跳到主要內容

臺灣博碩士論文加值系統

(54.83.119.159) 您好!臺灣時間:2022/01/17 09:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳嘉仁
研究生(外文):Jia-Ren Chen
論文名稱:多軸曲面加工時利用可視性做工具機構型選擇之研究
論文名稱(外文):Studies on the Configuration Selection of Machine Tools Using Visibility Map for Multi-axis Surface Machining
指導教授:李榮顯李榮顯引用關係
指導教授(外文):Rong-Shean Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:90
語文別:中文
論文頁數:117
中文關鍵詞:多軸可視性工具機構型模糊分類
外文關鍵詞:multi-axisvisibilitymachine toolsconfigurationfuzzy clustering
相關次數:
  • 被引用被引用:3
  • 點閱點閱:485
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
多軸加工是目前精密製造中的一個重要製程,尤其對於複雜的曲面加工,多軸加工有多自由度及快速、精密的切削方式,相當的方便。不過由於廠商工具機構型的限制,往往無法順利加工外型複雜的曲面,因此就必須先對欲加工之曲面做分析與評估,來作為工具機構型選擇之根據。
本文利用可視性方法並結合模糊分類法(Fuzzy clustering)而發展出可判斷出所需工具機軸數之方法。同時,針對各種工具機的可切削刀具方位分析,首先分析曲面的特徵,並將曲面分割成幾個適當的子曲面,再對於不同的形式工具機(三軸、四軸、五軸),根據曲面的特徵判斷出最少軸數之最佳工具機構型。在找出最佳工具機構型及設定後,接著利用套裝軟體UG產生刀具路徑,以驗證利用可視性做多軸工具機構型判別的方法。
本文以客觀的評估方法改善傳統上僅靠工程師經驗來判別工具機構型的方式,並利用Visual C++將之寫成軟體介面,可以應用於工件產品加工前製程規劃之分析,根據曲面之性質檢視結果建議出最適合之工具機軸數及構型。
Multi-axis machining is one of the important processes in modern precision manufacturing. For the machining of complex surfaces, it is very convenient to use multi-axis machining due to the advantages of high degree of freedom, short machining time and high precision. However, there are restrictions of the machine tools configurations so that the factories cannot machine complex surfaces successfully. The analysis and evaluation of the surfaces to be machined are the basis of the configuration selection of the machine tools.
Adapting visibility map and fuzzy clustering, a method for machine tool axis selection was developed. In the developed method, the various configurations of machines was analyzed, the surface being machined was divided into several sub-surfaces. Then according to the above, the optimized machine, which has minimum number of axes for various configurations of machines, were obtained. With the optimized machine, we used the UG® software to generate cutter location file and verified the proposed method of the configuration selection of machine tool using visibility map. In this research, with the proposed machine tool axis selection method, the system is more completed and suitable for the engineers to substitute traditional trial-and-error method with more objective ones. The software, which was written with by Microsoft Visual C++ 6.0®, enables to analyze the CAD model of the product before workpiece being machined and to suggest the appropriate number of the axes and configurations of machine according to the characteristics of the surface.
第一章 前言
1-1 概述
1-2 文獻回顧
1-3 研究目的與範疇
第二章 座標系統與座標轉換矩陣
2-1 基本座標轉換之轉換矩陣8
2-2 繞任意軸旋轉之轉換矩陣
2-3 尤拉角轉換
第三章 工具機構型與可加工範圍
3-1 工具機構型及特徵
3-2 多軸工具機可加工範圍
3-2-1 多軸加工原理介紹
3-2-2 多軸工具機在3D空間的效用
第四章 加工曲面可視性之應用
4-1 可視性之定義與方法
4-1-1 傳統製造流程
4-1-2 可視性的種類
4-1-3 可視性的定義
4-1-4 Visibility
4-1-5 加工曲面可視性之評估
4-2曲面特性與分析
4-2-1 Bezier曲面
4-2-2 B-spline曲面
4-2-3 加工曲面特性的比較
4-3 刀具干涉與旋轉角度之決定
4-3-1 干涉之定義
4-3-2 避免干涉角度之決定
第五章 多軸工具機之判別
5-1 建立工件可視範圍
5-2 最佳工具機之判別準則與演算法
5-2-1 模糊分類法
5-2-2 三軸工具機之判別
5-2-3 四軸工具機之判別
5-2-3-1 四軸工具機之判別準則A
5-2-3-2 四軸工具機之判別準則B
5-2-4 五軸工具機之判別
第六章結果與討論
6-1 系統軟體架構
6-2 實體工件建立與分析討論
6-3 手錶錶殼實體之分析討論
第七章結論與建議
7-1 結論
7-2 建議
參考文獻
附錄A
附錄B
附錄 C
1.Vafaeesefat, A. and H.A. ElMaraghy, “Optimal Workpiece Orientations for Machining of Sculpture Surface”, Proc Instu Mech Engrs, Vol. 214, Part B, pp. 671-681 (2000).
