# 臺灣博碩士論文加值系統

(54.173.214.227) 您好！臺灣時間：2022/01/29 15:29

:::

### 詳目顯示

:

• 被引用:0
• 點閱:1095
• 評分:
• 下載:241
• 書目收藏:1
 本文討論平行軸傳動、不過切的嚙合元件的設計與加工。首先將常用的嚙合元件基本齒形母線，定義在三種不同截面上，並提出以圓的參數式法，表示此基本齒形母線，以此圓的參數式加上嚙合理論，與矩陣轉換理論，即可求得輪齒的齒面方程、接觸線方程、與磨輪的輪廓。齒輪的參數與輪磨參數的改變，均會改變接觸線的型態與輪磨效率，文中舉數個數值範例說明參數調整的重要性。最後並使用工研院機械所OPAL 50齒輪成型磨齒機，加工若干齒輪，再藉齒輪成型磨齒機附屬的量測功能，以驗證設計與加工後齒形的一致性。 輪磨加工參數與齒輪幾何參數的變動均會造成輪磨效率或被磨面精度的變化，這都和輪磨面和新齒面間的接觸線型態有關。實際上，選擇適當的磨輪安裝角與磨輪半徑，將使接觸線沿磨輪衝程方向距離最短，此時磨輪研磨效率最高、齒面精度最佳、接觸線保持連續、且兩側輪磨時受力最均勻等優點，以提高輪磨的加工品質與壽命。而維持齒面的一致性也是最佳化欲求解的重要指標之一，可以藉磨輪安裝角的改變以補償因磨輪的磨損所造成接觸線的改變。為驗證上述理論的正確性，舉一些法、端、軸截面已知的情況，計算其所對應的磨輪輪廓，及最佳輪磨加工參數。 本文並探討雙偏雙圓弧齒輪電腦模擬設計及嚙合分析等相關問題，首先將製造誤差與裝配誤差計入齒輪的嚙合中；其次，引用齒面接觸分析(tooth contact analysis)理論，探討兩嚙合齒面間接觸位置與傳動誤差(transmission errors)受裝配、製造誤差的影響；最後提出藉可調整軸瓦軸承，以補償偏位誤差與偏角誤差，除可將齒印調整回近理想位置外，並可將傳動誤差降低。文中並舉大陸GB-91型雙偏雙階雙圓弧齒輪為例，說明與驗證結果。
 This thesis discusses the design and manufacture method for parallel axial meshing and without undercutting conditions. It presents for calculating the profile of a grinding wheel for finishing meshing elements with arbitrary tooth profiles on the three different sections. A general circular parameter method (CPM) is proposed to describe the geometry of a basic profile on the specific section. It can derive tooth surface, contact line and grinding wheel contour easily. Gear parameters and grinding variables that can improve contact line conditions and efficiency are also discussed. Finally, examples are presented in which the profiles of grinding wheels for finishing some gears in different cases are calculated numerically. These gears are then finished by an OPAL gear’s grinding machine. It is clearly shown that the gear profiles after wheel grinding are almost the same as the tooth profiles specified in the design stage. 　Final adjustment and control of the grinding process is very important for best grinding efficiency and gear quality. In order to control the grinding process, a simultaneous contact line between the grinding wheel and gear finishing must be considered. Practically, the length of the contact line along the grinding stroke direction should be minimized by optimum selection of the grinding wheel setting angle, which implies that the grinding stroke be as small as possible. Besides, when the length of the contact line is minimal, the contact line discontinuous phenomena are minimal, also. Those improve grinding efficiency, precise, and balances grinding forces in the wheel entry and exit zones for double flank grinding. 　A mathematical model of a stepped double circular-arc helical tooth profile with two center offsets is developed. The conditions of gear meshing that reflect manufacturing and assembly errors are simulated. The locations of bearing contact and contact path pattern of mating tooth surfaces are determined by Tooth Contact Analysis (TCA). By applying the proposed mathematical model and TCA, single error impact can be determined. To compensate offset and angular misalignment, the authors propose an adjustable bearing whereby transmission errors can be minimized. The investigation is illustrated with several numerical examples.
