# 臺灣博碩士論文加值系統

(54.91.62.236) 您好！臺灣時間：2022/01/17 23:41

:::

### 詳目顯示

:

• 被引用:1
• 點閱:216
• 評分:
• 下載:0
• 書目收藏:0
 本論文以Lekhnitskii複變函數為基礎，分析非等向性楔形結構尖端r (  Re[  ) 型式之應力奇異性，其中應力奇異性階數 (  1) 與材料 性質、幾何形狀和邊界條件有關。若使用纖維強化複合材料，纖維方向亦會影響 奇異性強弱。 文中探討非等向性單一楔形結構或異種楔形結構其空間中所有纖維方向之應力奇 異性分佈。文中定義空間中之纖維方向，並分別於四分之一圓圖形和全圓圖形以 等高線描述所對應之應力奇異性階數 ()。利用所得的圖形等高線之分 佈，便可直接瞭解最強、最弱、甚至應力奇異性消失之之最佳纖維方向，以作為 安全設計之參考。此外，文中並研究材料係數(楊氏係數、剪力係數)對應力奇異 性的影響。 由於對整體纖維方向與應力奇異性之瞭解，本文發現了一些規律的對稱關係，並 針對面外問題來證明此對稱性，且進一步的得到簡化的面外應力奇異性之特徵方 程式及其解。藉由方程式推導出奇異性消失之條件，以增加結構設計的安全性。 此外，並提出一套『圖解法』來尋找面外應力奇異性與纖維方向之對稱性。
 Based on the anisotropic elasticity theory and Lekhnitskii’s complex potential functions, the r type (  Re[  ) stress singularities occurring near the apex of anisotropic wedges are studied. It is known that the stress singularity orders depend on the wedge angles, edge boundary conditions, composite material properties, and fiber orientations. The fiber orientations are defined. For single-wedge problem, a one-quarter circular region is proposed in which the contours of singularity order are plotted for all fiber orientation and a certain wedge angle. For dissimilar wedge problem, a full circular region is presented, similarly. The numerical results agree well with existing results for special cases. Some interesting new results for engineering applications are obtained in this study, such as the disappearance of stress singularity and fiber orientation corresponding to minimum singularity order. The effects of the material properties on stress singularity are also discussed. For anisotropic dissimilar wedges in antiplane shear, the analytical eigen-equations of the antiplane stress singularity are derived in very simple forms. The wedge edges are free and/or clamped. The repeated occurrence of stress singularity orders will be examined. The disappearance conditions of the stress singularity are analytically determined.
 摘要 I 英文摘要 II 誌謝 III 目錄 IV 表目錄 VIII 圖目錄 X 符號說明 XIX 第一章 緒 論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 等向性材料 2 1.2.2 非等向性材料 4 1.2.3 工程上之應用 8 1.3 研究目的及本文架構 9 第二章 Lekhnitskii複變函數 12 2.1 應力場及位移場 12 2.2 廣義平面應變 22 第三章 單一楔形結構之應力奇異性 26 3.1 特徵方程式 26 3.2 面內與面外非耦合之探討 30 3.3 四分之一圓 32 3.3.1 纖維方向(, )之定義 32 3.3.2 四分之一圓之定義 36 3.4 結果分析 37 3.4.1 任意纖維方向之單一楔形結構 37 3.4.2 裂縫問題 39 3.4.3 等向性問題 39 3.4.4 最弱奇異性之纖維方向(*, *) 40 3.4.5 材料性質之影響 40 第四章 異種楔形結構接合之應力奇異性 57 4.1 特徵方程式 57 4.2 面內與面外非耦合之探討 61 4.3 全圓圖形之定義 63 4.4 結果比較 64 4.4.1 異種等向性楔形 65 4.4.2 纖維落在x-y平面 65 4.4.3 纖維落在y-z平面 65 4.4.4 纖維落在x-z平面 66 4.4.5 界面裂縫 67 4.4.6 退化至單一材料 68 4.5 90-180接合之應力奇異性 68 4.5.1 對稱性之探討 68 4.5.2 最弱奇異性之纖維方向(*, *) 71 4.5.3 材料性質之影響 73 4.6 半平面接合之應力奇異性 77 4.6.1 對稱性之探討 77 4.6.2 範例及應力奇異性消失之探討 79 4.6.3 應力奇異性在複合層板之應用 83 第五章 異種楔形結構面外問題之探討 150 5.1 異種非等向性楔形結構奇異性之特徵方程式 150 5.1.1 自由-自由之邊界條件 154 5.1.2 固定-固定之邊界條件 157 5.1.3 固定-自由之邊界條件 158 5.1.4 自由-固定之邊界條件 159 5.2 含傾斜角k之正交性複材應力奇異性分析 160 5.3 主幅角 k() 之定義 163 5.4 特殊楔形結構奇異性之對稱性分析 166 5.4.1 半平面接合之應力奇異性 167 5.4.2 脫膠全平面之楔形結構 176 5.4.3 楔形角為90倍數之楔形結構 182 5.4.3.1 模數Rk(90) 與主幅角 k(90) 之特性 183 5.4.3.2 90- 90楔形結構 184 5.4.3.3 90- 270楔形結構 185 5.4.3.4 90- 180楔形結構 185 5.4.3.5 180- 180楔形結構 191 5.5 任意楔形結構奇異性之對稱性分析 192 第六章 結論 218 參考文獻 225 附錄 237 近期論文著作 241 自述 243 著作權聲明 244
