(3.237.97.64) 您好!臺灣時間:2021/03/03 07:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡政賢
研究生(外文):Cheng-Hsien Tsai
論文名稱:含硫氣體化合物於高週波電漿中之反應機制
論文名稱(外文):Reaction Mechanism of Sulfur-Containing Gas Compounds in RF Plasma
指導教授:李文智李文智引用關係陳志勇陳志勇引用關係
指導教授(外文):Wen-Jhy LeeChun-Yung Chen
學位類別:博士
校院名稱:國立成功大學
系所名稱:環境工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:90
語文別:中文
論文頁數:176
中文關鍵詞:高週波電漿甲硫醇二甲基硫二硫化碳二氧化硫反應機制模擬
外文關鍵詞:RF PlasmaCH3SH(CH3)2SCS2SO2Reaction MechanismModeling
相關次數:
  • 被引用被引用:17
  • 點閱點閱:821
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:216
  • 收藏至我的研究室書目清單書目收藏:1
本研究係利用高週波電漿系統,添加氧化劑(O2)或還原劑(CH4),將甲硫醇、二甲基硫、二硫化碳及二氧化硫,分別於室溫環境下進行分解。主要之操作參數,包括輸入功率,反應物混合配比(O2/CH3SH、O2/DMS、O2/CS2或CH4/SO2比例),反應物進料濃度及操作壓力。研究內容探討反應物之分解率及最終產物之分布,並推論於電漿系統之反應路徑。最後,建構CS2/O2/Ar電漿模型進行數值模擬,比較與實驗值之差異。實驗設計方法及實驗結果顯示,影響分解率及產物分布之主要因素為輸入功率與反應物之混合配比。分解率方面,以CS2最容易分解,其次為CH3SH及DMS,SO2則因其熱力學上之穩定度高而最難分解。結果顯示輸入功率、添加劑濃度及解離物種之數量,影響高能及高活性物種之種類及濃度,進而影響分解率高低。產物分布方面,CH3SH及DMS在相同功率下,反應機制之差異主要在於起始反應:DMS大多分解為CH3S及CH3;而CH3SH分解為CH3、SH、CH3S及H。因DMS/Ar電漿中有高量之CH3自由基,導致CH4+C2H2+C2H4產率較高;然而CH3SH/Ar電漿因有SH可快速形成CS2,所以CS2產量較高。另外,在相同加氧比下,CH3SH/O2/Ar電漿具有較高之燃燒等值比,可迅速形成SO及CO,因此SO2及CO2產率較高,也因此,導致CH4+C2H2+C2H4、CH2O、CH3OH、CS2及OCS均較DMS/O2/Ar電漿少了許多。傳統上很難去除之SO2,在CH4/SO2進流比例=2之條件下,可同時使SO2及CH4保持在較高之分解率。當2%之SO2進料濃度於120 W功率下,SO2可達99.2%,CH4則為100%;產物分布則顯示,硫選擇性之比例為[S1]:[CS2] = 0.658:0.320。其中還原劑CH4轉化後之主產物為syngas (H2 + CO),是工業上合成其他產品之重要原料,如CH3OH。分析S原子之反應機制發現,貧氧狀態之操作可將CH3SH或DMS轉化成CS2;而SO2亦可藉由控制CH4之濃度及輸入功率,選擇性地將S還原成元素硫及CS2。至於CS2,則可在貧氧條件下(O2/CS2 < 0.6)回收純度99.2%以上之元素硫。總結含硫化合物於RF電漿中,可選擇性地控制反應路徑以形成元素硫為反應終點,成為有潛力之硫回收方案。最後,電漿模式模擬結果顯示,常溫下無法反應之CS2/O2/Ar反應,可以在高能電子之協助下起始反應,模擬結果與實驗值大致上十分吻合。從敏感度分析可知:貧氧時(O2/CS2 = 0.6)對CS2分解最具影響力之反應式為電子解離反應CS2 + e- à CS + S + e- 及CS2 + e- à C + S2 + e-;而富氧時(O2/CS2 = 6.0)對CS2分解最具影響力之反應式為SO + O2 = SO2 + O及CS + O = CO + S。
The application of the RF (radio-frequency) cold plasma technique to the decomposition of CH3SH, (CH3)2S (DMS), CS2 and SO2 by adding oxidant (O2) or reductant (CH4) at room temperature, is investigated. The operational parameters are applied RF power, mixing ratio of reactants (O2/CH3SH, O2/DMS, O2/CS2 and CH4/SO2), inlet concentration of reactants and operational pressure. This study aims to gain insight into the decomposition fraction, product distributions and plasmachemical reaction mechanisms. Detailed CS2/O2/Ar plasma kinetic reactions are also conducted to elucidate the discrepancy between numerical modeling and experimental results. The factorial factor design method and experimental results indicated that the applied power and mixing ratio of reactants were the parameters that primarily influenced decomposition fraction and product selectivity. The results reveal that CS2 is easily decomposed, followed by CH3SH, and then DMS. SO2 is the most difficult compound to decompose because of its high thermodynamic stability. However, applying power, adduct concentration and amount of dissociated fragments affect the concentration of high energetic and active species and dominate the decomposition fraction. The main discrepancies in product patterns, between the reaction mechanisms of DMS and CH3SH are evident in the initial reactions. DMS is primarily dissociated into CH3S and CH3, while CH3SH is mainly dissociated into CH3, SH, CH3S and H. The presence of more CH3 in the DMS/Ar plasma provides more H and CHx (x = 1-3), to yield more CH4+C2H2+C2H4. SH in the CH3SH/Ar plasma proceeds by more channels to produce more CS2 than in the DMS/Ar plasma. Given the same percentage of O2, a higher equivalent ratio (Φ) lead to form SO and CO quickly to result in the yields of SO2 and CO2 in the CH3SH/O2/Ar plasma that are higher than those in the DMS/O2/Ar plasma, leaving only a trace of CH4+C2H2+C2H4, CH2O, CH3OH, CS2 and OCS in the former plasma. SO2 is typically hard to decompose. Results suggest that more SO2 and CH4 is converted at a CH4/SO2 ratio of 2, reaching conversion fractions of 99.2% for SO2 and 100% for CH4 at 120 W, with the sulfur-selectivity of S1: CS2 = 0.658: 0.320. Main by-products of the reaction are syngas (H2, CO), which are the important intermediate materials in the industrial production of CH3OH. In summary, the S atom of CH3SH and DMS can be selectively converted into mainly CS2; SO2 is converted into elemental sulfur and CS2 by altering the CH4/SO2 ratio and the applied power. For CS2, under conditions of oxygen-lean (O2/CS2 < 0.6), the majority of S atoms are converted to elemental sulfur whose purity is as high as 99.2%. Thus, this study provides an approach to recovering sulfur and thus reducing the emission of sulfur-containing compounds. Simulation results indicate that CS2/O2/Ar reactions that cannot be processed at room temperature can be performed through the initial electrical reactions, and gives yields of the product are very close to experimental yields. Sensitivity analysis reveals that the most important reactions for CS2 decomposition are electron dissociation reactions, CS2 + e- à CS + S + e- and CS2 + e- à C + S2 + e- at O2/CS2 = 0.6, and radical reactions, CS + O = CO + S and SO + O2 = SO2 + O at O2/CS2 = 6.0.