 中文摘要I 英文摘要III 目錄V 表目錄X 圖目錄XI 符號說明XV 第一章 緒論1 1.1母線通用參數式求解的便利性2 1.2本演算法的全面性3 1.3本演算法的必要性3 1.4成型磨齒法的重要性3 1.5章節瀏覽4 1.6研究的範圍與架構10 第二章 文獻回顧與研究動機11 2.1圓弧齒形螺旋齒輪(圓弧齒輪) 12 2.1.1圓弧齒輪的發展12 2.1.2圓弧齒輪的特點13 2.1.3圓弧齒輪相關的研究14 2.1.4研究圓弧齒輪的動機15 2.2. 成型磨齒法16 2.2.1成型磨齒法的相關研究17 2.3其它嚙合元件的文獻19 2.3.1具月牙板設計的內齒輪泵19 2.3.2螺旋壓縮機轉子20 2.4研究動機21 第三章 理論基礎23 3.1 微分幾何23 3.1.1 空間曲線23 3.1.2 空間曲線之切向量、副法向量與主法向量24 3.2 曲面數學26 3.2.1 曲面的數學參數式26 3.2.2 空間切平面與法向量26 3.2.3 齒輪傳動基本定律27 3.2.4 曲面的二類基本式27 3.2.5 曲面上曲線的曲率及短程撓率29　 3.2.6 主曲率、主方向32 3.3 坐標轉換32 3.4確定共軛曲面的方法35 3.4.1相對靜止法37 3.4.2包絡法37 3.4.3運動學法37 3.5　常見的齒輪加工法38 3.5.1 滾齒法或法截面齒廓已知38 3.5.2 刨齒或端截面齒廓已知39 3.5.3 軸向齒廓已知41 第四章任意截面上任意齒廓螺旋齒輪的數學模型42 4.1端截面上的母線齒形已知42 4.2軸截面上的母線齒形已知52 4.3法截面上的母線齒形已知55 4.3.1單圓弧齒輪57 4.3.2基本齒條的建模57 4.3.3 齒面方程式的推導60 4.3.4 兩參數型的齒面方程式63 4.3.5 數值範例68 4.3.6磨輪截形的求法72 4.4漸開線螺旋齒輪75 4.5雙圓弧齒輪80 4.6 結果討論83 4.7本章架構與流程圖85 第五章 輪磨參數的最佳化設計86 5.1最佳化目標函數86 5.1.1設計變量與限制條件86 5.2 接觸線沿銜程方向長度最短為目標數88 5.2.1單圓弧凹凸齒輪對的最佳化問題89 5.2.2漸開線螺旋齒輪的最佳化問題98 5.3 考慮連續接觸線的最佳化問題104 5.3.1　數值範例111 5.4 結果與討論111 5.5最佳化程式流程圖及本章架構流程圖112 第六章 誤差分析與誤差補償116 6.1誤差的定義及來源117 6.2基本齒廓的齒面方程式120 6.3 齒面方程式123 6.4齒面接觸分析(TCA)125 6.5 接觸橢圓130 6.6 傳動誤差134 6.7 誤差分析135 6.8 電腦模擬誤差補償142 6.9 本章結論145 6.10本章架構與流程圖146 第七章 幾何模型與成型研磨148 7.1齒輪與輪磨的幾何建模148 7.2成型磨齒法160 7.2.1成型磨齒法的特色160 7.2.2 成型磨齒法的發展162 7.2.3成型磨輪機的功能162 7.3 成型磨齒加工與量測164 7.4 本章結論164 7.5成型磨齒法加工步驟流程圖165 第八章 結論與未來研究方向167 8.1 綜合結論167 8.2未來研究及展望168 參考文獻180 附錄A 解非線性方程式與方程組192 A.1非線性方程式192 A.1.1　Maller’s法192 A.1.2　Muller’s法的演算法194 A.2 非線性方程組的解法195 A.2.1　牛頓法195 A.2.2　最速下降法197 附錄B 解非線性方程式與方程組的程式199 B.1 以套裝軟體MAPPLE求解199 B.2以FORTRAN中IMSL程式庫，求解非線性方程組204 B.2.1　以Levenberg－Marquardt演算法及有限差分 法求解近似的Jacobian式204 B.2.2 以輸入JACOBIAN的方式，用IMSL求解 非線性方程組206 B.3 以FORTRAN程式求解208 B.3.1　用牛頓法求解208 B.3.2　用最速下降法求解210 附錄C 最佳化問題演算法211
 1.Chang, S. L., Tsay, C. B., and Nagata, S., “A General Mathematical Model for Gears Cut by CNC Hobbing Machines,” Trans. ASME, J. Mech. Des., Vol. 119, pp. 108-113, 1997a.2.Chang, S. L., Tsay, C. B., and Tseng, C. H., “Kinematic Optimization of a Modified Helical Gear Train,” Trans. ASME, J. Mech. Des., Vol. 119, pp. 307-314, 1997b.3.Chen, C. K., and Wang, C. Y., “Compensating Analysis of Double Circular-arc Helical Gear by Computerized Simulation of Meshing,” Proc. Instn. Mech. Engrs., Part C.Journal of Mechanical Engineering Science. Vol. 215, No. C7, pp. 759-772, 2001.4.Chen, C. K., and Wang, C. Y., “New Method for Calculating Grinding Wheel-profile for Helical Gear with Arbitrary Profile in Transverse Section,” Proc. Instn. Mech. Engrs, Part C. Journal of Mechanical Engineering Science.