 [1] Williams, M. L., “Stress Singularities Resulting from VariousBoundary Conditions in Angular Corners of Plates in Extension”,Transactions of the ASME, Journal of Applied Mechanics, Vol. 74, pp.526-528, 1952.[2] Tranter, C. J., “The Use of the Mellin Transform in Finding theStress Distribution in an Infinite Wedge”, Quarter Journal ofMechanics and Applied Mechanics, Vol. 1, pp. 125-130, 1948.[3] Godfrey, D. E. R., “Generalized Plane Stress in an Elastic Wedgeunder Isolated Loads”, Quarter Journal of Mechanics and AppliedMechanics, Vol. 8 (Part 2), pp. 226-236, 1954.[4] Bogy, D. B., “Edge-Bonded Dissimilar Orthogonal Elastic Wedgesunder Normal and Shear Loading”, Transactions of the ASME, Journal ofApplied Mechanics, Vol. 35, pp. 460-466, 1968.[5] Hein, V. L., and Erdogan, F. “Stress Singularities in aTwo-Material Wedge”, International Journal of Fracture Mechanics, Vol.7, pp. 317-330, 1971.[6] Dundurs, J., “Effect of elastic Constants on Stress in a Compositeunder Plane Deformation”, Journal of Composite Materials, Vol. 1, pp.310-322, 1967.[7] Dundurs, J., “Discussion”, Transactions of the ASME, Journal ofApplied Mechanics, Vol. 36, pp. 650-652, 1969.[8] Bogy, D. B., “On the Problem of Edge-Bonded Elastic Quarter-PlanesLoaded at the Boundary”, International Journal of Solids andStructures, Vol. 6, pp. 1287-1313, 1970.[9] Bogy, D. B., “Two Edge-Bonded Elastic Wedges of DifferentMaterials and Wedge Angles under Surface Tractions”, Transactions ofthe ASME, Journal of Applied Mechanics, Vol. 38, 377-386, 1971.[10] Bogy, D. B., and Wang, K. C., “Stress Singularities at InterfaceCorners in Bonded Dissimilar Isotropic Elastic Materials”,International Journal of Solids and Structures, Vol. 7, pp. 993-1005,1971.[11] Dempsey, J. P., and Sinclair, G. B., “On the Stress Singularitiesin the Plane Elasticity of the Composite Wedge”, Journal ofElasticity, Vol. 9, No. 4, pp. 373-391, 1979.[12] Dempsey, J. P., and Sinclair, G. B., “On the Singular Behavior atthe Vertex of a Bi-material Wedge”, Journal of Elasticity, Vol. 11,No. 3, pp. 317-327, 1981.[13] Theocaris, P. S., “The Order of Singularity at a Multi-WedgeCorner of a Composite Plate”, International Journal of EngineeringScience, Vol. 12, pp. 107-120, 1974.[14] Muskhelishvili, N. I., Some Basic Problems of the MathematicalTheory of Elasticity, Noordhoff, 1953.[15] Chen, D. H., and Mori, Y., “Stress Singularities for a V-notchwith its Tip on the Bimaterial Interface”, Transactions of JapanSociety of Mechanical Engineers, Series A, 58, pp. 2381-2386, 1992.[16] Chen, D. H., and Nisitani, H., “Logarithmic Singular StressFields in a Semi-Infinite Plate of Bonded Wedges Subjected to SurfaceTraction”, Transactions of Japan Society of Mechanical Engineers,Series A, 59, pp. 2389-2403, 1993.[17] Chen, D. H., and Nisitani, H., “Logarithmic Singular Stress Fieldin Bonded Wedges”, Transactions of Japan Society of MechanicalEngineers, Series A, 59, pp. 2687-2693, 1993.