跳到主要內容

臺灣博碩士論文加值系統

(54.91.62.236) 您好!臺灣時間:2022/01/18 00:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃國峰
研究生(外文):Gwo-Feng Huang
論文名稱:膝下截肢患者穿戴新型義肢在平地、斜坡和階梯之步態和能量消耗分析
論文名稱(外文):Gait Analysis and Energy Consumption of Below-Knee Amputees With A New Prosthesis on Level Ground, Ramps and Stairs
指導教授:周有禮周有禮引用關係蘇芳慶蘇芳慶引用關係
指導教授(外文):You-Li ChouFong-Chin Su
學位類別:博士
校院名稱:國立成功大學
系所名稱:醫學工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:156
中文關鍵詞:步態分析能量消耗平地斜坡階梯
外文關鍵詞:gait analysisenergy consumptionlevel groundrampstair
相關次數:
  • 被引用被引用:2
  • 點閱點閱:1201
  • 評分評分:
  • 下載下載:262
  • 收藏至我的研究室書目清單書目收藏:2
截肢對病患而言不僅是失去肢體,更造成許多行動不方便,良好義肢的設計不僅替代失去的肢體,更重要在改進其生活品質與獨立行走的能力。然而,截肢者穿戴義肢的步態與一般正常人的步態,至目前有關於客觀數據證明其差異性的文獻並不多,特別是行走在不同的路面上搭配不同的速度。
台灣目前義肢承筒都以樹脂(resin)或聚丙烯(polypropylene)為主要材料,透氣性不佳,在夏天氣溫常超過34度以上,對下肢截肢患者穿戴義肢行走時,常造成殘肢流汗,易使義肢滑脫,造成跌倒的意外事件,還造成殘肢的皮膚病變,如紅斑、水泡、潰瘍、感染等症狀須再回到醫院接受治療,有些截肢患者因而再度截肢。綜觀過去學者的實驗固然提供了許多寶貴的參考資料,雖然可以改善舒適性,但是對於穿戴下肢義肢患者,行走或運動時所產生的流汗及散熱問題,並沒有辦法處理。有鑑於此,義肢的氣冷式散熱系統的開發來改善義肢承筒的透氣、排汗是非常重要的。本研究所研發的新型膝下義肢承筒,設計一套氣冷式排氣系統,能自動將義肢承筒內的高溫和濕氣排出,以減少汗水產生。這整個氣冷式排氣系統包括電扇和電池只有95公克。
由於新的義肢材料和設計的改進,造成義肢承筒(prosthetic socket)、義肢骨架(prosthetic shank)和義足(prosthetic foot)搭配使用的範圍也越廣泛,如此造成義肢裝具師和臨床醫師對於義足的選擇更加困難。許多評估義足在行走時的研究是主觀的,在膝下截肢病患步態的定量研究已經用在動態分析系統(motion analysis system)對義足做動態評估,及穿著各種不同的義足來評估能量消耗情形。本研究的目的是由膝下截肢病患(below knee amputees),分別穿戴三種不同的義足,使用動態分析系統測量行走平地、斜坡和階梯時的步態,以及新陳代謝測量儀(metabolic measurement cart)測量能量消耗(energy consumption)情形。
第一階段對膝關節以下截肢病患作步態分析,選取二十名膝下截肢的病患,穿戴三種不同的義足,如:傳統義足(SACH foot)、單軸義足(single-axis foot)和多軸義足(multiple-axis foot),分別行走平地、三種不同斜坡(5度、10度和16度)和階梯,利用動態分析儀和測力板來量測步態週期(gait cycle)的特徵,結果將能夠提供客觀數據給臨床醫師在處方義肢時的依據之外,亦可提供建築物之斜坡坡度無障礙環境設計之參考。
第二階段研究為針對第一階段之三種不同的義肢作能量消耗分析,並以第一階段的二十名膝下截肢病人,利用新陳代謝測量儀及跑步機(heavy-duty treadmill) 分別以每分鐘1、1.5和2英里(mile)的速度及跑步機標別之0、3和6度的斜坡,進行能量消耗分析測試,並在測試結果後進行能量消耗分析對義肢舒適性滿意度之相關性的問卷調查。本研究的結果在傳統義足提供站立期的穩定度(stance stability),可用在低活動度(lower-activity level),且足部需較少足背曲(dorsiflexion)的截肢患者。單軸義足允許做少量的足背曲和足蹠曲(plantar-flexion),可使用在早期到晚期站立期(early-to-late stance)足部的背曲,可走斜坡及不平的路面。多軸義足除了可增加踝關節的活動和經由可塑性內骨架來促進義足推進(push-off)的功能,在站立期可產生少量的轉動,因此推薦使用在中度活動度截肢患者使用。依本實驗分析膝關節以下截患者在能量消耗方面,比正常人多消耗42%。在舒適度方面,以多軸義足最為舒適,其次是單軸義足,而以傳統義足在快走時最不舒適。這研究結果將能夠提供主觀及客觀的數據,給臨床醫師作為處方最適合膝下截肢者之義肢的參考。
Amputations not only caused the loss of limb but also accompanied with inconvenience of physical mobility for the patients. The newly developed prosthetic designs make possible the replacement of amputated limbs, thus greatly improve the body mobility and life independence of the patients. However, the real manifestation of the prosthetic gait and the discrepancy between the prosthetic and normal gaits needs further investigations, especially the effects of walking speeds and on walking surfaces.