( submit)5.Chen, Y. C., and Tsay, C. B., “Tooth Contact Analysis and Kinematic Optimization of a Modified Helical Gear Pair with Involute-Teeth Pinion and Modified-Circular-Arc-teeth Gear,” Journal of the Chinese Society of Mechanical Engineers, Vol. 21, pp. 537-547, 2000.6. Colbourne, J. R., The Geometry of Involute Gears, Spring-Verlag, New York, 1987.7. Colbourne, J. R., “The contact Stress in Novikov Gears,” Mech. Mach.Theory, Vol. 24, NO.3, pp. 223-22, 1989.8. Dooner, D. B. and Seireg, A. A., The kinematic geometry of gearing: a concurrent engineering approach, Wiley-Interscience Publication, NY, 1995.9. Dudley, D. W., Practical Gear Design, McGraw-Hill, New York, 1984.10. Fairs, J. D. and Burden, R., Numerical Methods, 2nd Brooks/Cole publishing company, 1998.11. Fang, H. S. and Tsay, C. B., “Effects of the hob cutter regrinding and setting on ZE-type worm gear manufacture,” Int. J. Mach. Tool Manuf., Vol. 36, pp. 1123-1135, 1996.12. Feng, P. H., Litvin, F. L., Townsend, D. P., and Handschuh, R. F., “Determination of Principal Curvatures and Contact Ellipse for Profile Crowned Helical Gears,” Trans. ASME, J. Mech. Des., Vol. 121, pp. 107-111, 1999.13. Fleming, J. S., Tang, Y., and Cook, G., “Twin helical screw compressor. Part 1: Development, application and competitive position,” Proc. Inst. Mech. Eng. Part C, J. Eng. Mech. Eng. Sci., Vol. 212, No. 5, pp. 355-367, 1998.14. Gerald, C. F., and Wheatley, P. O., Applied Numerical Analysis, 5TH , Addison Wesley, 1994.15. Gray, A., Modern Differential Geometry of Curves and Surfaces, CRC Press, Boca Raton, Fla., 1993.16. Hansen, F., Adjustment of Precision Mechanisms, ILIFFE, 1970.17. Hidehiro Yoshino and Kazuhiro Ikeno, “Computerized Support System for Form Grinding of Gears,” Power Transmission and Gearing conference, ASME, pp. 647-654, 199618. Hidehiro Yoshino and Kazuhiro Ikeno, “Error Compensation for Form Grinding of Gears,” Transactions of the Japan Society of Mechanical Engineers. Part C, Vol. 57, n543, NOV., pp. 3652-3655, 1991a.19. HidehiroYoshino, Kazuhiro Ikeno, “Tooth-trace Crowning in Form Grinding of Helical Gears,” Transactions of the Japan Society of Mechanical Engineers, Part C Vol57, n538, pp. 2144-2148, 1991b.20. Janninck, W. L., “Contact Surface Topology,” Gear Technology, pp. 31-47, Vol. 5, March/April, 1988.21. Kaldor, S., Rafael, A. M., and Messinger, D., “On the CAD of Profiles for Cutters and Helical Flutes-Geometrical