[18] Chen, D. H., “Condition for Occurrence of Logarithmic StressSingularity”, Transactions of Japan Society of Mechanical Engineers,Series A, 62, pp. 1634-1642, 1996.[19] Chen, D. H., “Analysis of Singular Stress Field”, Transactionsof Japan Society of Mechanical Engineers, Series A, 62, pp. 1862-1869,1996.[20] Chen, D. H., “Analysis of Stress Singularity at a Vertex ofBonded Wedges Based on the Separation of Variables Technique”,Transactions of Japan Society of Mechanical Engineers, Series A, 65,pp. 1437-1444, 1999.[21] Inoue, T., and Koguchi, H., “Influence of the IntermediateMaterial on the Order of Stress Singularity in Three-Phase BondedStructure”, International Journal of Solids and Structures, Vol. 33,No. 3, pp. 399-417, 1996.[22] Pageau, S. S., Joseph, P. F., and Biggers, S. B. Jr., “The Orderof Stress Singularities for Bonded and Disbonded Three-MaterialJunctions”, International Journal of Solids and Structures, Vol. 31,No. 21, pp. 2979-2997, 1994.[23] Ma, C. C., and Hour, B. L., “Analysis of Dissimilar AnisotropicWedges Subjected to Antiplane Shear Deformation”, InternationalJournal of Solids and Structures, Vol. 25, No. 11, pp. 1295-1309, 1989.[24] Williams, M. L., “The Stress Around a Fault or Crack inDissimilar Media”, Bulletin of the Seismological Society of America,Vol. 49, pp. 199-204, 1959.[25] England, A. H., “A Crack Between Dissimilar Media”, Transactionsof the ASME, Journal of Applied Mechanics, Vol. 32, No. 2, pp. 400-402,1965.[26] Erdogan, F., “Stress Distribution in Bonded Dissimilar Materialswith Cracks”, Transactions of the ASME, Journal of Applied Mechanics,Vol. 32, No. 2, pp. 403-410, 1965.[27] Rice, J. R., and Sih, G. C., “Plane Problems of Cracks inDissimilar Media”, Transactions of the ASME, Journal of AppliedMechanics, Vol. 32, No. 2, pp. 418-423, 1965.[28] Xu, J. Q., Liu, Y. H., and Wang, X. G., “Numerical Methods forthe Determination of Multiple Stress Singularities and Related StressIntensity Coefficients”, Engineering Fracture Mechanics, Vol. 63, pp.775-790, 1999.[29] Yang, Y. Y., “The Type of rln(r) Stress Singularities in aTwo-Dissimilar-Materials Joint under Thermal Loading”, Journal ofThermal Stresses, Vol. 22, pp. 101-121, 1999.[30] Lekhnitskii, S. G., Theory of Elasticity of an Anisotropic ElasticBody. Gostekhizdat, Moscow (in Russian), Holden-Day, San Francisco,1950. (in English, 1963) and Mir Publication, Moscow (in English,1981).[31] Eshelby, J. D., Read, W. T., and Shockley, W., “AnisotropicElasticity with Application to Dislocation Theory”, Acta Metallurgica,Vol. 1, pp. 251-259, 1953.[32] Green, A. E., and Zerna, W., Theoretical Elasticity. ClarendonPress, Oxford, U.K, 1954.[33] Stroh, A. N., “Steady State Problems in Anisotropic Elasticity”,Journal of Mathematical Physics, Vol. 41, pp. 77-103, 1962.[34] Ting, T. C. T., and Chou, S. C., “Edge Singularities inAnisotropic Composites”, International Journal of Solids andStructures, Vol. 17, pp. 1057-1068, 1981.[35] Ting, T. C. T., and Hwu, Chyanbin, “Sextic Formalism inAnisotropic Elasticity for Almost Non-semisimple Matrix N”,International Journal of Solids and Structures, Vol. 24, No. 1, pp.65-76. 