跳到主要內容

臺灣博碩士論文加值系統

(107.21.85.250) 您好!臺灣時間:2022/01/18 08:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:甯蜀光
研究生(外文):Shu-Kuang Ning
論文名稱:河川水質監測站網最佳化規劃
論文名稱(外文):Optimal Planning of Water Quality Monitoring Network in the River Basin
指導教授:張乃斌張乃斌引用關係
指導教授(外文):Ni-Bin Chang
學位類別:博士
校院名稱:國立成功大學
系所名稱:環境工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:90
語文別:英文
論文頁數:125
中文關鍵詞:水質監測站網多目標規劃水質管理環境系統分析3S資訊技術
外文關鍵詞:monitoring networkmulti-objective programmingwater quality managementenvironmental systems analysis3S information technology
相關次數:
  • 被引用被引用:12
  • 點閱點閱:1994
  • 評分評分:
  • 下載下載:520
  • 收藏至我的研究室書目清單書目收藏:1
河川水質監測站網除可作為流域水體水質現況監測之用途,並可用於水污染防治實施成效之評估。本研究以高屏溪為例,藉由優化分析之方法,訂定水質監測站評選之目標與限制條件,求取最佳之設站位置。研究中訂定之規劃目標包括:現階段水質狀況愈差之河段愈應加強監測、處於水體品質要求標準愈高之區域愈應加強監測、污染物衰減愈慢之區域愈應加強監測、水體周邊人口愈密集之區域愈應加強監測及距離上游取水口愈近之區域域應加強監測等五項;在限制條件方面則訂定設站總數上限、測站覆蓋長度限制條件及各主支流之最低設站數。研究中透過問卷調查及目標規劃之技術決定各目標之權重值,並分別使用權重法之多目標規劃及妥協規劃之方法,探討設站之適當地點,並透過多項情境設定,分析彼此間之差異。為考慮各規劃目標及流域非點源負荷對規劃結果產生之不確定性,進而採用模糊規劃之方法進行討論。QUAL2E水質模式、GWLF集水區污染負荷模式及3’S(GIS/GPS/RS)技術則用於環境基本資料之收集與模擬。結果顯示:透過結合資料擷取、模擬模式及優化模式之分析方法,可為流域水質監測站網之設置建立客觀及系統化之規劃架構。
Planning a sound water-quality monitoring-network in the river basin in response to the needs of a national water-quality monitoring-goal is a complex and challenging task. This study illustrates how preference weights analysis, calibrated simulation modeling, and optimization analysis can be combined to achieve a set of system-based planning goals, leading to an effective search for both optimal relocation and expansion strategies of water-quality monitoring-network in the Kao-ping River Basin, South Taiwan. The first focus of this study aims at a questionnaire investigation and a goal programming modeling analysis for deriving an impersonal set of preference weights. The second effort centers on using the calibrated QUAL2E model to provide the essential information of half-life distance along the river reaches with respect to the concerned pollutants in the optimization analysis. Two types of deterministic multi-objective programming models being formulated in this study provide a powerful search for the flexible design and expansion alternatives of water-quality monitoring-network. Nevertheless, to understand the impact of uncertainties involved in the non-point sources waste loads and the fuzziness with regards to the planning goals, integrated approach of 3S(GIS/GPS/RS) information technology and non-point sources watershed loading model were utilized in a fuzzy multi-objective programming model. Finally, spatial priority analysis clearly provides a step-wise choice of expansion sequence, given the fact that all existing stations must be retained in the river system. Such a highly unbiased and trustworthy decision procedure may also be applied to accomplishing many other types of decision analysis for optimal design and expansion of monitoring-network in the natural systems.
