跳到主要內容

臺灣博碩士論文加值系統

(23.20.20.52) 您好!臺灣時間:2022/01/24 18:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳永福
研究生(外文):Yung-Fu Chen
論文名稱:跳視眼球運動之量化分析及其臨床應用
論文名稱(外文):Quantitative Analysis of Saccadic Eye Movement and Its Clinical Applications
指導教授:陳天送陳天送引用關係蔡子同蔡子同引用關係
指導教授(外文):Tainsong ChenTzu-Tung Tsai
學位類別:博士
校院名稱:國立成功大學
系所名稱:醫學工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:132
中文關鍵詞:有理冪函數阻尼比曲斜率峰值速度加速相意志性延遲反跳視帕金森症
外文關鍵詞:Rational power functionDamping ratioSkewnessPeak velocityAcceleration phaseVolition latencyAntisaccadeParkinson's disease
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1236
  • 評分評分:
  • 下載下載:273
  • 收藏至我的研究室書目清單書目收藏:1
腦部疾病或腦部退化的病人通常會伴隨異常的眼球運動。雖然各種量化參數及實驗方法不斷地被提出,但對於動態特性之描述仍然不夠完善。本論文的研究動機主要源於以下的問題:(一)對於振幅相同,但是動態特性差異很大的兩個跳視波形,峰值速度可能會相同,此現象會降低區分正常人和病人的準確度。(二)反跳視被認為是抑制反射性跳視及產生與提示目標相反之一般跳視等兩個過程的組合。根據帕金森症的研究顯示,反射性跳視和反跳視皆顯示延遲時間增長的現象。此延遲時間增長的現象乃是導致於意志性反射性跳視抑制過程,或是因為啟動與提示目標相反之一般性跳視的延遲所造成,其原因仍然不很清楚。(三)曲斜率被用於描述速度波形之不對稱性,雖然曲斜率曾被應用於研究不同振幅時之速度波形特性以及觀察視覺刺激與非視覺刺激跳視之差異。然而,峰值速度與曲斜率間之量化關係特性,仍然尚未被仔細地研究過。(四)以前的研究報告顯示,峰值速度和跳視區間的乘積和跳視振幅成正比,此結果被解釋為因為速度軌跡近似三角形所致。事實上,有理冪函數亦具有此項特質。
除了以眼電圖量測帕金森症患和正常人之跳視軌跡之外,跳視模型所產生之軌跡亦被用於量化分析。結果顯示,傳統之峰值速度並無法區分正常人和輕度帕金森症患者之差異;相對而言,阻尼比除了能夠明顯地區分輕症帕金森症患者和同年齡正常人之外,也可以區分不同年齡層(年輕人和老年人)間之差異。對於帕金森症患者反跳視之延遲時間增長的問題,根據本研究結果顯示,一般性跳視、反跳視及意志性延遲三者皆有明顯增長的現象。結果亦證明反跳視之意志性分析比一般跳視和反跳視更能客觀地分析時間延遲的特性。針對峰值速度與曲斜率關係之研究顯示,實驗數據和導證關係式間的相關性很高,在固定角度下之曲斜率約和峰值速度成反比。有理冪函數比伽瑪函數能更有效地密合跳視之速度軌跡。對於大多數的軌跡,前者之相關係數較後者高,且運算較簡單快速。有理冪函數的另一項優點為跳視之峰值速度和跳視區間直接表示於密合之函數中。除了主程序分析以外的一些時域分析亦必須加以考慮,例如加速相之區間及振幅、減速相之區間及振幅、峰值速度和加速區間之乘積以及峰值速度和減速區間之乘積分別相對於振幅之關係。
綜合以上結果,本論文所提出之新參數和分析方法提供不同的量化方法,可以協助神經科臨床醫師診斷腦部疾病或腦部退化病患所導致之跳視異常。

Patients with brain disease or brain degeneration can be manifested with abnormal saccadic eye movements. Although the main sequence relations have been proposed for quantitative analysis of saccadic eye movements, there are still some deficiencies in describing the dynamics of saccadic eye movements. The study is motivated by the following observations: (1) Saccades of equal magnitude that differ substantially in dynamics may still have the same peak velocity. The lack of selectivity might degrade the efficacy of the peak velocity in discriminating patients from normal subjects. (2) Antisaccade is considered as the combination of inhibition of the reflexive saccade followed by generation of a saccade opposite to the cue. The latency of prosaccade and antisaccade was significantly increased for patients with Parkinson’s disease (PD). It is not clear that the increase of antisaccade latency for the PD patient is caused by the affected volitional decision process or simply by the delayed initiation of saccade with direction opposite to the cue. (3) Although skewness has been used to study the velocity profiles relative to different amplitudes and to investigate the velocity profiles of visual guided and non-visual guided saccades, the quantitative relation between peak velocity and skewness has not been carefully studied before. (4) The relation for the product of peak velocity and duration (VmD) against saccade amplitude was tightly correlated according to previous studies, in which the velocity profile was related to a triangle that the saccadic amplitude is proportional to VmD. We found that in addition to a triangle the rational power function could also be applied to explain the above linear relationship.