1988.[36] Ting, T. C. T., Anisotropic Elasticity: Theory and Applications.Oxford University Press, 1996.[37] Ting, T. C. T., “Symmetric Representation of Stress and Strain inStroh Formalism and Physical Meaning of the Tensors L, S, L() and S(? ?”, Journal of Elasticity, Vol. 50, pp. 91-96, 1998.[38] Suo, Z., “Singularities, Interfaces and Cracks in DissimilarAnisotropic Media”, Proceedings of the Royal Society of London SeriesA — Mathematical Physical and Engineering Sciences, 427, pp. 331-358,1990.[39] Bogy, D. B., “The Plane Solution for Anisotropic Elastic Wedgesunder Normal and Shear Loading”, Transactions of the ASME, Journal ofApplied Mechanics, Vol. 39, pp. 1103-1109, 1972.[40] Kuo, M. C., and Bogy, D. B., “Plane Solutions for theDisplacement and Traction-displacement Problems for Anisotropic ElasticWedges”, Transactions of the ASME, Journal of Applied Mechanics, Vol.41, pp. 197-202, 1974.[41] Kuo, M. C., and Bogy, D. B., “Plane Solutions for TractionProblems on Orthotropic Unsymmetrical Wedges and Symmetrically TwinnedWedges”, Transactions of the ASME, Journal of Applied Mechanics, Vol.41, pp. 203-208, 1974.[42] Delale, F., “Stress Singularities in Bonded AnisotropicMaterials”, International Journal of Solids and Structures, Vol. 20,pp. 31-40, 1984.[43] Chen, H. P., “Stress Singularities in Anisotropic Multi-MaterialWedges and Junctions”, International Journal of Solids and Structures,Vol. 35, pp. 1057-1073, 1998.[44] Ting, T. C. T., “Explicit Solution and Invariance of theSingularities at an Interface Crack in Anisotropic Composites”,International Journal of Solids and Structures, Vol. 22, No. 9, pp.965-983, 1986.[45] Lin, K. Y., and Hartmann, H. H., “Numerical Analysis of StressSingularities at a Bonded Anisotropic Wedge”, Engineering FractureMechanics, Vol. 32, pp. 211-224, 1989.[46] Pipes, R. B., and Pagano, N. J., “Interlaminar Stresses inComposite Laminates under Uniform Axial Extension”, Journal ofComposite Materials, Vol. 4, pp. 538-548, 1970.[47] Wang, A. S. D., Crossman, F. W., “Some New Results on Edge Effectin Symmetric Composite Laminates”, Journal of Composite Materials,Vol. 11, pp. 92-106, 1977.[48] Hsu, P. W., and Herakovich, C. T., “Edge Effects in Angle-plyComposite Laminates”, Journal of Composite Materials, Vol. 11, pp.422-428, 1977.[49] Wang, S. S., and Choi, I., “Boundary-layer Effects in CompositeLaminates: Part I — Free-edge Stress Singularities”, Transactions ofthe ASME, Journal of Applied Mechanics, Vol. 49, pp. 541-548, 1982.[50] Wang, S. S., and Choi, I., “Boundary-layer Effects in CompositeLaminates: Part II — Free-edge Stress Solutions and BasicCharacteristics”, Transactions of the ASME, Journal of AppliedMechanics, Vol. 49, pp. 549-560, 1982.[51] Yin, W.-L., “Free-Edge Effects in Anisotropic Laminates underExtension, Bending and Twisting, Part I: A Stress-Function-BasedVariational Approach”, Transactions of the ASME, Journal of AppliedMechanics, Vol. 61, pp. 410-415, 1994.[52] Yin, W.