總 目 錄
授權書I
簽署人須知II
中文摘要III
英文摘要V
誌 謝VII
總 目 錄VIII
表 目 錄XII
圖 目 錄XIII
第一章 前 言1
1-1 緒論1
1-2 研究內容與流程綱要2
第二章 文獻回顧4
2-1 硫化物來源及特性4
2-1-1 元素硫之特性4
2-1-2 硫排放量及分布4
2-1-3 含硫臭味物質之特性6
2-1-4 含硫臭味物質之來源與影響8
2-2 電漿原理及應用12
2-2-1 電漿生成12
2-2-2 電漿特性14
2-2-3 電漿分類與電漿化方法17
2-3 含硫化合物之處理27
第三章 實驗設備、方法與流程30
3-1 實驗設備30
3-1-1 真空系統及測漏32
3-1-2 氣體進料/混合定量系統33
3-1-3 高週波產生系統34
3-1-4 電漿反應器34
3-1-5 定性/定量分析系統35
3-2 實驗藥品39
3-3 實驗流程40
3-3-1 實驗前準備事項40
3-3-2 操作參數與操作範圍41
3-3-3 實驗步驟43
3-3-4 不鏽鋼採樣瓶(canister)之採樣步驟44
3-3-5 固態沉積物之採樣46
3-3-6 檢量線製作(FTIR)46
第四章 CS2/O2/Ar電漿模型與電腦模擬47
4-1 CS2/O2/Ar電漿模型47
4-1-1 模型假設47
4-1-2 帶電粒子模型48
4-1-3 中性物種模型51
4-2 電腦模擬52
4-2-1 EEDF及電子反應速率常數之計算52
4-2-2 電漿化學反應之模擬基礎55
4-2-3 化學反應模擬軟體57
4-2-4 反應機制數值求解程序58
4-3 敏感度分析程式61
4-3-1 敏感度分析及敏感度係數61
4-3-2 敏感度分析程式62
4-3-3 敏感度分析程序63
第五章 結果與討論64
5-1 CH3SH之電漿分解64
5-1-1 部份因素配置法64
5-1-2 輸入功率對分解率之影響67
5-1-3 沈積物分析69
5-1-4 產物分析71
5-1-5 CH3SH/O2/Ar起始反應72
5-1-6 加氧比對產物分布及反應機制之影響74
5-2 DMS與CH3SH在電漿中轉化之比較84
5-2-1 分解率之比較84
5-2-2 產物分布之比較86
5-2-3 DMS及CH3SH起始反應之比較87
5-2-4 CS2、OCS及SO2硫轉化率之比較89
5-2-5 CxHy碳轉化率之比較94
5-2-6 CH2O及CH3OH碳轉化率之比較96
5-2-7 COx碳轉化率之比較98
5-2-8 總反應路徑之比較(overall reaction routes )99
5-3 CS2之電漿氧化與硫回收102
5-3-1 碳、硫平衡與沈積物102
5-3-2 CS2之分解率及起始反應104
5-3-3 氣相產物分布與分析106
5-3-4 氣相產物之生成與分解107
5-3-5 沈積物之成分及結構分析111
5-3-6 電漿聚合薄膜之成分及結構分析118
5-3-7 總反應式及反應路徑121
5-4 SO2/CH4之電漿分解125
5-4-1 最終產物組成125
5-4-2 CH4/SO2 比值對產物選擇性之影響127
5-4-3 CH4/SO2 比值及輸入功率對分解率之影響130
5-4-4 操作壓力及進流濃度對分解率之影響133
5-5 硫化物於電漿中反應機制之比較136
5-6 CS2/O2/Ar電漿反應之電腦模擬139
5-6-1 高週波電漿中二硫化碳氧化反應之機制139
5-6-2 電漿分解反應之電腦模擬值與實驗值之比較142
5-6-3 敏感度分析146
第六章 結論與建議153
6-1 結論153
6-2 建議156
參考文獻157
附錄A 定性物種之FTIR光譜168
附錄B 各物種之IR吸收峰波數169
附錄C CS2/O2/Ar 電漿電腦模擬物種之熱力學資料170
附錄D 鍵結解離能資料172
自 述173
表 目 錄
表2-1 硫與氧基本性質之比較5
表2-2 陸地源硫排放量之物種分布,單位:106 mol/d6
表2-3 天然及人為排放源之硫排放量分布,單位:109 mol/a6
表2-4 臭味來源與行業別之關聯8
表2-5 常見含硫化合物之氣味特徵、來源及對健康之影響9
表2-6 常見含硫化合物之基本性質11
表2-7 低溫電漿之特性參數19
表3-1 FTIR參數設定36
表3-2 實驗用藥品39
表3-3 實驗參數及操作範圍41
表5-1 部份因素實驗設計配置參數及水準66
表5-2 輸入功率對CH3SH電漿反應之影響 (P = 30 torr, R = 3.0)67
表5-3 DMS及CH3SH電漿產物之比較(30 W)88
表5-4 固體沈積物之化學分析(mass %)113
表5-5 不同功率下,總硫輸入量分別轉化至出流氣體(含未反應之CS2)、聚合薄膜及固態硫之定量比例(O2/CS2 = 0.6)114
表5-6 不同功率及不同進料濃度下,於CH4/SO2 = 2時之單位能量對SO2+CH4之總去除效率135
表5-7 不同加氧比狀況下,CS2/O2/Ar電漿反應電腦模擬之參數條件140
表5-8 CS2/O2/Ar電漿中模擬之基元反應機制141
表5-9 CS2/O2/Ar電漿中有關CS2最重要之五個反應式146
表5-10 CS2/O2/Ar電漿中有關CO最重要之五個反應式148
表5-11 CS2/O2/Ar電漿中有關CO2最重要之五個反應式149
表5-12 CS2/O2/Ar電漿中有關SO2最重要之五個反應式150
表5-13 CS2/O2/Ar電漿中有關OCS最重要之五個反應式151
表5-14 CS2/O2/Ar電漿中有關S2最重要之五個反應式151
圖 目 錄
圖1-1 研究流程3
圖3-1 高週波電漿分解實驗系統裝置31
圖3-2 電漿分解實驗步驟45
圖4-1 電子反應速率之計算流程54
圖4-2 CHEMKIN程式與SENKIN程式執行之流程圖60
圖5-1 個別參數對hCH3SH、FSO2、FCS2及FOCS之標準化影響(+表正影響,-表負影響)66
圖5-2 不同功率下,CH3SH之分解率(A)、功率密度(B)及移除效率(C)68
圖5-3 沈積物之電子顯微鏡圖,(A) O2/CH3SH = 0.6,(B) O2/CH3SH = 070
圖5-4 不同加氧比下,出流產物中CH4 (A)、C2H4 (B)及C2H2 (C)之莫耳分率76
圖5-5 不同加氧比下,出流產物中CO (A)、CO2 (B)之莫耳分率及CO2/CO 之比值(C)79
圖5-6 不同加氧比下,出流產物中CS2 (A)、SO2 (B)及OCS(C)之莫耳分率81
圖5-7 不同輸入功率(A) 及加氧比(B) 下,DMS及CH3SH分解率之比較85
圖5-8 無氧條件下,DMS及CH3SH各產物轉化率之比較90
圖5-9 加氧比3.0時,DMS及CH3SH生成CO、CO2、CS2及SO2轉化率之比較92
圖5-10 加氧比3.0時,DMS及CH3SH生成CH3OH、CH2O及OCS轉化率之比較93
圖5-11 加氧比3.0時,DMS及CH3SH生成CH4、C2H2、及C2H4轉化率之比較97
圖5-12 無氧環境之DMS及CH3SH反應路徑差異之比較100
圖5-13 有氧環境之DMS及CH3SH反應路徑差異之比較101
圖5-14 不同加氧比(A) 及輸入功率(B) 之條件下,CS2反應後殘留在出流氣體之碳及硫比例103