In this thesis, subjects with Parkinson’s disease and normal controls were tested and recorded with electro-oculogram (EOG). In addition, simulation models were also used to generate profiles for analysis. The results show that damping ratio of a second-order response is shown to be able to accurately describe saccadic dynamics. The damping ratio is sensitive enough not only to highlight the difference between a group of patients mildly affected with Parkinson’s disease and an age-matched normal group (p<0.01; abnormal vs. normal), but also to distinguish between groups at different ages (p<0.01; younger vs. older). Refer to increase in antisaccadic latency for the PD patient, the results indicate that prosaccadic, antisaccadic, and volition latency was significantly elevated (p<0.01) if compared with the normal. It suggests that volition latency analysis is more objective than prosaccadic or antisaccadic latency analysis. In the study of peak velocity and skewness relation, the evaluated data are well fitted to the derived equation with the skewness is approximately inversely proportional to the peak velocity under a certain amplitude. Finally, rational power functions are demonstrated to be more efficient than gamma functions in fitting the velocity profile. In addition to the shape parameters, peak velocity and duration are also explicitly expressed in the rational power function. Other temporal analyses including acceleration time should also be considered, in addition to temporal and spetral main sequence analyses, for evaluating the performance a model in generating saccadic profiles.
The parameters and analysis methods proposed in this thesis provide alternative methods in quantitative studies of saccadic dynamics and might be useful in clinical diagnosis of brain disease and brain degeneration manifested by abnormal saccadic eye movements.

ABSTRACT I
中文摘要 III
誌謝 V
LIST OF TABLES IX
LIST OF FIGURES X
CHAPTER 1 INTRODUCTION AND STATEMENT OF GOALS -1
1-1 Introduction 1
1-1-1 Classification of eye movements 2
1-1-2 Techniques for eye movements recording 3
1-2 Motivation and Goals 5
1-2-1 Traditional parameters are not sensitive enough in dynamics measurement of prosaccades 6
1-2-2 Inconsistent results were found in previous studies for antisaccades 8
1-2-3 Developing a mathematic relation between peak velocity and skewness 11
1-2-4 A rational power function can be reasonably used to fit the velocity profiles 11
1-2-5 Summary of the goals 12
1-3 Organization of this Thesis 12
CHAPTER 2 NEUROPHYSIOLOGY OF SACCADIC EYE MOVEMENTS 14
2-1 Dynamic Characteristics of the Eye Plant 14
2-2 Models of the Burst Generator 16
2-2-1 Open loop models 17
2-2-2 Close loop models 19
2-3 Models of the Superior Culliculus 30
2-4 Involvements of the Cerebral Cortex in Saccadic Eye Movements 32
2-5 Abnormal Saccades 35
2-5-1 Abnormal saccadic velocity 35
2-5-2 Abnormal saccadic initialization 36