2.Yu, D., Z. Duan, W. Zheng and J. Liu, “Flat-end Cutter Path Generation for a Sculptured Surface for 3-Axis NC Machining”, Journal of Materials Processing Technology, Vol. 57, pp.65-69 (1994).
3.Kang, J. K. and S. H. Suh, “Machinability and Set-up Orientation for five-axis Numerically Controlled Machining of Free Surfaces”, The International Journal of Advanced Manufacturing Technology, Vol. 13, pp.311-325 (1997).
4.Cho, H. D., Y. T. Jun and M. Y. Yang, “Five-Axis CNC Milling for Effective Machining of Sculptured Surfaces”, International Journal of Production Research, Vol. 31, No. 11, pp.2559-2573 (1993).
5.Suh, S. H. and J. K. Kang, “Process Planning for Multi-Axis NC Machining of Free Surfaces”, International Journal of Production Research, Vol. 33, No. 10, pp. 2723-738 (1995).
6.You, C. F. and C. H. Chu, “Tool-Path Verification in Five-Axis Machining of Sculptured Surfaces”, The International Journal of Advanced Manufacturing Technology, Vol. 13, pp.248-255 (1997).
7.Lee, Y. S. and T. C. Chang, “Automatic Cutter Selection for 5-axis Sculptured Surface Machining”, The International Journal of Production Research, Vol. 34, No. 4, pp.977-998 (1996).
8.Lee, R. S. and C. H. She, “Tool Path Generation and Error Control Method for Multi-Axis NC Machining of Spatial Cam”, The International Journal of Machine Tools Manufacturing, Vol. 38, No. 4, pp.277-290 (1998).
9.Satyandra K Gupta and Dana S Nau, “Systematic Approach to Analyzing the Manufacturability of Machined Parts”, Computer-Aided Design, Vol. 27, No. 5, pp. 323-342 (1995).
10.Kim, D. S., P. Y. Papalambros, and T. C. Woo, “Tangent, Normal, and Visibility Cones on Bezier Surfaces”, Computer Aided Geometric Design, Vol. 12, pp. 305-320 (1995).
11.Elber, G. and E. Zussman, “Cone Visibility Decomposition of Freeform Surfaces”, Computer-Aided Design, Vol. 30, No. 4, pp. 315-320 (1998).
12.Dragomatz, D. and S. Mann, “A Classified Bibliography of Literature on NC Milling Path Generation”, Computer-Aided Design, Vol. 29, No. 3, pp. 239-247 (1997).
13.Suh, S. H. and J. J. Lee, “Five-Axis Part Machining With Three-Axis CNC Machine and Indexing Table”, ASME Trans. Journal of Manufacturing Science and Engineering, Vol. 120, pp. 120-128 (1998).
14.Elber, G. and E. Cohen, “A Unified Approach to Verification in 5-axis Freeform Milling Environments”, Computer-Aided Design, Vol. 31, pp. 795-804 (1999).
15.Balasubramaniam, M., P. Laxmiprasad, S. Sa and Z. Shaikh, “Generating 5-axis NC Roughing Paths Directly from a Tessellated Representation”, Cpmputer-Aided Design, Vol. 32, pp. 261-277 (2000).
16.Gibson, P., H. S. Ismail, and M. A. Sabin, “Optimisation Approaches in Feature Recognition”, International Journal of Machine Tools & Manufacture, Vol. 39, pp. 805-821 (1999).
17.Elber, G. “Freeform Surface Region Optimization for 3-Axis and 5-Axis Milling”, Computer-Aided Design, Vol. 27, No. 6, pp. 465-470 (1995).
18.Choi, B. K., D. H. Kim, and R. B. Jerard, “C-Space Approach to Tool-Path Generation for Die and Mould Machining”, Computer-Aided Design, Vol. 29, No.9, pp. 657-669 (1997).
19.Gupta, P., R. Janardan, J. Majhi, and T. Woo, “Efficient Geometric Algorithms for Workpiece Orientation in 4- and 5-Axis NC Machining”, Computer-Aided Design, Vol. 28, No. 8, pp. 577-587 (1996).