-L., “Free-Edge Effects in Anisotropic Laminates underExtension, Bending and Twisting, Part II: Eigenfunction Analysis andthe Results for Symmetric Laminates”, Transactions of the ASME,Journal of Applied Mechanics, Vol. 61, pp. 416-421, 1994.[53] Huang, T. F., and Chen, W. H., “On the Free-edge StressSingularity of General Composite Laminates under Uniform AxialStrain”, International Journal of Solids and Structures, Vol. 31, pp.3139-3151, 1994.[54] Kim, T. W., and Im, S., “Boundary Layers in Wedge of LaminatedComposite Strips under Generalized Plane Deformation — Part I:Asymptotic Solutions”, International Journal of Solids and Structures,Vol. 32, No. 5, pp. 609-628, 1995.[55] Kim, T. W., and Im, S., “Boundary Layers in Wedge of LaminatedComposite Strips under Generalized Plane Deformation — Part II:Complete Numerical Solutions”, International Journal of Solids andStructures, Vol. 32, No. 5, pp. 629-645, 1995.[56] Zwiers, R.I., Ting, T.C.T., and Spilker, R.L., “On theLogarithmic Singularity of Free-edge Stress in Laminated Compositesunder Uniform Extension”, Transactions of the ASME, Journal of AppliedMechanics, Vol. 49, pp. 561-569, 1982.[57] Stolarski, H. K., and Chiang, M. Y. M., “On the Significance ofthe Logarithmic Term in the Free Edge Stress Singularity of CompositeLaminates”, International Journal of Solids and Structures, Vol. 25,pp. 75-93, 1989.[58] Gotoh, M., “Some Problems of Bonded Anisotropic Plates withCracks along the Bond”, International Journal of Fracture Mechanics,Vol. 3, pp. 253-260, 1967.[59] Clements, D. L., “A Crack Between Dissimilar Anisotropic Media”,International Journal of Engineering Science, Vol. 9, pp. 257-265,1971.[60] Wang, S. S., and Choi, I., “The Interface Crack BetweenDissimilar Anisotropic Composite Materials”, Transactions of the ASME,Journal of Applied Mechanics, Vol. 50, pp. 169-178, 1983.[61] Qu, J., and Bassani, J. L., “Cracks on Bimaterial and BicrystalInterfaces”, Journal of the Mechanics and Physics of Solids, Vol. 37,No. 4, pp. 417-433, 1989.[62] Ting, T. C. T., “Interface Cracks in Anisotropic Bimaterials”,Journal of the Mechanics and Physics of Solids, Vol. 38, No. 4, pp.505-513, 1990.[63] Ma, C. C., and Luo, J. J., “Analysis of the Interfacial Crack forAnisotropic Materials under Displacement-Displacement or Traction-Displacement Boundary Conditions”, Transactions of the ASME, Journalof Applied Mechanics, Vol. 60, pp. 777-781, 1993.[64] Chen, D. H., and Mori, Y., “Stress Singularities for Crack withTip on Bimaterial Interface of Isotropic and Anisotropic Phases”,Transactions of Japan Society of Mechanical Engineers, Series A, Vol.60, pp. 2228-2235, 1994.[65] Hilton, P. D., and Sih, G. C., “A Laminate Composite with a CrackNormal to the Interfaces”, International Journal of Solids andStructures, Vol. 7, pp. 913-930, 1971.[66] Ting, T. C. T., and Hoang, P. H., “Singularities at the Tip of aCrack Normal to the Interface of an Anisotropic Layered Composite”,International Journal of Solids and Structures, Vol. 20, No. 5, pp.439-454, 1984.