2-5-3 Abnormal saccadic accuracy 36
2-5-4 Oculomotor abnormalities in Parkinson’s disease 36
2-6 Experimental Paradigms 38
CHAPTER 3 QUANTITATIVE PARAMETERS OF SACCADIC EYE MOVEMENTS 41
3-1 Temporal Analysis 42
3-2 Spectral Analysis 49
CHAPTER 4 MATERIALS AND METHODS 52
4-1 General Experimental Setup 52
4-2 Data Preprocessing 54
4-3 Analysis of Damping Ratio of Prosaccadic Eye Movements 56
4-4 Volition Analysis of Antisaccadic Eye Movements 60
4-5 Investigation of Peak Velocity and Skewness Relation 62
4-6 Application of a Rational Power Function for Fitting Simulated Profiles 69
CHAPTER 5 RESULTS AND DISCUSSIONS 78
5-1 Analysis of Damping Ratio on Prosaccadic Eye Movements 78
5-1-1 Traditional parameters analysis 78
5-1-2 Damping ratio analysis 78
5-1-3 Discussion 81
5-2 Analysis of Volition Latency on Antisaccadic Eye Movements 83
5-2-1 Analysis of traditional parameters 84
5-2-2 Analysis of volition delay 85
5-2-3 Relationship between antisaccade and prosaccade latency 86
5-2-4 Discussion 87
5-3 Investigation of Peak Velocity and Skewness Relation 91
5-3-1 Analysis of main sequence relations 91
5-3-2 The peak velocity and skewness relationship 93
5-3-3 Discussion 99
5-4 Application of the Rational Power Function in Fitting Velocity Profiles 101
5-4-1 Discussion 110
CHAPTER 6 CONCLUSIONS AND FUTURE WORKS 117
6-1 Conclusions 117
6-2 Future Works 118
6-2-1 Spectral analysis of the rational power functions 118
6-2-2 Application of rational power functions in studying the velocity profiles for the PD patients 119
6-2-3 Design of a classifier in discriminating the PD patient from the normal 119
REFERENCES 123
自 述 133
著作權聲明 134

REFERENCES
Albano JE, Mishkin M, Westbrook LE, Wurtz RH. Visuomotor deficits following ablation of monket superior colliculus. J Neurophysiol 48:338-351, 1982.
Andersson P. Adaptive forgetting in recursive identification through multiple models. Int J Control 42:241-256, 1985.
Arai K, Keller EL, Edelman JA. Two-dimensional neural network model of the primate saccadic system. Neural Networks 7:1115-1135, 1994.
Bahill TA, Clark MR, and Stark L. The main sequence, a tool for studying human eye movements. Math Biosci 24:191-204, 1975.
Bahill AT, Brockenbrough A, Troost T. Variability and development of a normative data base for saccadic eye movements. Invest Ophthalmol Vis Sci 21:116-127, 1981.
Baloh RW, Sill AW, Kumley WE, Honrubia V. Quantitative measurement of saccade amplitude, duration, and velocity. Neurology 25:1065-1070, 1975.
Barton JS, Jama A, Sharpe JA. Saccadic duration and intrasaccadic fatigue in myasthenic and nonmyasthenic ocular palsies. Neurology 45:2065-2072, 1995.
Becker W. Saccades. In: Eye Movements. Ed. Carpenter RHS. Macmillan pp95-137, 1991.
Becker W, Jurgen R. An analysis of the saccadic system by means of double step stimuli. Vision Res 19:967-983, 1979.
Bergenius J. Saccade abnormalities in patients with ocular flutter. Acta Otolaryngol (Stockh) 102:228-233, 1986.
Bodis-Wollner I, Bucher SF, Seelos KC, Paulus W, Reiser M, Oertel WH. Functional MRI mapping of occipital and frontal cortical activity during voluntary and imagined saccades. Neurology 49:416-420, 1997.