圖5-15 不同輸入功率下,CS2之分解率(A)及功率密度(B)105
圖5-16 不同輸入功率下,CS2分解後各產物之莫耳分率109
圖5-17 CS2/O2/Ar電漿分解後沈積物之產生及採樣位置112
圖5-18 樣品C0.6及D0.6之XRD分析圖116
圖5-19 樣品D0及D0.6之FTIR圖譜117
圖5-20 樣品F0.6及F0於S2P及C1P之XPS分解圖120
圖5-21 樣品F0.6及F0之電子顯微鏡比較圖122
圖5-22 CS2/O2/Ar電漿分解之反應路徑圖124
圖5-23 於90 W輸入功率,不同CH4/SO2比例下,經RF電漿分解後各產物之莫耳分率圖126
圖5-24 於90 W輸入功率下,不同CH4/SO2比例下,產生CS2及total sulfur之選擇性128
圖5-25 於90 W輸入功率,不同CH4/SO2比例下,SO2及CH4之分解率131
圖5-26 於CH4/SO2 = 2時,不同輸入功率之SO2及CH4分解率132
圖5-27不同輸入功率、不同SO2進流濃度及不同操作壓力下,SO2之分解率134
圖5-28 硫原子於RF電漿中反應之選擇性137
圖5-29 加氧比0.6(A)及6.0(B)下,CS2/O2/Ar電漿模擬之時間與產物濃度關係圖143
圖5-30 不同加氧比下,CS2分解率之實驗值與模擬值比較144
圖5-31 不同加氧比條件下,CS2/O2/Ar各產物莫耳濃度之實驗值與模擬值之比較145
Alcantara, S., Estrada, I., Soledad, V. and Revah, S., “Carbon Disulfide Oxidation by a Microbial Consortium from a Tricking Fiber”, Biotech. Lett., Vol. 21, pp. 815-819, 1999.
Aneja, V. P., Overton, J. H. and Cupitt, L. T., “Carbon Disulphide and Carbonyl Sulphide from Biogenic Sources and their Contributions to the Global Sulphur Cycle ”, Nature, Vol. 282, pp. 493-496, 1979.
Arno, J. and Bevan, J. W., “Detoxification of Trichloroethylene in a Low-Pressure Surface Wave Plasma Reactor”, Environ. Sci. Technol., Vol. 30, pp. 2427-2431, 1996.
Asano, Y., "Formation and Properties of Plasma-Polymerized Carbon Disulfide Films", Jap. J. Appl. Phy., Vol. 22, pp. 1618-1622, 1983.
Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, Jr. R. F., Kerr, J. A., Rossi, M. J. and Troe, J., “Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry”, J. Phys. Chem. Ref. Data, Vol. 26, pp. 1329-1499, 1997.
Bains-Sahota, S. K. and Thiemens, H., “Mass-Independent Oxygen Isotopic Fractionation in a Microwave Plasma”, J. Phys. Chem., Vol. 91, pp. 4370-4374, 1987.
Baldridge, K. K., Gordon, M. S. and Johnson, D. E., “Thermal Decomposition of Methanethiol and Ethanethiol”, J. Phys. Chem., Vol. 91, pp. 4145-4155, 1987.
Banchereau, E. R., Lacombe, S., Ollivier, J., Micheau, J. C. and Lavabre, D., “Kinetic Modeling of the Photooxidation of Dimethyldisulfide in the Liquid Phase”, Int. J. Chem. Kinet., Vol. 29, pp. 825-834, 1997.
Barnes, K. H., Becker, E. H., Fink, A., Reimer, A. and Zabel, F., "Rate Constants and Products of the Reaction CS2 + OH in the Pressure of O2", Int. J. Chem. Kinet., Vol. 15, pp. 631-645, 1983.
Bates, T. S., Lamb, B. K., Guenther, A., Dignon, J. and Stoiber, R. E., "Sulfur Emissions to the Atmosphere from Natural Sources", J. Atmos. Chem., Vol. 14, pp. 315-337, 1992.
Baulch, D. L., Cobos, C. J., Cox, R. A., Frank, P., Hayman, G., Just, T. H., Kerr, J. A., Murrells, T., Pilling, M. J., Troe, J., Walker, R. W. and Warnatz, J., “Summary Table of Evaluated Kinetic Data for Combustion Modeling: Supplement 1”, Combust. Flame, Vol. 98, pp. 59-79, 1994.
Bejarano, C. A., Jia, C. Q. and Chung, K. H., “A Study on Carbothermal Reduction of Sulfur Dioxide to Elemental Sulfur Using Oilsands Fluid Coke”, Environ. Sci. Technol., Vol. 35, pp. 800-804, 2001.
Benson, S. W. Thermochemical Kinetics, 2nd ed., Wiley, New York, pp. 209~266, 1976.
Benson, S. W., “Thermochemistry and Kinetics of Sulfur-Containing Molecules and Radicals”, Chem. Rev., Vol. 78, pp. 23-35, 1978.