授權書I
中文摘要III
AbstractIV
誌謝V
Table of ContentsVI
List of FiguresVIII
List of TablesX
1. Introduction1-1
1.1 Background1-1
1.2 Literature Review1-5
1.3 Research Objectives and Analytical Framework1-6
2. Water Quality Simulation Analysis2-1
2.1 Model Selection2-1
2.2 Water Quality Survey2-5
2.3 Calibration and Verification2-12
2.4 Model Application2-17
3. Decision Analysis of Preference Weights 3-1
3.1 Methods for Determining Preference Weights3-1
3.2 Information Retrieval and Knowledge Discovery3-2
3.2.1 Methodology3-2
3.2.2 Questionnaire Investigation3-3
3.2.3 Preemptive Goal Programming Analysis3-13
4. Optimal Planning of Water-Quality Monitoring-Network 4-1
4.1 Site Descriptions and Selection of Candidate Stations4-1
4.2 Multi-objective Programming: (I) Weighted Approach4-9
4.2.1 Objective Function4-10
4.2.2 Constraint Set4-12
4.2.3 Data Acquirement4-14
4.2.4 Results and Discussions4-17
4.3 Multi-objective Programming: (II) Compromised Approach4-18
4.3.1 Solution Techniques4-18
4.3.2 Results and Discussions4-20
5. Uncertainty Analysis: Fuzzy Multi-objective Programming Approach5-1
5.1 Introduction5-1
5.2 Uncertainty in Planning Objectives 5-1
5.2.1 Objective Function5-2
5.2.2 Constraint Set5-3
5.2.3 Optimization Analysis5-3
5.2.4 Results and Discussions5-5
5.3 Uncertainty in the Waste Loads of Non-Point Sources5-9
5.3.1 Estimation of Waste Loads of Non-Point Sources5-9
5.3.2 Water-Quality Monitoring-Network Design Based on Point- and Non-Point Sources Impacts 5-32
6 Conclusions and Suggestions 6-1
6.1 Final Remarks6-1
6.2 Conclusions6-3
6.3 Suggestions6-4
References i
Appendix: Notationvi
自述A-1
Beckers, C. V. and Chamberlain, S. G. (1974). Design of cost-effective water quality surveillance systems. US EPA-600\5-74-404, Washington D. C., USA.
Bogardi, A. Bardossy, L. and Duckstein. (1983). Regional management of an aquifer for mining under fuzzy environmental objectives. Water Resources Research, 19 1394-1402.
Brown, L. C. and Barnwell, T. O. (1987). The enhanced stream water quality model QUAL2E and QUAL2E-UNCAS: Document and User Manual, EPA/600/3-87/007, U. S. Environmental Protection Agency, Environmental Research Laboratory, Athens, GA.
Chang, N. B. and Tseng, C. C. (1999). Optimal evaluation of expansion alternatives for existing air quality monitoring network by grey compromise programming. Journal of Environmental Management, 56, 61-77.
Chang, N. B., Wen, C. G., Chen, Y. L. and Yong, Y. C. (1996). Optimal planning of the reservoir watershed by grey fuzzy multi-objective programming (II): application. Water Research, 30(10), 2335-2340.
Chang, N. B., Wen, C. G., Chen, Y. L., and Yong, Y. C. (1996). Optimal planning of the reservoir watershed by grey fuzzy multi-objective programming (I): theory. Water Research, 30(10), 2329-2334.
Chang, N. B., Wen, C. G., Chen,Y. L. (1997). A fuzzy multiobjective programming approach for optimal management of the reservoir watershed. European Journal of Operational Research, 99(2), 304-323.
Charnpratheep, K., Zhou, Q. and Garner, B. (1997). Preliminary landfill site screening using fuzzy geographical information systems, Waste Management Research, 15, 197—215.
Chaudhury, R. R., Sobrinho, J. A. H., Wright, R. M. and Sreenivas, M. (1998). Dissolved oxygen modeling of the Blackstone River (Northeastern United States). Water Research, 32, 2400-2412.
Chen, H. W. and Chang, N. B. (1998). Water pollution control in the river basin by fuzzy genetic algorithm-based multiobjective programming modeling. Water Science and Technology, 37(3), 55-63.
Cieniawski, S.E., Eheart, J.W., and Ranjithan, S. (1995). Using genetic algorithms to solve a multi-objective ground-water monitoring problem. Water Resources Research, 31(2), 399-409.
Claessen, F.A.M. (1997). Comparing monitoring of surface and ground water systems. European Water Pollution Control, 7(4), 27-35.
Craig, P. M. and Burnette, G. A. (1996). Basinwide water quality planning using the QUAL2E model in a GIS environment. GIS and Environmental Modeling, GIS World Inc., Fort Collins, CO, USA, 283-286.
Cubillo, F. and Rodriguez, B. (1992). System for control of river water quality for the community of Madrid using QUAL2E. Water Science & Technology, 26, 24-30.
DeGasperi, C. L. and Khangaonkar, T. (1997). A steady-state model of the Willamette river: implications for flow control of dissolved oxygen and phytoplankton biomass, in River Quality Dynamics and Restoration, A. Laenen and D. A., Dunnette, editors, Lewis Publishers, New York, USA, 163-171.
Dixon, W. and Chiswell, B. (1996). Review of aquatic monitoring program design. Water Research, 30(9), 1935-1948.
Dixon, W., Smyth, G. K., and Chiswell, B. (1999). Optimized selection of river sampling sites. Water Research, 33(4), 971-978.
Drolc, A. and Koncan, J. Z. (1996). Water quality modeling of the river Sava. Water Research, 30, 2587-2592.
Drolc, A. and Koncan, J. Z. (1999). Calibration of QUAL2E model for the Sava River (Slovenia). Water Science & Technology, 40,111-118
Dussailant, A. and Munoz, J. F. (1997). Water quality modeling of Mapocho river, Chile,using QUAL2E-UNCAS. Proceedings of International Conference on Water Pollution, Computational Mechanics Publication, Wessex Institute of Technology, England, 567-576.