Bollen E, Bax J, Van Dijk JG, Koning M, Bos JE, Kramer CGS, and Van Der Velde EA. Variability of the main sequence. Invest Ophthalmol Vis Sci, 34:3700-3704, 1993.
Bronstein AM, Kennard C. Predictive ocular motor control in Parkinson’s disease. Brain 108:925-940, 1985.
Burman DD, Bruce CJ. Suppression of task-related saccades by electrical stimulation in the primate’s frontal eye field. J Neurophysiol 77:2252-2267, 1997.
Carpenter RHS. The visual origins of ocular motility. In: Eye Movements. Ed. Carpenter RHS. Macmillan pp1-10, 1991.
Chen T, Su Y, Tsai T. A novel quantification analysis of ocular motor deficits in Parkinson’s disease. Innov Techn Biol Med 17:517-526, 1996.
Chen T, Chen Y-F, Lin C-H, Tsai T-T. Quantification analysis for saccadic eye movements. Ann Biom Eng 26:1065-1071, 1998.
Ciuffreda KJ, Tannen B. Eye movement basics for the clinician. Mosby-Year 1995.
Clementz BA, McDowell JE, Zisook S. Saccadic system functioning among schizophrenia patients and their first-degree biological relatives. J Abnorm Psychol 103:277-287, 1994.
Collewijn H, Erkelens CJ, Steinmam RM. Binocular coordination of human horizontal saccadic eye movements. J Physiology 404:157-182, 1988.
Currie J, Ramsden B, McArthur C, Maruff P. Validation of a clinical antisaccadic eye movement test in the assessment of dementia. Arch Neurol 48:644-648, 1991.
Dean, P. Modeling the role of the cerebellar fastigial neclei in producing accurate saccades: the importance of burst timing. Neurosci 68:1059-1077, 1995.
Deubel H. Sensory and motor aspects of saccade control. Eur Arch Psychiatry Neurol Sci 239:17-22, 1989.
Doma H, Hallett PE. Rod-cone dependence of saccadic eye-movement latency in a foveating task. Vision Res 28:899-913, 1988a.
Doma H, Hallett PE. Dependence of saccadic eye-movement on stimulus luminance and an effect of task. Vision Res 28:915-924, 1988b.
Doricchi F, Perani D, Incoccia C, Grassi F, Cappa SF, Bettinardi V, Galati G, Pizzamiglio L, Fazio F. Neural control of fast-regular saccades and antisaccades: an investigation using positron emission tomography. Exp Brain Res 116:50-62, 1997.
Dorris MC, Pare M, Munoz DP. Neuronal activity in monkey superior colliculus related to the initiation of saccadic eye movements. J Neurophysiol 17:8566-8579, 1997.
Duhamel J-R, Colby CL, Goldberg ME. The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255:90-92, 1992.
Enderle JD. Observations on pilot neurosensory control performance during saccadic eye movements. Aviat Space Environ Med 59:309-313, 1988.
Everling S, Krappmann P, Flohr H. Cortical potentials preceding pro- and anti-saccades in man. Electroen Clin Neuro 102:356-362, 1997.
Everling S, Spantekow S, Krappmann P, Flohr H. Event-related potentials associated with correct and incorrect responses in a cued antisaccade task. Exp Brain Res 41:370-379, 1981.
Evinger C, Kaneko CRS, Fuchs AF. Oblique saccadic eye movements of the cat. Exp Brain Res 118:27-34, 1998.
Fuchs AF, Kaneko C, Scudder CA. Brainstem control of saccadic eye movements. Annu Rev Neurosci 8:307-337, 1985.
Fuchs AF, Scudder CA, Kaneko CRS. Discharge patterns and recruitment order of identified motorneurons and internuclear neurons in the monkey abduceans nucleus. J Neurophysiol 60:1874-1895, 1988.
Fukushima J, Fukushima K, Morita N, Yamashita I. Further analysis of the control of voluntary saccadic eye movements in schzophrenic patients. Biological Psychiatry 28:943-958, 1990.