Bopp, J. M., Kern, R. D. and Niki, T., “Decomposition of Water Behind Reflected Shock Waves”, J. Phys. Chem., Vol. 82, pp. 1343-1346, 1978.
Bozzelli, J. W. and Barat, R. B., “Reactions of Water Vapor or Molecular Hydrogen with Trichloroethylene in a Microwave Plasma Reactor”, Plasma Chem. Plasma process., Vol. 8, pp. 293-314, 1988.
Brown, J. R. and Terman, M., “In Situ X-ray Photoelectron Spectroscopic Examination of a Cobalt-Molybdenum-Alumina Hydrotreating Catalyst”, Ind. Eng. Chem. Prod. Res. Dev., Vol. 23, pp. 557-564, 1984.
Brown, L. C. and Bell, A. T., “Kinetics of the Oxidation of Carbon Monooxide and the Decomposition of Carbon Dioxide in a Radiofrequency Electric Discharge. I. Experimental Results”, Ind. Eng. Chem., Fundam., Vol. 13, pp. 203-210, 1974A.
Brown, L. C. and Bell, A. T., “Kinetics of the Oxidation of Carbon Monooxide and the Decomposition of Carbon Dioxide in a Radiofrequency Electric Discharge. II. Theoretical Interpretation”, Ind. Eng. Chem., Fundam., Vol. 13, pp. 210-218, 1974B.
Boenig, H. V., Fundamentals of Plasma Chemistry and Technology; Technomic Publishing Co., Inc.: Lancaster, USA, 1988.
Carley, A. F., Davies, P. R., Jones, R. V., Harikumar, K. R., Kulkarni, G. U. and Roberts, M. W., "The Structure of Sulfur adlayers at Cu(110) Surfaces: an STM and XPS Study", Surf. Sci., Vol. 447, pp. 39-50, 2000.
Chan, W. S and Jonscher, A. K., “Structural and Electrical Properties of Solid Polymeric Carbon Disulphide”, Phys. Stat. Sol., Vol. 32, pp. 749-761, 1969.
Chang, Y. T. and Loew, G. H., “The Reaction of Atomic Oxygen with Methanethiol. A Theoretical Study of the Structures and the Potential Energy Surface", Chem. Phys. Lett., Vol. 205, pp. 543-549, 1993.
Charlson, R. J., Lovelock, J. E., Andreae, M. O. and Warren, S. G., "Oceanic Phytoplankton, Atmospheric Sulphur, Cloud Albedo and Climate", Nature, Vol. 326, No. 16, pp. 655-661, 1987.
Chen, F. F., “Introduction to Plasma Physics and Controlled Fusion, Vol. I Plasma Physics”, 2nd Edition, Plenum Press: New York, 1983.
Chen, C. K., Wei, T. C., Collins, L. R., and Phillips, J. “Modeling the Discharge Region of a Microwave Generated Hydrogen Plasma”, J. Phy. D: Appl. Phys., Vol. 32, pp. 688-698, 1999.
Chiu, S. W., Li, W. K., Tzeng, W. B. and Ng, C. Y., “A Gaussian-2 ab initio Study pf CH2SH, CH2S-, CH3S-, CH2SH-, CH3SH-, CH3+, and CH3SH+”, J. Chem. Phys., 97, pp. 6557-6568, 1992.
Chu, H. and Horng, K., “The Kinetics of the Catalytic Incineration of CH3SH and (CH3)2S over a Pt/Al2O3 catalyst”, Sci. Total Environ., Vol. 209, pp. 149-156, 1998.
Chu, H. and Lee, W. T., “The Effect of Sulfur Poisoning of Dimethyl Disulfide on the Catalytic Incineration over a Pt/Al2O3 Catalyst”, Sci. Total Environ., Vol. 209, pp. 217-224, 1998.
Chu, H., Lee, W. T., Horng, K. H. and Tseng, T. K., “The Catalytic Incineration of (CH3)2S and its Mixture with CH3SH over a Pt/Al2O3 Catalyst”, J. Hazard. Mater., Vol. B82, pp. 43-53, 2001.
Curtiss, L. A., Nobes, R. H., Pople, J. A. and Radim, L., “Theoretical Study of the Organosulfur Systems CSHn(n=0-4) and CSHn+(n = 0-5): Dissociation Energies, Ionization Energies, and Enthalpies of Formation”, J. Chem. Phys., Vol. 97, pp. 6766-6773, 1992.
Cullis, C. F. and Mulcahy, M. F.R., “The Kinetics of Combustion of Gaseous Sulphur Compounds”, Combust. Flame, Vol. 18, pp. 225-292, 1972.
Colman, J. J. and Trogler, W. C., "Photopolymerization of Carbon Disulfide Yields the High-Pressure-Phase (CS2)x", J. Am. Chem. Soc., Vol. 117., pp. 11270-11277, 1995.
Colman, J. J., Xu, X., Thiemens, M. H. and Trogler, W. C., "Photopolymerization and Mass-Independent Sulfur Isotope Fractionations in Carbon Disulfide", Science, Vol. 273, pp. 774-776, 1996.
Cox, R. A., “Reaction of OH Radicals with Gaseous Sulphur Compounds”, Nature, Vol. 284, pp. 330-331, 1980.
Cukier, R. I.; Levine, H. B. and Shuler, K. E., "Nonlinear Sensitivity Analysis for Multiparameter Model system", J. Comput. Phys., Vol. 26, pp. 1-42, 1978.
Cvetanovic, R. J., Singleton, D. L. and Irwin, R. S., “Gas-Phase Reaction of O (3P) Atoms with Methanethiol, Ethanethiol, Methyl Sulfide, and Dimethyl Disulfide. 2. Reaction Products and Mechanisms”, J. Am. Chem. Soc., Vol. 103, pp. 3530-3539, 1981.
Dagaut, P., Voisin, D. and Cathonnet, M., “The Oxidation of Ethylene Oxide in a Jet-Stirred Reactor and Its Ignition in Shock Waves”, Combust. Flame, Vol. 106, pp. 62-68, 1996.
Dahiya, R. P., Mishra, S. K. and Veefkind, A., “Plasma Chemical Investigations for NOx and SO2 Removal from Flue Gases”, IEEE Trans. Plasma Sci., Vol. 21, pp. 346-348, 1993.
De Sorgo, M., Yarwood A. J., Strausz, O. P. and Gunning, H. E., ‘The Photolysis of Carbon Disulfide and Carbon Disulfide-Oxygen’, Can. J. Chem., Vol. 43, pp. 1886-1891, 1965.
Dean, A. M. “Predictions of Pressure and Temperature Effects upon Radical Addition and Recombination Reactions”, J. Phys. Chem., Vol. 89, pp. 4600-4608, 1985.
