taiwan, pp.368-371, Mar. 2001.
[31]S. J. Orfanidis, Optimum Signal Processing, McGraw-Hill, 1990.
[32]S. M. Kay, Modern Spectral Estimation Theory and Applications, Prentice Hall, Englewood Cliffs, N. J. 1988.
[33]European Telecommunication Standard, “Radio broadcasting systems: Digital Audio Broadcasting (DAB) to mobile, portable and fixed receivers”, European Telecommu-nication Standard, 1995.
[34]W. Y. Zou and Y. Wu, “COFDM: An overview”, IEEE Transactions on Broadcasting, Vol. 41, pp. 1-8, 1995.
[35]J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex Fourier Series”, Mathematics of Computation, Vol. 10, No. 90, pp. 297-301, 1965.
[36]H. V. Sorensen, M. T. Heideman and C. S. Burrus, “On computing the split-radix FFT”, IEEE Trans. on Acoustics Speech and Signal Processing, Vol. 34, No. 2, pp. 152-156, 1986.
[37]D. P. Kolba and T. W. Parks, “A prime factor FFT algorithm using high-speed convo-lution”, IEEE Trans. on Acoustics Speech and Signal Processing, Vol. 25, No. 4, pp. 281-294, 1977.
[38]S. Winograd, “On computing the discrete Fourier transform”, Mathematics of Com-putation, Vol. 32, No. 141, pp. 175-199, 1978.
[39]Charles G. Boncelet, JR., “A rearranged DFT algorithm requiring N2/6 multiplica-tions”, IEEE Trans. on Acoustics Speech and Signal Processing, Vol. 34, No. 6, pp. 1658 —1659, 1986.
[40]G. Goertzel, “An algorithm for the evaluation of finite trigonometic series”, American Math. Monthly, Vol. 65, pp. 34-35, 1958.
[41]Z. Wang, G. A. Jullien and, W. C. Miller, “Recursive algorithms for the forward and inverse discrete cosine transform with arbitrary length”, IEEE Signal Processing Let-ters, Vol. 1, pp. 101-102, 1994.
[42]Y. H. Chan, L. P. Chau and W. C. Siu, “Efficient implementation of discrete cosine transform using recursive filter structure”, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 4, No. 6, pp. 550-552, 1994.
[43]E. Frantzeskakis, J. S. Baras and K. J. R. Liu, “Time-recursive computation and real-time parallel architectures: A Framework”, IEEE Transactions on Signal Proc-essing, Vol. 43, No. 11, pp. 2762-2774, 1995.
[44]L. P. Chau and W. C. Siu, “Direct formulation for the realization of discrete cosine transform using recursive structure”, IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, Vol. 42, No. 1, pp. 50-52, 1995.
[45]Z. Wang, G. A. Jullien and W. C. Miller, “Recursive algorithm for the discrete cosine transform with regular structure”, Proceedings of the 36th Midwest Symposium on Circuits and Systems, Vol. 2, pp. 1097-1100, 1993.
[46]I. R. Mactaggart and A. J. Mervyn, “A single chip radix-2 FFT butterfly architecture using parallel data distributed arithmetic”, IEEE Journal of Solid-State Circuits, Vol. 19, No. 3, pp. 368-373, 1984.
[47]T. E. Curtis and J. T. Wickenden, “Hardware-based Fourier transforms: algorithms and architectures”, IEE Proc. Pt. F, Vol. 130, No. 5, pp. 423-432, 1983.
[48]Y. Z. Zhang and Y. F. Yao, “Fast implementation of recursive DFTs”, IEEE Proc. of ICASSP, pp. 1071-1074, 1989.
[49]C. Y. Hsiung, Elementary Theory of Numbers, New York: World Scientific, 1992.
[50]U. Zolzer, Digital audio signal processing, John Wiley & Sons, 1998.
[51]Improv Systems Inc., “Improv system training”, 2000.
[52]J. F. Yang and F. K. Chen, “Recursive DFT with unified IIR filter structures”, Signal Processing, 2001. (Accepted)
[53]F. K. Chen, J. F. Yang and Y. P. Lin, “Complexity scalability for ACELP and MP-MLQ speech coders”, IEICE Trans. Information and Systems, 2001. (Accepted)
[54]D. G. Childers, Speech Processing and Synthesis Toolboxes, John Wiley & Sons Inc., 2000.
[55]B. Gold and N. Morgan, Speech and Audio Signal Processing — Processing and Per-ception of Speech and Music, John Wiley & Sons Inc., 2000.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top