Fuller JH. Eye position and target amplitude effects on human visual saccadic latencies. Exp Brain Res 109:457-466, 1996.
Funahashi S, Chafee MV, Goldman-Rakic PS. Prefrontal neuronal activity in rhesus monkey performing a delayed antisaccade task. Nature 365:753-756, 1993.
Gangemi, P. F., A. Messori, S. Baldini, A. Parigi, S. Massi, and G. Zaccara. Comparison of two nonlinear models for fitting saccadic eye movement data. Comput. Methods Programs Biomed. 34:291-297, 1991.
Gaymard B, Rivaud S, Pierrot-Deseilligny CH. Role of the left and right supplementary motor area in memory-guided sequences. Ann Neurol 34:404-406, 1993.
Gaymard B, Pierrot-Deseilligny CH, Rivaud S. Impairment of sequence of memory-guided saccades after supplementary motor area lesions. Ann Neurol 28:622-626, 1990.
Gibson JM, Pimlott R, Kennard C. Ocular motor and manual tracking in Parkinson’s disease and the effect of treatment. J Neurol Neurosur Psych 50:853-860, 1987.
Groner R, Groner MT. Attention and eye movement control: an overview. Eur Arch Psychiatr Neurol Sci 239:9-16, 1989.
Grossaman GE, Robinson DA. Ambivalence in modeling oblique saccades. Biol Cybern 58: 13-18, 1988.
Guitton D, Buchtel HA, Douglas RM. Frontal lobe lesions in man cause difficulties in suppressing reflexive glances and in generating goal-directed saccades. Exp Brain Res 58:455-472, 1985.
Hanes DP, Schall D. Neural control of voluntary movement initiation. Science 274:427-430, 1996.
Harris CM, Wallman J, Scudder CA. Fourier analysis of saccades in monkeys and humans. J Neurophysiol 63:877-886, 1990.
Harris CM, Wolpert DM. Signal-dependent noise determines motor planning. Nature 394:780-784, 1998.
Harwood MR, Mezey LE, Harris CM. The spectral main sequence of human saccades. J Neurosci 19:9098-9106, 1999;.
Hikosaka O, Wurtz RH. The basal ganglia. In: Wurtz RH, Goldberg ME. The neurobiology of saccadic eye movements: review of oculomotor research. Amsterdam, Elservier pp257-281, 1989.
Hikosaka O, Sakamoto M, Usui S. Functional properties of monkey caudate neurons. I. Activities related to saccadic eye movements. J Neurophysiol 61:780-798, 1989.
Huaman AG, Sharpe JA. Vertical saccades in senescence. Invest Ophthalmol Vis Sci 34:2588-2595, 1993.
Hyvärinen A, Karhunen J, Oja E. Independent component analysis. Wiley & Sons, 2001.
Jankovic J, Tolosa E, editors. Parkinson’s disease and movement disorders. 2nd ed. Baltimore, Williams & Wilkins, 1993.
Jürgens R, Becker W, and Kornhuber HH. Natural and drug-induced variations of velocity and duration of human saccadic eye movements: evidence for a control of the neural pulse generator by local feedback. Biol Cybern 39:87-96, 1981.
Kalesnykas RP, Hallett PE. The differentiation of visually guided and anticipatory saccades in gap and overlap paradigms. Exp Brain Res 68:115-121, 1987.
Katsanis J, Kortenkamp S, Iacono WG, Grove WM. Antisaccade performance in patients with schizophrenia and affective disorder. J Abnormal Psychology 106:468-472, 1997.
Keller EL. Control of saccadic eye movements by midline brainstem neurons. In: Control of gaze by brainstem neurons. Eds. R Baker and A Berthoz. Amsterdam, Elsevier pp327-336, 1977.
Keller EL, Gandhi NJ, Sekaran SV. Activity in deep intermediate layer collicular neurons during interrupted saccades. Exp Brain Res 130:227-237, 2000.