Aspects,” Annals of the CIRP, Vol. 37, pp. 53-57, 1988.22. Kasuya, K., Nogami, M., Matsunaga, T. and Watanabe, M., ”Tooth Bearing Analysis and Surface Durability of Symmetrical Conformal Gears,” ASME, Journal of Mechnical Design, Jan., Vol. 103, pp. 141-149, 198123. Lingaiah, K., and Ramachandra, K., ”Conformity Factor in Wildhaber -Novikov Circular Arc Gears,” ASME,Journal of Mechanical Design, Jan, Vol. 103, pp. 135-140, 1981.24. Litvin, F. L., and Tsay, C. B., “Helical Gears with Circular Arc Teeth: Simulation of Conditions of Meshing and Bearing Contact,” ASME Journal of Mechanisms, Transmission, and Automation in Design, Vol. 107, pp. 556-564, 1985.25. Litvin, F. L., Zhang, J., and Handschuh, R. F., “Crowned Spur Gears: Methods for Generation and Tooth Contact Analysis- Part 1: Basic Concepts, Generation of the Pinion Tooth Surface by a Plane,” ASME Journal of Mechanisms, Transmissions and Automation in Design, Vol. 110, pp. 337-342, 1988a.26. Litvin, F. L., Zhang, J. and Handschuh, R. F., “Crowned Spur Gears: Mathods for Generation and Tooth Contact Analysis─Part 2: Generation of the Pinion Tooth Surface by a Surface of Revolution,” ASME Journal of Mechanisms, Transmissions, and Automations in Design, Vol. 110, pp. 343-347, 1988b.27. Litvin, F. L., and Zhang, J., Topology of modified helical gears and tooth contact analysis (TCA) program, NASA Contractor Report 4224 (AVSCOM 89-C-002), 1989a.28. Litvin, F. L., Theory of Gearing. NASA RP-1212 (AVSCOM 88-C-035) Washington D.C.,1989b.29. Litvin, F. L., and Lu, J., “Computerized Simulation of Generation Meshing and Contact of Double Circular-Arc Helical Gears,” Mathematical and Computer Modelling, 1993, Vol. 18, pp. 31-4130. Livtin, F. L., Gear Geometry and Applied Theory, Prentice-Hall, Englewood Cliffs, NJ, 1994a.31. Litvin, F. L., Chen, N. X., Lu, J. and Handschuh, R. F., “Computerized Design and Generation of Low-Noise Helical Gears with Modified Surface Topology,” ASME Machine Elements and Machine Dynamics, Vol. 71, pp. 139-153, 1994b.32. Litvin, F. L., Chen, N. X., Hsiao, C. L. and Handschuh, R. F., “Generation of Helical Gears with New Surfaces Topology by Application of CNC Machines”, Gear Technology, pp. 30-33, January/ February, 1994c.33. Litvin, F. L., Chen, N. X., and Lu, J., “ Generation and Computerized Simulation of Meshing and Contact of Modified Involute Helical Gears”, NASA Contractor Report 4644, 1995a.34. Litvin, F. L., Chen, J. S., and Chen, N. X., “Computerized Determination