Dean A. M. and Westmoreland, P. E. “Bimolecular QRRK analysis of methyl radical reaction”, Int. J. Chem. Kinet., Vol. 19, pp. 207-228, 1987.
Dean, A. M. Bozzelli, J. W. and Ritter, E. P. “Chemact: A Computer Code to Estimate Rate Constants for Chemically-Activated Reactions”, Combust. Sci. Tech., Vol. 80, pp. 63-85, 1991.
Denisov, G. V., Kuznetsov, D. L. and Nilolaev, Yu. N., "Decomposition of Carbon Disulfide by Microsecond Electron-Beam Treatment", High Energy Chemistry, Vol. 31, pp. 427-428, 1997.
Desai, S. R., Feigerle, C. S. and Miller, J. C., “Laser-Indused Polymerization within Carbon Disulfide Clusters”, J. Phys. Chem., Vol. 99, pp. 1786-1791, 1995.
Dougherty, E. P.; Hwang, J. T. and Rabitz, H., "Further Developments and Applications of the Green''s Function Method of Sensitivity Analysis in Chemical Kinetics", J. Chem. Phys., Vol. 71, pp.1794-1808, 1979.
Eliasson, B. and Kogelschatz, U., “Nonequilibrium Volume Plasma Chemical Processing”, IEEE Trans. Plasma Sci., Vol. 19, No. 6, pp. 1063-1077, 1991.
Ernst, K. and Hoffman, J. J., “Laser Induced Aerosol Formation in CS2 Vapour”, Chem. Phys. Lett., Vol. 68, pp. 40-43, 1979.
Esposito, F.; Colonna, G.; Longo, S. and Capitelli, M., “Monte Carlo Global Sensitivity Analysis of Boltzmann Equation for Electron Kinetics in H2 Discharges”, Plasma Chem. Plasma Process., Vol. 16, pp. 1-16, 1996.
Fan, W. Y., Knewstubb, P. F., Kaning, M., Mechold, L., Ropcke, J. and Davies, P. B., “A Diode Laser and Modeling Study of Mixed (CH4-H2-O2)AC Plasmas, J. Phys. Chem. A, Vol. 103, pp.4118-4128, 1999.
Fgoli, N. S., L''Argentire, P. C., Nicot,, C. and Frty, R., “Regeneration of Ni/SiO2 poisoned with Carbon Disulfide”, Catal. Lett., Vol. 38, pp. 171-174, 1996.
Fornasiero, D., Li, F., Ralston, J. and Smart, R. St. C., “Oxidation of Galena Surfaces”, J. Colloid Inter. Sci., Vol. 164, pp. 333-344, 1994.
Frank, N. W., “Status and Perspectives for the Electron Beam Technology for Flue Gases Treatment”, Radiat. Phys. Chem., Vol. 40, pp. 267-272, 1992.
Futamura, S., Zhang, A., Prieto, G. and Yamamoto, T., “Factors and Tintermediates Governing Byproduct Distribution for Decomposition of Butane in Nonthermal Plasma”, IEEE Trans. Ind. Appl., Vol. 34, pp. 967-974, 1998.
Gazicki, M. and Yasuda, H., “an Atomic of Plasma Polymerization: the Role of Elemental Composition of the Monomer”, J. Appl. Poly. Sci: Appl. Poly. Symp., Vol. pp. 35-44, 1984.
Gelius, U., Hedn, P. F., Linberg, B. J., Manne, R., Nordberg, R., Nordling, C. and Siegbahn, K., “Molecular Spectroscopy by Means of ECSA”, Physica Scripta, Vol. 2, pp. 70-80, 1970.
Ghittori, S., Maestri, L., Contardi, I., Zadra, P., Marraccini, P. and Imbriani, M., “Biological Monitoring of Workers Exposed to Carbon Disulfide (CS2) in a Viscose Rayon Fibers Factory”, American J. Ind. Med., Vol. 33, pp. 478-484, 1998.
Glarborg, P., Kubel, D., Dam-Johnson, K., Chiang, H. M. and Bozzelli, J. W., “Impact of SO2 and NO on CO oxidation under Post-Flame Conditions”, Int. J. Chem. Kinet., Vol. 28, pp. 773-790, 1996.
Goldenberg, M. and Frenklach, M., "A Post-Processing Method for Feature Sensitivity Coefficients", Int. J. Chem. Kinet., Vol. 27, pp. 1135-1142, 1995.
Hammeed, S. and Dignon J., "Global Emissions of Nitrogen and Sulfur Oxides in Fossil Fuel Combustion:1970-1986", J. Air Poll. Con. Assoc., 1990.
Hiraoka, K., Fujimaki, S. and Aruga, K., “Frontier-Controlled Structures of the Gas-Phase A±(CS2)n Clusters, A± = S2+, CS2+, S2-, and CS2-“, J. Phys. Chem., Vol. 98, pp. 1802-1809, 1994.
Hirotsu, T., "Plasma Reaction Behavior of Carbon Disulfide and Carbon Dioxide in Glow Discharges", J. Macromol. Sci.-Chem., A16(7), pp. 1217-1224, 1981.
Herlitz, H. G., “Plasma technology “, Environ. Sci. Technol., Vol. 20, No. 11, pp. 1102-1105, 1986.
Hsieh, L. T., Lee, W. J., Chen, C. Y., Chang, M. B. and Chang, H. C., “Converting Methane by Using an RF Plasma Reactor”, Plasma Chem. Plasma Process., Vol. 18, pp. 215-239, 1998A.
Hsieh L. T., Lee W. J., Li C. T., Chen C. Y., Wang Y. F. and Chang M. B., Decomposition of Carbon Dioxide in the RF Plasma Environment, J. Chem. Technol. Biotechnol., Vol. 73, pp. 432-442, 1998B.
Hsieh, L. T., Lee, W. J., Chen, C. Y., Wu, Y. P. G., Chen, S. J. and Wang, Y. F., “Decomposition of Methyl Chloride by Using an RF Plasma Reactor”, J. Hazard. Mater., Vol. 63,pp. 69-90, 1998C.
Hynes, A. H. and Wine, P. H., “Kinetics of the OH + CH3SH Reaction under Atmospheric Conditions”, J. Phys. Chem., Vol. 91, pp. 3672-3676, 1987.
Ikeda, H., Asaba H. and Takeuchi, Y., "Removal of H2S, CH3SH and (CH3)3N form Air by Use Chemically Treated Activated Carbon", J. Chem. Eng. Jpn., Vol. 21, pp. 91-97, 1988.