Kennard C, Lueck CJ. Oculomotor abnormalities in diseases of the basal ganglia. Rev Neurol 1989;145:587-595.
Kitagawa M, Fukushima J, Tashiro K. Relationship between anti-saccades and the clinical symptoms in Parkinson’s disease. Neurology 1994;44:2285-2289.
Koller WC, editor. Handbook of Parkinson’s disease. 2nd edition. New York, Marcel Dekker 1992.
Krappmann P. Accuracy of visually and memory-guided antisaccades in man. Vision Res 38:2979-2985, 1998.
Lasker AG, Zee DS, Hain TC, Folstein SE, Singer HS. Saccades in Hungtington’s disease: Initiation defects and distractibility. Neurology 37:364-370, 1987.
Lebedev S, Van Gelder P, Tsui WH. Square-root relations between main saccadic parameters. Invest Ophthalmol Vis Sci 37:2750-2758, 1996.
Lee C, Rohrer WH, Sparks DL. Population coding of saccadic eye movements by neurons in the superior colliculus. Nature 332:357-360, 1988.
Leigh RJ, Zee DS. The neurology of eye movements. 3rd ed. Oxford University Press 1999.
Lueck CJ, Tanyeri S, Crawford TJ, Henderson L, Kennard C. Antisaccades and remembered saccades in Parkinson’s disease. J Neurol Neurosur Psych 53:284-288, 1990.
Moschovakis AK, Kitama T, Dalezios Y, Petit J, Brandi AM, Grantyn AA. An anatomical substrate for the spatiotemporal transformation. J Neurosci 18:10219-10229, 1998.
Moschovakis AK, Scudder CA, and Highstein SM. The microscopic anatomy and physiology of the mammalian saccadic system. Prog Neurobiol 50:133-254, 1996.
Munoz DP, Broughton JR, Goldring JE, Armstrong IT. Age-related performance of human subjects on saccadic eye movement tasks. Exp Brain Res 12:391-340, 1998.
Munoz DP, Wurtz RH. Saccade-related activity in monkey colliculus. I. Characteristics of burstand buildup cells. J Neurophysiol 73:2313-2333, 1995a.
Munoz DP, Wurtz RH. Saccade-related activity in monkey colliculus. II. Spread of activity during saccades. J Neurophysiol 73:2334-2348, 1995b.
Olincy A, Ross RG, Youngd DA, Freedman R. Age diminishes performance on an antisaccade eye movement task. Neurobiol Aging 18:483-489, 1997.
Oohira A, Goto K, Ozawa T. Hypermetric saccades and adaptive response. Neuro-ophthalmology 3:353-356, 1986.
Optican LM. A field theory of saccade generation: Temporal-to-spatial transform in the superior colliculus. Vision Res 35:3313-3320, 1995.
O’Driscoll GA, Alpert NM, Matthysse SW, Levy DL, Rauch SL, Holzman PS. Functional neuroanatomy of antisaccade eye movements investigated with positron emission tomography. Proc National Academy of Science of the USA 92:925-929, 1995.
O’Sullivan EP, Shaunak S, Henderson L, Hawken M, Crawford TJ, Kennard C. Abnormalities of predictive saccades in Parkinson’s disease. Neuroreport 8:1209-1213, 1997.
Pare M, Munoz DP. Saccadic reaction time in the monkey: advanced preparation of oculomotor programs is primarily responsible for express saccades occurrence. J Neurophysiol 76:3666-3681, 1996.
Petit L, Clark VP, Ingeholm J, Haxby JV. Dissociation of saccade-related and pursuit-related activation in human frontal eye fields as revealed by fMRI. J Neurophysiol 77:3386-3390, 1997.
Pierrot-Deseilligny, C. H. et al. Cortical control of reflexive visually-guided saccades. Brain 114:1473-1485, 1991.
Pierrot-Deseilligny C, Israel I, Berthoz A, et al. Role of the different frontal lobe areas in the control of the horizontal component of memory-guided saccades in man. Exp Brain Res 95:166-171, 1993.