of Curvature Relations and Contact Ellipse for Conjugate Surfaces,” Comput. Methods Appl. Mech. Engrg., Vol. 125, pp. 151-170, 1995b.35. Litvin, F. L., and Lu, J., “Computerized Design and Generation of Double Circular-Arc Helical Gears with Low Transmission Errors,” Comput. Methods Appl. Mech. Engrg., Vol. 127, pp. 57-86, 1995c.36. Litvin, F. L., Chen, N. X., Lu, J., and Handschuh, R. F., “Computerized Design and Generation of Low-Noise Helical Gears with Modified Surface Topology,” ASME, Journal of Mechanical Design, Vol. 117, pp. 254-261, 1995d.37. Litvin, F. L., Development of Gear Technology and Theory of GearingNASA Reference Publication, 1406 (ARL-TR-1500), 1996.38. Litvin, F. L., and Kim, D. H., “Computerized Design, Generation and Simulation of Meshing of Modified Involute Spur Gears with Localized Bearing Contact and Reduced Level of Transmission Errors,” Trans. ASME, J. Mech. Des., Vol. 119, pp. 96-100, 1997a.39. Litvin, F. L., and Lu, J., Computerized Simulation of Meshing of Convention Helical Involute Gears and Modification of Geometry, NASA Technical Memorandum, 107451, 1997b.40. Litvin, F. L., and Lu, J., New Methods for Improved Double Circular-Arc Helical Gears, NASA Contractor Report, 4771, 1997c.41. Litvin, F. L., Lu, J., Townsend, D. P., and Howkins, M., “Computerized Simulation of Meshing of Conventional Helical Involute Gears and Modification of Geometry,” Mech. Mach. Theory, Vol. 34, pp. 123-147, 1999.42. Mancuso, J. R., Couplings and Joints. Marcel Dekker, Inc. NY 1986.43. Nicholas, P. C., Gear Design and Application, McGRAW-HILL44. Ou, Z. and Seireg, A. “Analysis and Synthesis of Circular Arc Gears by Interactive Graphics,” Journal of Mechanisms, Transmissions and Automation in Design, 1986, Vol. 108, pp. 65-71.45. Piotrowsk, J. Shaft Alignment Handbook. Marcel Dekker, Inc. NY 1995.46. Rogers, D. F., Adams, J. A., Mathematical Elements for Computer Graphics, McGraw-Hill, Singapore, 1990.47. Satoshi Oda, and Takao Koide, ”Contact Stresses of Circular Arc and Involute Helical Gears in Mesh,” Proceedings of the 7th International Power Transmission and Gearing Conference, 1996, pp. 559-56448. Sheth, D. S. etc., “CAD/CAM for Geometry and Process Analysis of Helical Groove Machining,” Annals of the CIRP, Vol. 39, pp. 129-132, 1991.49. Shoichiro Nakamura., Applied Numerical Method in C., Prentice hall 1995.50. Townsend, D. P., Dudley’s Gear Handbook, McGraw-Hill, New York, 1991.51. Tsay, C. B., “Helical Gears with Involute