Itoh, H., Taheyama, Y., Ikeda, M., Satoh, K., Nakao, Y. and Tagashira, H., “Spectroscopic and Image Intensified Investigations of RF Plasmas in H2 and CH4 mixtures”, IEE Proc.-Sci. Meas. Technol., Vol. 141, pp. 95-98, 1994.
Jeong, S. M. and Kim, S. D., “Removal of NOx and SO2 by CuO/γ-Al2O3 Sorbent/Catalyst in a Fluidized-Bed Reactor”, Ind. Eng. Chem. Res., Vol. 39, pp. 1911-1916, 2000.
Josephson, J., “Other plasma technology business”, Environ. Sci. Technol., Vol. 20, No. 11, pp. 1104, 1986.
Karan, K., Mehrotra, A. K. and Behie, L. A., “OCS-Forming Reaction between CO and Sulfur: A High-Temperature Intrinsic Kinetics Study”, Ind. Eng. Chem. Res., Vol. 37, pp. 4609-4616, 1998.
Karra, S. B. and Senkan, S. M., “A Detailed Chemical Kinetic Mechanism for the Oxidative Pyrolysis of CH3Cl”, Ind. Eng. Chem. Res., Vol. 27, pp. 1163-1168, 1988.
Kee, R. J., Rupley, F. M. and Miller, J. A. Chemkin-II: A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics, SANDIA REPORT, SAND89-8009B UC-706, reprinted. pp. 9~127, 1993.
Kenson, R. E., "Controlling odors", Chemical Engineering, January 26, pp. 94-100, 1981.
Kerr, R. A., “Acid Rain Control: Success on the Cheap”, Science, Vol. 282, pp. 1024-1027, 1998.
Kuntz, R. R., “The Reactions of Hydrogen Atoms with Simple Thiols”, J. phys. chem., Vol. 71, 3343-3345, 1967.
Lau, N. T. and Fang, M., “On the Formation of Carbonyl Sulfide in the Reduction of Sulfur Dioxide by Carbon Monoxide on Lanthanum Oxysulfide Catalyst; A Study by XPS and TPR/MS”, J. Catal., Vol. 179, pp. 343-349, 1998.
Law, V. J. and Sharma, Y., "Computation of the Gradient and Sensitivity Coefficients in Sum of Squares Minimization Problems with Differential Equation Models", Computers Chemical Engineering, Vol. 21, pp.1471-1479, 1997.
Lee, J. H, and Tang, I N., “Absolute rate Constants for the Hydroxyl Radical Reactions with CH3SH and C2H5SH at Room Temperature”, J. Chem. Phys., Vol. 78, pp. 6646-6689, 1983.
Lee, W. H., Kim, J. Y., Reucroft, P. J. and Zondlo, J. W., “Surface Analysis of Carbon Black Waste Materials from Tire Residues”, Appl. Surf. Sci., Vol. 141, pp. 107-113, 1999.
Lee, W. J., Chen, C. Y., Lin, W. C., Wang, Y. T. and Chin, C. J., “Phosgene formation from the decomposition of 1,1-C2H2Cl2 contained gas in an RF plasma reactor”, J. Hazard. Mater., Vol. 48 ,pp. 51-67, 1996.
Lelieveld, J. and Heintzenberg, J., “Sulfate Cooling Effect on Climate Through In-Colud Oxidation of Anthropogenic”, Science, Vol. 258, pp.117-120, 1992.
Li, C. T., Lee, W. J., Chen, C. Y. and Wang, Y. T., “CH2Cl2 Decomposition by Using a Radio-Frequency Plasma System”, J. Chem. Tech. Biotecnol., Vol. 66, pp. 382-388, 1996.
Liao, W. T., Lee, W. J., Chen, C. Y., Hsieh, L. T. and Lai, C. C., “Decomposition of Ethoxyethane in the Cold Plasma Environment”, J. Chem. Technol. Biotchnol., Vol. 75, pp. 817-827, 2000.
Liao, W. T., Lee, W. J., Chen, C. Y. and Shih, M., “Decomposition of Ethylene Oxide in the RF Plasma Environment”, Environ. Technol., Vol. 22, pp. 165-174, 2001.
Lifshitz, A., Frenklach, M., Schechner, P. and Carroll, H. F., “Shock Initiated Ignition in OCS-O2-Ar Mixtures”, Int. J. Chem. Kinet., Vol. 7, pp. 753-773, 1975.
Lizzio, A. A. and DeBarr, J. A., “Mechanism of SO2 Removal by Carbon”, Energy Fuels, Vol. 11, pp. 284-291, 1997.
Lovejoy, E. R., Murrells, T. P., Ravishankara, A. R. and Howard, C. J., “Oxidation of CS2 by Reaction with OH. 2. Yields of HO2 and SO2 in Oxygen”, J. Phys. Chem., Vol. 94, pp. 2386-2393, 1990.
Lutz, A. E., Kee, R. T. and Miller, J. A., SENKIN: A Fortran Program for Predicting Homogeneous Gas Phase Chemical Kinetics with Sensitivity Analysis, SANDIA REPORT, SANDIA87-8248, pp. 1-32, 1992.
Martin, D., Jourdain, J. L. and Lebras, G., “Kinetics and Mechanism for the Reactions of H Atoms with CH3SH and C2H5SH”, Int. J. Chem. Kinet., Vol. 20, pp. 897-907, 1988.
Mantzaris, N. V., Gogolides, E. and Boudouvis, G., “A Comparative Study of CH4 and CF4 rf Discharges Using a Consistent Plasma Physics and Chemistry Simulator”, Plasma Chem. Plasma process., Vol. 16, pp. 301-327, 1996.
Matsuzaki, A. and Hamada, Y., "Infrared Spectrum of Veins-of-Leaf Cluster in Laser-Induced Aerosol Formation from CS2 Vapor", Chem. Lett., pp. 411-414, 1992A.
Matsuzaki, A., Hamada, Y., Morita, H. and Matsuzaki, T., "Raman and Infrared Spectra of Sediments in Laser-induced Aerosol Formation from CS2 Vapor", Chem. Phys. Lett., pp. 337-341, 1992B.
Mc Murry, J. and Fay, R. C., Chemistry, Second Ed., Prentice-Hall, Inc., USA, 1998.
Miller, G. P. and Baird, J. K., “Radio Frequency Plasma Decomposition of Ammonia: A Comparison with Radiation Chemistry Using the G Value”, J. Phys. Chem., Vol. 97, pp. 10984-10988, 1993.
Montogomery, D. C., Design and Analysis of Experiments, 4th Edition, John Wiley & Son, 1997.
Murthy, K. S., Rosenberg, H. S. and Engdahl, R. B., “Status and Problems of Regenerable Flue Gas Desulfurization Processes”, J. Air Pollut. Control Assoc., Vol. 26, pp. 851-855, 1976.