[67] Chen, D. H., “Stress Fields for a Crack Normal to and Terminatingat a Bimaterial Interface of Isotropic and Anisotropic Half-planes”,Transactions of Japan Society of Mechanical Engineers, Series A, Vol.61, pp. 52-58, 1995.[68] Sung, J. C., and Liou, J. Y., “Singularities at the Tip of aCrack Terminating Normally at an Interface between two OrthotropicMedia”, Transactions of the ASME, Journal of Applied Mechanics, Vol.63, pp. 264-270, 1996.[69] Ma, C. C., and Hour, B. L., “Antiplane Problems in CompositeAnisotropic Materials with an Inclined Crack Terminating at aBimaterial Interface”, International Journal of Solids and Structures,Vol. 26, No. 12, pp. 1387-1400, 1990.[70] Lin, Y. Y., and Sung, J. C., “Singularities of an Inclined CrackTerminating at an Anisotropic Bimaterial Interface”, InternationalJournal of Solids and Structures, Vol. 34, No. 28, pp. 3727-3754, 1997.[71] Poonsawat, P., Wijeyewickrema, A. C., and Karasudhi, P., “StressSingularity Analysis of a Crack Terminating at the Interface of anAnisotropic Layered Composite”, Transactions of the ASME, Journal ofApplied Mechanics, Vol. 65, pp. 829-836, 1998.[72] Lin, Y. Y., and Sung, J. C., “Stress Singularities at the Apex ofa Dissimilar Anisotropic Wedge”, Transactions of the ASME, Journal ofApplied Mechanics, Vol. 65, pp. 454-463, 1998.[73] Desmorat, R., and Leckie, F. A., “Singularities in Bi-Materials:Parametric Study of an Isotropic/Anisotropic Joint”, European Journalof Mechanics-A/Solids, Vol. 17, No. 1, pp. 33-52, 1998.[74] Pageau, S. S., Joseph, P. F., and Biggers, S. B. Jr., “FiniteElement Analysis of Anisotropic Materials with Singular Inplane StressFields”, International Journal of Solids and Structures, Vol. 32, No.5, pp. 571-591, 1995.[75] Pageau, S. S., Joseph, P. F., and Biggers, S. B. Jr., “A FiniteElement Analysis of the Singular Stress Fields in Anisotropic MaterialsLoaded in Antiplane Shear”, International Journal for NumericalMethods in Engineering, Vol. 38, pp. 81-97, 1995.[76] Pageau, S. S., and Biggers, S. B. Jr., “A Finite Element Approachto Three-dimensional Singular Stress States in AnisotropicMulti-material Wedges and Junctions”, International Journal of Solidsand Structures, Vol. 33, No. 1, pp. 33-47, 1996.[77] Schiermeier, J. E., and Szabo, J. E., “Numerical Analysis ofStress Singularities in Composite Materials”, Engineering FractureMechanics, Vol. 32, No. 6, pp. 979-996, 1989.[78] Papadakis, P. J., and Babuska, I., “A Numerical Procedure for theDetermination of Certain Quantities Related to the Stress IntensityFactors in Two-dimensional Elasticity”, Computer Methods in AppliedMechanics and Engineering, Vol. 122, pp. 69-92, 1995.[79] Yosibash, Z., “Numerical Analysis of Edge Singularities in Three-Dimensional Elasticity”, International Journal for Numerical Methodsin Engineering, Vol. 40, pp. 4611-4632, 1997.[80] Williams, J. G., and Ewing, P. D., “Fracture Under Complex Stress— The Angled Crack Problem”, International Journal of FractureMechanics, Vol. 8, pp. 441-446, 1972.[81] Dunn, M. L., Suwito, W., and Cunningham, S. J., “FractureInitiation at Sharp Notches: Correlation Using Critical StressIntensity”, International Journal of Solids and Structures, Vol. 34,No. 29, pp. 3873-3883, 1997.