Pierrot-Deseilligny C, Rivaud S, Gaymard B, Muri R, Vermersch A-I. Cortical control of saccades. Ann Neurol 37: 557-567, 1995.
Port NL, Sommer MA, Wurtz RH. Multielectrode evidence for spreading activity across the superior colliculus movement map. J Neurophysiol 84: 344-357, 2000.
Rascol O, Clanet M, Montastruc JL, Simonetta M, Soulier-Esteve MJ, Doyon B, Rascol A. Abnormal ocular movements in Parkinson’s disease. Brain 112: 1193-1214, 1989.
Reulen JPH. Latency of visually evokes saccadic eye movements. I. Saccadic latency and the facilitation model. Biol Cybern 50:251-262, 1984a.
Reulen JPH. Latency of visually evokes saccadic eye movements. II. Temporal properties of the facilitation model. Biol Cybern 50:263-271, 1984b.
Rivaud, S. et al. Eye movement disorder after frontal eye field lesions in humans. Exp Brain Res 102:110-120, 1994.
Robinson DA. A method of measuring eye movement using a scleral search coil in a magnetic field. IEEE Trans Biomed Electron 10:137-145, 1963.
Robinson DA. Oculomotor unit behavior in the monkey. J Neurophysiol 33:393-404, 1970.
Robinson DA. Oculomotor control signals. In: Basic mechanisms of ocular motility and their clinical implications. Edited by G Lennerstrand and P Bach-y-Rita. Oxford UK, Pergamon pp337-374, 1975.
Robinson FR, Straube A, Fuchs AF. Role of the caudal fastigial nucleus in saccade generation II. Effects of muscimol inactivation. J Neurophysiol 70:1741-1758, 1993.
Roll A, Weirzbicka MM, Wolf W. The “gap paradigm” leads to express-like saccadic reaction times in Parkinson’s disease. Exp Brain Res 111:131-138, 1996.
Ross SM, Ross LE. Children’s and adult’s predictive saccades to square-wave targets. Vision Res 27:2177-2180, 1987.
Rosse RB, Schwartz BL, Kim SY, Deutsch SI. Correlation between antisaccade and Wisconsin Card Sorting Test performance in schizophrenia. Am J Psychiatry 50:333-335, 1993.
Schlag-Rey M, Amador N, Sanchez H, Schlag J. Antisaccade performance predicted by neuronal activity in the supplementary eye field. Nature 390:398-401, 1997.
Schmid R, Ron S. A model of eye tracking of periodic square wave target motion. Biol Cybern 1986;54:179-187.
Scudder CA. A different local feedback model of the saccadic burst generator. Soc Neurosci Abstr 10:910, 1984.
Scudder, C. A. A new local feedback model of the saccadic burst generator. J Neurophysiol 59:1455-1475, 1988.
Segraves MA, Goldberg ME. Functional properties of corticotectal neurons in the monkey’s frontal eye field. J Neurophysiol 58:1387-1418, 1987.
Sereno AB, Holzman PS. Antisaccades and smooth pursuit eye movements in schizophrenia. Biol Psychiatry 37:394-401, 1995.
Sharpe JA, Zackon DK. Senescent saccades. Effects of aging on their accuracy, latency, and velocity. Acta Otolarngol 104:422-428, 1987.
Shaunak S, Orrell RW, O’Sullivan E, Hawken MB, Lane RJM, Henderson L, Kennard C. Oculomotor function in amyotrophic lateral sclerosis: evidence for frontal impairment. Ann Neurology 38:38-44, 1995.
Skagen DW. Estimation of running frequency spectra using a Kalman filter algorithm. J Biomed Eng 10:275-279, 1988.
Smit AC, Van Gisbergin AM, Cools AR. A parametric analysis of human saccades in different experimental paradigms. Vision Res 27:1745-1762, 1987.