Ng, C. Y., “Ultraviolet Photodissociation Studies of Organosulfur Molecules and Radicals: Energetics a, Structure Identification, and Internal State Distribution”, Advances in Photochemistry, Vol. 22, pp. 1-116, 1997, Edited by Douglas, C. N., David, H. V. and Gnther, von B., John Wiley & Sons, Inc.
Nip, W. S., Singleton, D. L. and Cvetanovic, R. J., “Gas-Phase Reaction of O (3P) Atoms with Methanethiol, Ethanethiol, Methyl Sulfide, and Dimethyl Disulfide. 1. Rate Constants and Arrhenius Parameters”, J. Am. Chem. Soc., Vol. 103, pp. 3526-3530, 1981.
Nourbakhsh, S., Norwood, K., Yin, H. M., Liao, C. L. and Ng, C. Y., “Vacuum Ultraviolet Photodissociation and Photoionization Studies of CH3SH and SH”, J. Chem. Phys., Vol. 95, pp. 946-954, 1991A.
Nourbakhsh, S., Norwood, K., Yin, H. M., Liao, C. L. and Ng, C. Y., “Vacuum Ultraviolet Photodissociation and Photoionization Studies of CH3SCH3 and CH3S”, J. Chem. Phys., Vol. 95, pp. 5014-5023, 1991B.
Oumghar, A., Legrand, J. C., Diamy, A. M., Turillon, N. and Ben-Aim, R. I., “A Kinetic Study of Methane Conversion by a Dinitrogen Microwave Plasma”, Plasma Chem. Plasma process., Vol. 14, pp. 229-249, 1994.
Oumghar, A., Legrand, J. C., Diamy, A. M. and Turillon, N., “Methane Conversion by an Air Microwave Plasma”, Plasma Chem. Plasma process., Vol. 15, pp. 87-107, 1995.
Pattrick, R. A. D., Mosselmans, J. F. W., Charnock, J. M., England, K. E. R., Helz, G. R., Garner, C. D. and Vaughan, D. J., "The Structure of Amorphous Copper Sulfide Precipitates: An X-ray Absorption Study", Geochimica et Cosmochimica Acta, Vol. 61, pp. 2023-2036, 1997.
Penner, J. E., "Cloud Albedo, Greenhouse Effects, Atmospheric Chemistry, and Climate Change", J. Air Waste Manage. Assoc., Vol. 40, pp. 456-460, 1990.
Pfeiffer, J. B., Sulfur Removal and Recovery from Industrial Processes, Advances in Chemistry Series; 139, American Chemical Society: USA, 1975.
Popovici, D., Czeremuzkin, G., Meunier, M. and Sacher, E., “Laser-induced Metal-organic Chemical Vapor Deposition (MOCVD) of Cu(hfac)(TMVS) on amorphous Teflon AF1600: an XPS study of the Interface”, Appl. Surf. Sci., Vol. 126, pp. 198-204, 1998.
Portela, L., Grange, P. and Delmon, B., “XPS and NO adsorption Studies on Alumina-Supported Co-Mo Catalysts Sulfided by Different Procedures”, J. Catal., Vol. 156, pp. 243-254, 1995.
Ratcliffe, C. T. and Pap, G., “Chemical Reduction of Sulhpur Dioxide to Free Sulphur with Lignite and Coal. 1. Steady-state Reaction Chemistry and Interaction of Volatile Components”, Fuel, Vol. 59, pp. 237-243, 1980.
Rauf, S. and Kushner, M. J., “Argon Metastable Densities in Radio Frequency Ar, Ar/O2 and Ar/CF4 Electrical Discharges”, J. Appl. Phys., Vol. 82, pp. 2805-2813, 1997.
Raymont, M. E. D., Sulfur: New Sources and Uses, ACS symposium series 183, American Chemistry Society, Washington, D. C., 1982.
Ritter, E. R.; Bozzelli, J. W. and Dean, A. M., "Kinetic Study on Thermal Decomposition of Chlorobenzene Diluted in H2", J. Phys. Chem., Vol. 9, pp. 2493-2504, 1990.
Ross, R. A. and Sood, S. P., “Catalytic Oxidation of Methyl Mercaptan over Cobalt Molybdate”, Ind. Eng. Chem. Prod. Res. Dev., Vol. 16, pp. 147-150, 1977.
Sadhir, R. K. and Schoch, Jr. K. F., “Plasma-Polymerized Carbon Disulfide Thin-Film Rechargeable Batteries”, Chem. Matter., Vol. 8, pp. 1281-1286, 1996.
Saito, K., Ueda, Y., Ito, R., Kakumoto, T. and Imamura, A., “Measurements of the Bimolecular Rate Constants for S + O2 à SO + O and CS2 + O2 à CS + SO2 at High Temperatures”, Int. J. Chem. Kinet., Vol. 18, pp. 871-884, 1986.
Sardja, I. and Dhali, S. K., "Plasma Oxidation of SO2 ", Appl. Phys. Lett., Vol. 56, pp. 21, 1990.
Senkan, S. M., "Converting Methane by Chlorine-Catalyzed Oxidative Pyrolysis", Chemical Engineering Science, Vol. 83, pp. 58-61, 1987.
Shimozuma, M., Tochitani, G. and Tagashira, H., “Optical Emission Diagnostics of H2+CH4 50Hz-13.56MHz Plasmas for Chemical Vapor Deposition”, J. Appl. Phys., Vol. 70, pp. 645-648, 1991.
Shum, L. G. S. and Benson, S. W., "The pyrolysis of Dimethyl Sulfide, Kinetics and Mechanism", Int. J. Chem. Kinet., Vol. 17, pp. 749-761, 1985.
Singleton, D. L. and Cvetanovic, R. J., “Evaluated Chemical Kinetic Data for the Reactions of Atomic Oxygen O(3P) with Sulfur Containing Compounds”, J. Phys. Chem. Ref. Data, Vol. 17, pp. 1377-1437, 1988.
Slagle, I. R., Balocchl, F. and Gutman, D., “Study of the Reactions of Oxygen Atoms with Hydrogen Sulfide, Methanethiol, Ethanethiol, and Methyl sulfide”, J. Phys. Chem., Vol. 82, pp. 1333-1336, 1978.
Slagle, I. R., Graham, R. E. and Gutman, D., “Direct Identification of Reactive Routes and Measurement of Rate Constants in the Reactions of Oxygen Atoms with Methanethiol, Ethanethiol, and Methylsulfide”, Int. J. Chem. Kinet., Vol. 8, pp. 451-458, 1976.
Skoog, D. A., Holler, F. J. and Nieman, T. A., Principles of Instrumental Analysis, Fifth ed., Saunders College Publishing, USA, 1998.