[82] Dunn, M. L., Suwito, W., Cunningham, S. J., and May, C. W.,“Fracture Initiation at Sharp Notches under Mode I, Mode II, andMixed-mode Loading”, International Journal of Fracture, Vol. 84, pp.367-381, 1997.[83] Yuuki, R., and Xu, J. Q., “Stress Based Criterion for anInterface Crack Kinking Out of the Interface in Dissimilar Materials”,Engineering Fracture Mechanics, Vol. 41, No. 5, pp. 635-644, 1992.[84] Yuuki, R., Liu, J. Q., Xu, J. Q., Ohira, T., and Ono, T., “MixedMode Fracture Criteria for Interface Crack”, Engineering FractureMechanics, Vol. 47, No. 3, pp. 367-377, 1994.[85] Chen, D. H., and Noda, N. A., “Evaluation of Static Strength bythe Application of Stress Intensity of Angular Corner”, Transactionsof Japan Society of Mechanical Engineers, Series A, 62, pp. 1445-1449,1996.[86] Chen, D. H., and Noda, N. A., “Evaluation of Static Strength bythe Application of Mixed Mode Stress Intensity of Angular Corner”,Transactions of Japan Society of Mechanical Engineers, Series A, 64,pp. 958-963, 1998.[87] Yavari, A., Sarkani, S., and Moyer, E. T., JR., “On QuadraticIsoparametric Transition Elements for a Crack Normal to a BimaterialInterface”, International Journal for Numerical Methods inEngineering, Vol. 46, pp. 457-469, 1999.[88] Lessard, L. B., Schmidt, A. S., and Shokrieh, M. M.,“Three-Dimensional Stress Analysis of Free-edge Effects in a SimpleComposite Cross-ply Laminate”, International Journal of Solids andStructures, Vol. 33, No. 15, pp. 2243-2259, 1996.[89] Boniface, V., and Simha, K. R. Y., “Re-examination of CrackOpining Model of Interface Fracture”, Engineering Fracture Mechanics,Vol. 64, pp. 677-691, 1999.[90] Altus, E., “Three-Dimensional Singularities in Double LapJoints”, Engineering Fracture Mechanics, Vol. 21, No. 6, pp.1097-1112, 1985.[91] Wang, C. H., and Rose, L. R. F., “Compact Solutions for theCorner Singularity in Bonded Lap Joints”, International Journal ofAdhesion and Adhesives, Vol. 20, pp. 145-154, 2000.[92] Chouaf, A., Malhaire, C., Berre, M. L., Dupeux, M., Pourroy, F.,and Barbier, D., “Stress Analysis at Singular Points of MicromachinedSilicon Membranes”, Sensors and Actuators A: Physical, Vol. 84, pp.109-115, 2000.[93] Hu, J. M., “Interfacial Stress Singularity Analysis — A CaseStudy for Plastic Encapsulated IC Packages”, ASME, Application ofFracture Mechanics in Electronic Packaging and Materials, EEP-Vol.11/MD-Vol. 64, pp. 13-23, 1995.[94] Amagai, M., “Investigation of Stress Singularity Fields andStress Intensity Factors for Cra
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 單一非等向性材料楔形結構之應力奇異性研究 2 異種非等向性楔形結構之應力奇異性分析 3 複合材料之葉史損壞準則研究

 無相關期刊

 1 複合圓錐層殼熱應力分析 2 微結構缺陷對蜂巢材料疲勞壽命之影響 3 複材旋轉軸非線性振動之研究 4 具滑移面楔形體之應力奇異性分析 5 具不均勻微觀構件之蜂巢材料力學性質 6 伺服控制系統之強健設計與實現 7 嵌入式記憶體測試與內建式自我測試系統之設計與實現 8 鋼板熱彎成形模擬分析研究 9 TF-BGA錫球接點熱應力和損壞機制之研究 10 道路受震下之裂縫分析 11 非彈性結構大變形動態分析之平行計算 12 微構件剖面對蜂巢材料雙軸抗壓行為之影響 13 橋樑雙向會車之三維結構分析 14 微分再生核近似法於二維彈力之應用 15 三維非線性樑元素用於結構分析之研究

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室