Sparks D, Rohrer WH, Zhang Y. The role of the superior colliculus in saccade initiation: a study of express saccades and the gap effect. Vision Res 40:2763-2777, 2000.
Sweeney JA, Mintun MA, Kwee S, Wiseman MB, Brown DL, Rosenberg DR, Carl JR. Positron emission tomography study of voluntary saccadic eye movement and spatial working memory. J Neurophysiol 75,1:454-468, 1996.
Sylvestre PA, Cullen KE. Quantitative analysis of abducean neuron discharge dynamics during saccadic and slow eye movements. J Neurophysiol 82:2612-2632, 1999.
Taylor P. Statistic methods. In: Intelligent data analysis. Eds: Berthold M and Hand DJ. Springer-Verlag pp67-127, 1999.
Takagi M, Abe H, Hasegawa S, Yoshizawa T, Usui T. Velocity profile of human horizontal saccades. Ophthalmologica 206:169-176, 1993.
Thaker GK et al. Eye movements in spectrum personality disorders: Comparison of community subjects and relatives of schzophrenic patients. Am J Psychiatry 153:362-368, 1996.
Theodoridis S, Koutroumbas K. Pattern recognition. Academic Press 1999.
Tweed D and Vilis T. A two dimensional model for saccade generation. Biol Cybern 52:219-227, 1985.
Ueno, A., T. Tateyama, M. Takase, and H. Minamitani. Bluntness of saccadic eye movement depending on vigilance states-examination by model simulation. Proc 19th Ann Int Conf IEEE Eng Med Bio Soc 1482-1484, 1997.
Van den Berg AV, Collewijn H. Directional asymmetries of human Optokinetic nystagmus. Exp Brain Res 70:597-604, 1988.
Van Gelder P, Lebedev S, Tsui WH. Peak velocity of visually and nonvisually guided saccades in smooth-pursuit and saccadic tasks. Exp Brain Res 116:201-215, 1997.
Van Gisbergen JAM, Robinson DA, Gielen S. A quantitative analysis of generation of saccadic eye movements by burst neurons. J Neurophysiol 45:417-442, 1981.
Van Gisbergen J, Van Opstal A, Schoenmakers J. Experimental test of two models for the generation of oblique saccades. Exp Brain Res 57:321-336, 1985.
Van Opstal AJ, Van Gisbergin AM. Skewness of saccadic velocity profiles: A unifying parameter for normal and slow saccades. Vision Res 27:731-745, 1987.
Vermersch, AI et al. Saccade disturbances after bilateral lentiform nucleus lesions in humans. J Neurol Neurosur Psych 60:179-184, 1996.
Vidailhet M, Rivaud S, Gouider-Khouja N, Pillon B, Bonnet A-M, Gaymard B, Agid Y, Pierrot-Deseilligny C. Eye movements in Parkinson’s syndromes. Ann Neurol 35:420-426, 1994.
Waitzman DM, Ma TP, Optican LM, Wurtz RH. Superior colliculus neurons mediate the dynamic characteristics of saccades. J Neurophysiol 66:1716-1737, 1991.
Warabi T, Noda H, Yanagisawa N, Tashiro K, Shindo R. Changes in sensorimotor function associated with the degree of bradykinesia of Parkinson’s disease. Brain 109:1209-1224, 1986.
White OB, Saint-CYR J, Tomlinson D, Sharpe JA. Ocular motor deficits in Parkinson’s disease. II. Control of the saccadic and smooth pursuit systems. Brain 106:571-578, 1983.
Zambarbieri D, Beltrami G, Versino M. Saccade latency toward auditory targets depends on the relative position of the sound source with respect to the eyes. Vision Res 35:3305-3312, 1995.
Zee DS, Optican LM, Cook JD, Robinson DA, Engel WK. Slow saccades in spinocerebellar degeneration. Arch Neurol 33:243-251, 1976.
Zingale CM, Kowler E. Planning sequences of saccades. Vision Res 27:1327-1341, 1987.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top