Shaped Teeth: Geometry, Computer Simulation, Tooth Contact Analysis, and Stress Analysis,” ASME Journal of Mechanisms, Transmissions and Automation in Design, Vol. 110, pp. 482-491, 1988.52. Tsay, C. B. and Fong, Z. H., “Tooth Contact Analysis for Helical Gears with Pinion Circular Arc Teeth and Gear Involute Shaped Teeth,” Trans. ASME, Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 111, pp. 278-284, 1989.53. Tsay, C. B., Sheu, W. L., and Wu, C. H., “Spur Gears with Crowned Teeth,” Journal of the Chinese Society of Mechanical Engineers, Vol. 11, No. 2, pp. 121-133, 1990.54. Tsay, C. B., and Fong, Z. H., “Computer Simulation and Stress Analysis of Helical Gears with Pinion Circular Arc Teeth and Gear Involute Teeth,” Mech. Mach. Theory, Vol. 26, No. 2, pp. 145-154, 1991.55. Weatherburn, C. E., Differential Geometry of Three Dimensions, Cambridge University Press, London, 1955.56. Wilcox, L., and Coleman, W., “Application of Finite Elements to the Analysis of Gear Tooth Stresses , “ ASME, Journal of Engineering for Indutry, Nov, pp1139-1148, 1973.57. Wu, D. R., and Luo, J. S., A Geometric Theory of Conjugate Tooth Surface, World Scientific, Singapore, 1992.58. Xiao, D. C., and Lee, C., “A contact point Method for the Design of Form Cutters for Helical Gears”, Transactions of the ASME Journal of Engineering for Industry, Aug., Vol. 116, pp.387~pp391, 199459. Xing, Z., Deng, D., and Shu, P., “New Design Method for Twin-Screw Compressor and its Application,” Journal of Xi’an Jiaotong University, Vol. 27, pp.1-6, 1993.60. Youichi Kobayashi, Noriteru Nishida, Yasuhiko Ougiya, and Hiroshi Nagata, “Tooth Trace Modification Processing of Helix Gear by Form Grinding Method,” Transactions of the Japan Society of Mechanical Engineers, Part C, Vol. 61, n590, pp. 4088~4093, 1995a.61. Youichi Kobayashi, Noriteru Nishida, and Yasuhiko Ougiya, “A Profile Calculation Method for Form Grinding wheels,” Int. J. Japan Soc. Prec. Eng., Vol. 29, No3., pp.235-240, 1995b.62. 工研院機械工業研究所工業技術人才培訓計畫講義，精密齒輪設計、製造與檢測，1999。63. 于洪方，「螺旋槽成形銑刀的廓形設計」，機械製造，第4期，第14-15頁，1997。64. 王力，「可調中心齒輪鄉偏心套的設計」，機械製造，第6期，第7-8頁，1992。65. 王如鈺，王雪峰，實用齒輪設計總覽，憬藝企業，台北，199866. 王進猷，「雙圓弧齒輪電腦模擬設計」，教育部製造科技研討會，第21-26頁，2000。67. 王進猷，「雙圓弧齒輪誤差分析」，第14屆全國技術及職業教育研討會 第15-23頁，199868. 王進猷，侯小屏，「雙圓弧齒輪成形磨齒研究」，第16屆技職研討會，慈濟技術學院，第261-268頁，2001。69. 王樹人，圓弧圓柱蝸桿傳動，天津大學出版社，天津，1991。70. 甘學輝，「液壓齒輪泵的性能研究」，機械設計與製造，NO.3，第69-70頁，2000。71. 李小兵，齒輪與齒輪傳動標準手冊，中國標準出版社，北京，1996。72. 李守仁，中國齒輪產品目錄，機械工業出版社，北京，1997。73. 李敏彰，修整型圓弧形螺旋齒輪之接觸分析，碩士論文，國立交通大學，1998。