20.Chu, C. C. P. and R. Gadh, “Feature-Based Approach for Set-Up Minimization of Process Design from Product Design”, Computer-Aided Design, Vol. 28, No. 5, pp. 321-332 (1996).
21.Jeong, J. W., S. H. Kim, and Y. K. Kwak, “Kinematics and Workspace Analysis of a Parallel Wire Mechanism for Measuring a Robot Pose”, Mechanism and Machine Theory, Vol. 34, pp. 825-841 (1999).
22.Yin, Z. P., H. Ding, and Y. L. Xiong, “Visibility Theory and Algorithms with Application to Manufacturing Processes”, International Journal of Production Research, Vol. 38, No. 13, pp. 2891-2909 (2000).
23.Tseng, Y. J. “Fixturing Design Analysis for Successive Feature-Based Machining”, Computer in Industry, Vol. 38, pp. 249-262 (1999).
24.Yan, X., K. Yamazaki, and J. Liu, “Recognition of Machining Features and Feature Topologies from NC Programs”, Computer-Aided Design, Vol. 32, pp. 605-616 (2000).
25.Lo, C. C. “Efficient Cutter-Path Planning for Five-Axis Surface Machining with a Flat-End Cutter”, Computer-Aided Design, Vol. 31, pp. 557-566 (1999).
26.Lin, L. L. and T. C. Woo, “Computational Geometry on the Sphere With Application to Automated Machining”, ASME Trans. Journal of Mechanical Design, Vol. 114, pp. 228-295 (1992).
27.Tang. K., T. Woo and J. Gan, “Maximum Intersection of Spherical Polygons and Workpiece Orientation for 4- and 5-axis NC Machining”, ASME Trans. Journal of Mechanical Design, Vol. 114, pp. 477-485 (1992).
28.Woo, T. C. and B. F. von Turkovich, “Visibility Map and Its Application to Numerical Control”, Annals of the CIPP, Vol.39, pp. 451-454 (1990).
29.Woo, T. C., ”Visibility Maps and Spherical Algorithms”, Computer-Aided Design, Vol.26, No.1, pp. 6-16 (1994).
30.Morishige, K., K. Kase and Y. Takeuchi, “Collision-Free Tool Path Generation Using 2-Dimensional C-Space for 5-Axis Control Machining”, International Journal of Advanced Manufacturing Technology, Vol.13, pp. 393-400 (1997).
31.Tseng, Y. J. and S. Joshi, “Determining Feasible Tool-approach Direction for Machining Bezier Curves and Surfaces”, Computer-Aided Design, Vol.23, No.5, pp 367-379 (1991).
32.Lee, Y. S. and T. C. Chang, “2-Phase Approach to Global Tool Interference Avoidance in 5-Axis Machining”, Computer-Aided Design, Vol.27, No.10, pp 715-729 (1995).
33.Tang, K., T. Woo and J. Gan, “Maximun Intersection of Spherical Polygons and Workpiece Orientation for 4- and 5-Axis Machining”, Journal of Mechanical Design, Vol.114, pp 477-485 (1992).
34.Sergios and Konstantinos, “Pattern Recognition”, Academic Press, pp. 452-473.
35.顏偉俸, “避免干涉之多軸刀具加工路徑規劃”, 碩士論文, 國立中山大學機械工程研究所, 84年6月.
36.黃世光, “多軸工具機之合成與分析”, 碩士論文, 國立成功大學機械工程研究所, 81年6月.
37.陳來毅, “五軸加工機關鍵技術-兩軸伺服控制旋轉軸”, 機械工業,90年3月號, pp 235-243.
38.佘振華, “空間凸輪五軸加工數值控制程式設計系統之研究”, 博士論文, 國立成功大學機械工程研究所, 86年6月.
39.李政男, “應用包絡元件於多軸加工數值控制程式設計系統之研究”, 博士論文, 國立成功大學機械工程研究所, 90年1月.
40.葉煌成, “以具分度盤之三軸工具機對自由曲面加工之可製造性評估系統發展”, 碩士論文, 國立成功大學機械工程研究所, 89年6月.
41.Ibrahim Zeid, “CAD\CAM Theory and Practice”, McGRAW HILL.
42.位元文化, “Visual C++入門進階”, 文魁出版社.
43.黃祥峰, “臥式綜合加工機未來發展趨勢”, 機械工業, 90年3月號, pp 258-274.
44.張紹勳, 蔡志敏, “演算法入門與進階”, 松崗出版社.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top