Ellis J. C. (1989). Handbook on the Design and Interpretation of Monitoring Programs. Publication NS 29, Water Research Centre, Medmenham, Fngland.
Esterby S. R., El-Shaarawi A. H. and Block H. O. (1992). Detection of water quality changes along a river system. Environmental Monitoring and Assesment, 23, 219-242.
Fayyad, U. and Stolorz, P. (1997). Data mining and KDD, promise and challenges. Future Generation Computing System, 13, 99-115.
Feiring, B. R., Sastri, T., Sim, L. S. M., (1998). Stochastic programming model for water resource planning. Mathematical and Computer Modeling, 27(3), 1-8.
Ghosh, N. C. and McBean, E. A.(1998). Water quality modeling of the Kali River. Water, Air, and Soil Pollution, 102, 91-103.
Gromiec, M. J. (1997). River water quality modeling in Poland, in River Quality Dynamics and Restoration, A. Laenen and D. A., Dunnette, editors, Lewis Publishers, New York, USA, 173-185.
Groot, S. and Schilperoot, T. (1983). Optimization of water quality monitoring networks. Water Science and Technology, 16, 275-287.
Haith, D. A., Mandel R. and Wu, R. S. (1992). GWLF─Generalized Watershed Loading Functions, Version 2.0 User’s manual. Cornell University, Department of Agricultural Engineering.
Haith, D. A., Reynolds, J. E., Landre, P. T., and Richard, T. L. (1992). Sludge loading rates for land. Journal of Environmental Engineering, ASCE, 118(2), 196-208.
Harmancioglu, N. B. and Alpaslan, N. (1992). Water quality monitoring network design: a problem of multi-objective decision marking. Water Resources Bulletin, 28(1), 179-192.
Harmancioglu, N. B., Singh, V. P. and Alpaslan, M. N. (1998). Environmental Data Management, Kluwer Academic Publishers, Boston, MA, USA.
Hudak, P.F., Loaiciga, H.A., and Marino, M.A. (1995). Regional-scale ground-water quality monitoring via integer programming. Journal of Hydrology, 164, 153-170.
Kindler, J., (1992). Rationalizing water requirements with aid of fuzzy allocation model. ASCE, J. of Water Resources Planning and Management, 118, 308-323.
Kwiatkowski, R. E. (1991). Statistical need in national water quality monitoring programs. Environment Monitoring Assessment, Kluwer academic publishers, 17, 253-271.
Lee, Y. W., Dahab, M. F., and Bogardi, I., (1994). Fuzzy decision making in ground water nitrate risk management. Water Resources Bulletin, 117, 135-148.
Lettenmaier, D. P,. Anderson, D. E. and Brenner, R. N. (1984). Consolidation of stream quality monitoring network. Water Resources Bulletin, 20(4), 473-481.
Lettenmaier, D. P. (1978). Design considerations for ambient stream quality monitoring. Water Resources Bulletin, 14(4), 884-902.
Leung, P., Muraoka, J., Nakamoto, S. T. and Pooley, S. (1998). Evaluating fisheries management options in Hawaii using analytic hierarchy process (AHP), Fisheries Research, 36, 171-183.
Little, K. W. and Williams, R. E. (1992). Least-squares calibration of QUAL2E. Journal of Water Pollution Control Federation 64, 197-185.
Lo, S. L., Kao, J. T. and Wang, S. M. (1996). Water quality monitoring network design of Keelung River, Northern Taiwan. Water Science & Technology, 34(12), 49-57.
Loaiciga, H. A., Charbeneau, R. J., Everett, L. G., Fogg, G. E., Hobbs, B. F. and Rouhani, S. (1992). Review of ground-water quality monitoring network design. Journal Hydraulic Eng.,ASCE, 118(1), 11-37.
Loftis, J. C., McBride, G, B. and Ellis, J. C. (1991). Considerations for scale in water quality monitoring and data analysis. Water Resources Research. 27(2), 255-264.
Moore, S. F. (1973). Estimation theory applications to design of water quality monitoring system. Journal of Hydraulics Division., ASCE , 99,815-831.
O’Connor, D. J. and Dobbins, W. E. (1958). Mechanism of reaeration in natural streams, Transactions ASCE, 123, 641-684.
Ozkul, S., Harmancioglu, N. B., Singh, V. P. (2000). Entropy-based assessment of water quality monitoring networks. Journal of Hydrologic Engineering. 5(1), 90-100.
Qureshi, M. E. and Harrison, S. R. (2001). A decision support process to compare riparian revegetation options in Scheu Creek catchment in North Queensland, Journal of Environmental Management, 62, 101-112.