74. 李壽剛，液壓傳動，北京理工大學出版社，1994。75. 邢子文，螺桿壓縮機--理論、設計與應用，機械工業，2000，北京76. 邱垂元，「齒輪傳動技術的發展」，機械資訊，第20-33頁，2000。77. 吳序堂，齒輪嚙合原理，機械工業出版社，北京，1982。78. 吳鴻業，齒輪嚙合原理，哈爾濱工業大學出版社，第131-133頁79. 吳從炘，唐余勇，微分幾何講義，高等教育出版社，北京，1985。80. 邵家輝，圓弧齒輪，第2版，機械工業出版社，1992。81. 周克念，「圓弧形螺旋曲面磨削法的砂輪廓形的計算」，機械製造，第5期，第21-22頁，1996。82. 柳百成，「新一代精密鑄造成形過程的物理治金基礎及數學物理建模」，中國機械工程，vol.11，第67-69頁，2000。83. 侯鎮冰，張浩瀚，圓柱齒輪加工，哈工大、上海工大主編，上海科學技術出版社，1979。84. 徐元昌，流體傳動與控制，同濟大學出版社，199885. 孫大東，蔡春源，「雙圓弧齒面接觸分析」，東北大學學報，第94期，第77-80頁，1992。86. 師明善，「圓弧圓柱齒輪傳動綜述和嚙合解析」，機械技術，11-141，第 97-106頁， 1996。87. 黃樹槐等人，「快速成形技術的展望」，中國機械工程，Vol.11， 第195-200頁，2000。88. 許淑玲，「專訪齒輪專委會召集人 ---陳士端」，，機械資訊，第14-19頁，2000。89. 陳朝光，唐余勇，吳鴻業，微分幾何及其在機械工程中的應用，哈爾濱工業大學出版社，哈爾濱，1998。90. 陳諶聞，陳式樁等人，圓弧齒圓柱齒輪傳動，哈爾濱工業大學出版社，1992。91. 張東明，「精密成型磨齒技術」，機械工業雜誌 89年5月號.第164-176頁，2000。92. 張信良，蔡忠杓，曾錦煥，「螺旋齒輪系之運動最佳化」，中國機械工程師學會第十屆研討會， 第231-239頁，1993。93. 張永源，「高精度齒輪輪磨技術」，機械月刊24卷第11期.p248-256，1998。94. 張希康，「成型磨齒機開發的探討」，38卷426期，機械設計與製造，第28-31頁，2000/295. 張平，「提高高速重載齒輪齒面接觸精度的工藝」，機械製造，第5期，第21-22頁，1996。96. 馮德坤，馬香峰，包絡原理及其在機械方面的應用，冶金工業出版社，北京，1994。97. 曾錦煥，「螺旋真空泵浦與螺旋壓縮機轉子系統化分析設計與製造」，工程科技通訊，第85-91頁，2000。98. 葉克明等人編，齒輪手冊，機械工業出版社，北京，1990。99. 彭國倫，精通FORTRAN 90 程式設計，基峰資訊，1997。100. 傅則紹，微分幾何與齒輪嚙合原理，石油大學出版社，1999。101. 鄒家華，中國齒輪工業年鑑，機械工業出版社，北京，1999。102. 蔡忠杓，「圓弧形螺旋齒輪之特性研究與應力分析」，國科會專題 計劃微片NSC 76-0401 E009-003，1987。103. 蔡忠杓，「跨世紀我國齒輪技術之研究方向」，第16屆全國機械工程學會研討會，交通大學，第1-3頁，1999。104. 熊則男，喬宗亮，迴轉式壓縮機與泵-共軛件嚙合動態測試，機械工業出版社，北京，1995。105. 齒輪手冊編委會，齒輪手冊，機械工業出版社，北京，1994。106. 賴至良，曹志雄等人，Autodesk Mechanical Desktop (AMD 5) Release 5，松崗，2000。107. 鍾運來，「內齒輪成型磨齒技術」，機械工業雜誌， 5月號. 第125-136頁，1999。108. 韓振南，邵家輝等人，「關於成型磨削圓弧齒輪的砂輪截形的廓形的計算」，太原工業大學學報，第24期，第2卷，第18-23頁，1993。109. 韓振南，邵家輝等人，「硬齒面雙圓弧齒輪的成型磨削」，機械製造，第4期，第22-24頁，1993。110. 蘇士豪，曾錦煥，「螺旋式壓縮機轉子之設計與製造的分析」，博士論文， 國立交通大學，1999。111. 蘇步青，華宣積，忻元龍，實用微分幾何引論，科學出版社，北京，1986。112. 薩本吉，高速齒輪傳動設計，機械工業出版社，北京，1986。
 電子全文
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 螺旋式壓縮機轉子之設計與製造的分析 2 擺線齒輪之接觸分析 3 具齒形修整之圓弧形曲線齒輪接觸分析

 1 107. 鍾運來，「內齒輪成型磨齒技術」，機械工業雜誌， 5月號. 第125-136頁，1999。 2 97. 曾錦煥，「螺旋真空泵浦與螺旋壓縮機轉子系統化分析設計與製造」，工程科技通訊，第85-91頁，2000。 3 93. 張永源，「高精度齒輪輪磨技術」，機械月刊24卷第11期.p248-256，1998。 4 91. 張東明，「精密成型磨齒技術」，機械工業雜誌 89年5月號.第164-176頁，2000。

 1 應用線切割放電加工微電極之研究 2 CNC工具機加工路徑補間之研究 3 Adomian分解法應用在非線性散熱片之熱傳分析 4 伺服控制系統之強健設計與實現 5 破裂安山岩體放射性核種傳輸之研究 6 多軸曲面加工時利用可視性做工具機構型選擇之研究 7 混合型時延系統之最佳化控制：以進化規劃法為基礎之數位再設計 8 修正保群算法在工程上之應用 9 磚造歷史建築物震害及耐震評估研究 10 嬰兒車骨架設計自動化模式研究 11 古中國擒縱調速器之系統化復原設計 12 用於視覺感知編碼及處理之內涵加權轉換 13 MPEG-4低率語音編碼器複雜度之簡化 14 以酒石酸鹽法低溫（＜500℃）合成超微粒鋅鐵氧磁體粉末之反應生成機構研究 15 無鉛化共晶銲錫合金之振動破壞特性研究

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室