Stee, R. P., Kalr, B. L. and Knigh, A. R., “Reactions of Thiyl Radicals. I. Methylthiyl Recombination and Thionitrite Formation in the Photolysis of Methanethiol”, J. Phys. Chem., Vol. 71, pp. 783-784, 1967.
Steinle, P., Thalmann, P., Hohener, P., Hanselmann, K. W. and Stucki, G., “Effect of Environment Factors on the Degradataion of 2,6-Dichlorophenol in Soil”, Environ. Sci. Technol., Vol. 34, pp. 771-775, 2000.
Storch, D. G. and Kushner, M. J., “Destruction mechanisms for formaldehyde in atmospheric pressure low temperature plasma”, J. Appl. Phys., Vol. 73, pp. 51-55,1993.
Sze, N. D and Ko. M. K. W., “Is CS2 a Precursor for Atmospheric COS?", Nature, Vol. 278, pp. 731-732, 1979A.
Tezuka, M. and Yajima, T., “Oxidation of Aromatic Hydrocarbons with Oxygen in A Radiofrequency Plasma”, Plasma Chem. Plasma Process., Vol. 16, pp. 329-340, 1996.
Tsukamoto, J. and Takahashi, A., "Polymeric Product of Carbon Disulfide and Its Electrical Properities", Jap. J. Appl. Phy., Vol. 25, pp. L338-L340, 1986.
Turk, A., Sakalis, E., Lessuck, J., Karamitsos, H. and Rago, O., "Ammonia Injection Enhances Capacity of Activated Carbon for Hydrogen Sulfide and Methyl Mercaptan", Environ. Sci. Technol., Vol. 23, pp. 1242-1245, 1989.
Turnipseed, A. A., Barone, S. B. and Ravishankara, A. R., “Reaction of OH with Dimethyl Sulfide. 2. Products and Mechanisms”, J. Phys. Chem., Vol. 100, pp. 14703-14713, 1996.
Van Drumpt, J. D., “Polymer Formation From Carbon Disulfide in a Silent Electrical Discharge”, Int. J. Sulfur Chem., Vol. 2, pp. 291-293, 1972.
Van Miltenburg, J. C., Fourcade, J., Ezzine, M. and Bergman, D., "Thermodynamic Properties of Polymeric Sulfur Sw2 at temperatures between 5K and 370K", J. Chem. Thermodynamics, Vol. 25, pp. 1119-1125, 1993.
Van Veldhuizen, E. M., Zhou, L. M. and Rutgers, W. R., “Combined Effects of Pulsed Discharge Removal of NO, SO2, and NH3 from Flue Gas”, Plasma Chem. Plasma Process., Vol. 18, pp. 91-111, 1998.
Varhelyi, G., "Continental and Global Sulfur Budgets-I. Anthropogenic SO2 Emissions", Atmo. Environ., Vol. 19, pp. 1029-1040, 1985.
Wagner, C. D., Riggs, W. M., Davis, L. E., Moulder, J. F. and Muilenberg, G. E., Handbook o X-ray Photoelectron Spectroscopy, Editor: Muilenberg, G. E., Perkin-Elmer Corporation, U.S.A., 1979.
Walley, E., "Structure of Bridgman''s Black Carbon Disulphide", Can. J. Chem., Vol. 38, pp. 2105-2108, 1960.
Wang, Y. F., Lee, W. J. and Chen, C. Y. and Hsieh, L. T., “Decomposition of Dichlorodifluoromethane by Adding Hydrogen in a Cold Plasma System”, Environ. Sci. Technol., Vol. 33, pp. 2234-2240, 1999A.
Wang, Y. F., Lee, W. J. and Chen, C. Y. and Hsieh, L. T., “Reaction Mechanisms in Both a CHF3/O2/Ar and CHF3/H2/Ar Radio Frequency Plasma Environment”, Ind. Eng. Chem. Res., Vol. 38, pp. 3199-3210, 1999B.
Wang, Y. F., Lee, W. J. and Chen, C. Y. and Wu, Y. P. G. and Chang-Chien, G. P., “Reaction Mechanisms in Both a CCl2F2/O2/Ar and a CCl2F2/H2/Ar RF Plasma Environment”, Plasma Chem. Plasma Process., Vol. 20, pp. 469-494, 2000.
Whalley, E., “Structure of Bridgman’s Black Carbon Disulphide”, Can. J. Chem., Vol. 38, pp. 2105-2108, 1960.
Woiki, D., Markus, M. W. and Roth, P., “A Shock Tube-Laser Photolysis Study of the Reaction COS + S = CO + S2”, J. Phys. Chem., Vol. 97, pp. 9682-9685, 1993.
Woiki, D. and Roth, P., “A Shock Tube Study of the Reaction S + H2 = SH + H in Pyrolysis and Photolysis Systems”, Int. J. Chem. Kinet., Vol. 27, pp. 547-553, 1995.
Yao, S., Nalayama, A. and Suzuki, E., “Methane Conversion Using a High-Frequency Pulsed Plasma: Important Factors”, AIChE J., Vol. 47, pp. 413-418, 2001.
Yocom, J. E. and Duffee, R. A., "Controlling Industrial Odors", Chem. Eng., June 15, 1970.
行政院環保署,http://www.epa.gov.tw/, 2000。
李文智,屏東縣垃圾場臭味之檢測及改善方案研究計畫,1998。
邱穎源,以Pt/r-Al2O3觸媒焚化處理醇類及硫醇類之研究,成功大學環境工程學系,碩士論文,1994。
吳友平,“Detailed Reaction Mechanism for Oxidation of Chlorinated Hydrocarbons”, 國科會成果報告,NSC83-0402-E197-00;NSC84-2214-E197-001,1995。
吳立偉,”以MnO/Fe2O3觸媒焚化處理甲硫醇與乙硫醇之研究”,成功大學環境工程學系,碩士論文,1996。
洪崑厚,以Pt/r-Al2O3觸媒焚化處理硫醇類及甲基硫類混和氣體及其動力學之研究,成功大學環境工程學系,碩士論文,1995年。
袁中新,洪昭南,戴哲生,”以高週波電漿反應器分解氨氣之探討”,第九屆空氣污染控制技術研討會,pp. 573,1992。
高正雄 譯著,「電漿化學」,復漢出版社印行,1997。
黃健勝,張國慶,”廢棄物及廢氣熱電漿裂解技術” 第七屆廢棄物處理技術研討會,pp. 323,1992。
臭氣防治技術專業人員培訓教材,「臭氣防治技術」,1989。
堤井信力,”現代電漿工程及其應用”,電漿工程技術研討會,雲林科技大學,2001。
賴耿陽 編譯,「電漿工學的基礎」,復文書局,1986。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