Satty, T. L. (1980). The analytic hierarchy process. McGraw-Hill, New York, USA.
Satty, T. L. and Vargas, L.G. (1982). The logic of priorities. Kluwer Nijhoff, Boston, USA.
Schrage, L. (1991). User’s Manual for Linear, Integer, and Quadratic Programming with LINDO, Release 5.0, The Scientific Press, South San Francisco, CA, USA.
Siddiqui, M. Z., Everett, J. W. and Vieux, B. E. (1996). Landfill siting using geographic information systems: a demonstration, Journal of Environmental Engineering (ASCE), 122, 515-523.
Skalski, J. R. and Mackenzie, D. H. (1982). A design for aquatic monitoring programs. Journal of Environmental Management, 14, 237-251.
Smith, D. G. and McBride, G. B. (1990). New Zealand¢s national water quality monitoring network design and lst year¢s operation. Water Resources Bulletin, 26(5), 767-775.
Sprull, T. D. and Candela, L. (1990). Two approaches to design of monitoring networks. Ground Water, 28(3), 430.
Steynberg, M. C., Venter, S. N., C. M. E.de Wet, G. du Plessis, Holhs, D.,Rodda, N. and Kfir, R. (1995). Management of microbial water quality: new perspectives for developing areas. Water Science & Technology, 32, 183-191.
Sung, H. H. and Sang, C. P. (1998). Application of data mining tools to hotel data mark on the Intranet for database marketing, Expert System Application, 15, 1-31.
Tarboton, D.G. (1997). A New Method for The Determination of Flow Directions and Upslope Areas in Grid Digital Elevation Models. Water Resources Research, 33(2) 309-319.
Tillman, D. H. and Dortch, M. S. (1993). Lower Missouri River water quality model for evaluating flow alterations. Proceedings of the Symposium on Engineering Hydrology, Hydraulics Division, ASCE, New York, USA, 503-508
Timmerman, J. G., Adriaanse, M., Breukel, R.M.A., Oirschot, M. C., Van, M.,and Ottens, J. J., (1997). Guidelines for water quality monitoring and assessment of transboundary rivers. European Water Pollution Control, 7(5), 21-30.
Tolman, R. A. (1992). Modified QUAL2E modeling of a stream acutely impacted by photosynthesis and respiration. Water Resources Planning and Management: Saving a Threatened Resource - In Search of Solutions, Proceedings of the Water Resources Sessions at Water Forum, ASCE, New York, USA, 194-199.
Urban Hydrology for Small watersheds, Technical Release No. 55 (1986). Natural Resources Conservation service, U.S. Department of Agriculture, Washington, D.C.
User’s Manual for ArcView® Version 3.1. (1998). Environmental Systems Research Institute Inc., Redlands, CA., USA.
Van, B. G. and Hughes, J. P. (1983). Monitoring for water quality: Fixed stations verus intensive surveys. Journal of Water Pollution Control Federation, 55(4). 400-404.
Venter, S.N., Steynberg, M. C., C. M. E.de Wet, Hohls, D., G. du Plessis and Kfir, R. (1997). A situational analysis of the microbial water quality in a peri-urban catchment in South Africa. Water Science & Technology, 35, 119-124.
Wagner, R. A. and Tisdale, T. S. (1996). Framework for phosphorus transport modeling in the lake Okeechobee watershed. Journal of American Water Resources Association, 57-73.
Walton, R. and Webb, M. (1994). QUAL2E simulations of pulse loads. Journal of Environmental Engineering, 120, 1017-1031.
Ward, R. C. (1979). Regulatory water quality monitoring: a systems perspective. Water Resources Bulletin, 15(2), 369-380.
Wen, C. C. Water quality planning in Kao-Ping River, Technique Report (in Chinese), National Cheng Kung University, 1989.
Wen, C. C. and Lee, C. S. A neural network approach to multiobjective optimization for water quality management in a river basin, Water Resources Research, 1998, 34, 427-436.
Whitfeld, P. H. (1988). Goals and data collection designs for water quality monitoring. Water Resources Bulletin, 24(4), 775-780.
Wu, S. M., Huang, G. H., Guo, H. C. (1997). Interactive inexact-fuzzy approach for multiobjective planning of water resource systems. Water Science and Technology, 36(5), 235-242.
Yang, M. D. and Merry, C. J. (1999). Integration of water quality modeling, remote sensing, and GIS. Water Research, 35, 253-263.
Yuan, B. X., Wang, Z. and Morris, T. (2000). Software analyzer design using data mining technology for toxicity prediction of aqueous effluents. Waste Management, 2000, 20, 677-686.
Zhang, H. C. and Yu, S. Y. (1999). Quantitative approach in environmentally conscious product design support. IEEE Internal Symposium Electronic Environment, May 11, 280-285.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