In Taiwan, the sockets of most prosthetic devices are made of resin. The ventilation of this type of socket is poor. In the summer time, the air temperature in Taiwan can rise to 34℃ or higher and humidity levels are 60 % or higher. The kind of weather is called muggy or steamy. Heavy sweating is a typical condition in such a climate. For amputees, heavy sweating is a major problem since the socket becomes wet and fills with sweat. Consequently, prosthetic socket devices have a tendency to come loose or fall off during locomotion. Moreover, the constant moisture can cause skin complications such as eczema, blisters, dermatitis, ulcers or infection in the residual limb. Some amputees may have to be hospitalized because of these complications. Some patients even require further amputation. However, to date, there are very few studies in this subject. In last decades many researchers have tried to improve socket material. Although these new prosthesis materials can improve the feeling of comfort, they cannot solve the sweating problem. Therefore it is very important to develop a socket system to facilitate ventilation, cooling and the elimination of sweat. In our study a new prosthesis design equipped with an electric automatic air ventilation system have been tested and the sweat due to high temperature and humidity inside the socket can be reduced. The total AVS, including fan and battery, weighted only about 95g.
New prosthetic materials and designs have broadened the range of availability in artificial feet. As a result, it is becoming more difficult for prosthetists and clinical physicians to select the best foot for individual amputees. Much of the research evaluating the dynamics of prosthetic feet is subjective. Quantitative research on below-knee amputee gait has been performed in the following areas : dynamic evaluation of the foot through motion analysis, evaluation of forces created by and acting on the body while wearing a prosthetic foot, and amputees’ energy consumption with various foot designs
The purposes of this thesis are to scientifically measure the dynamic gait characteristics of the amputee by using motion analysis and to measure the energy consumption for the below-knee amputee when wearing the SACH, single-axis and multiple-axis prosthetic feet on ground, slopes and stairs.
First, the walking condition for patient with below-knee amputees is analyzed. Twenty patients who severed the shank are selected and divided into two groups to wear three different types of prosthetic foot : SACH foot (traditional type), single-axis foot, and multiple-axis foot, These patients on ground, slopes (5, 10 and 16 degrees) and stairs. These research results provide an objective for clinical physicians to select the proper type of prosthetic feet for the individual patient.
Second, the energy consumption of three different types of prosthetic foot is conducted for the same twenty subjects. These subjects walk at speeds of 1 mile per hour, 1.5 mile per hour and 2 mile per hour on slope of 0, 3 and 6 degrees. Energy consumption is detected while walking by metabolic measurement cart and heavy-duty treadmill. Subjective results are additionally determined via questionnaire after testing. A survey is conducted to determine the comfort level of prosthetic foot with patients after the experiment. The records provide a objective and subjective records for physician’s prescription for amputees.
目 錄
中文摘要 I
英文摘要 I V
誌謝 V I I
目錄 i
表目錄 vi
圖目錄 x
第一章 緒論 1
1.1義肢的簡史 1
1.1.1義肢的概要 2
1.1.2截肢者的人口 2
1.1.3截肢的原因 4
1.1.4膝下截肢手術 6
1.1.5膝下義肢組成 7
1.1.6使用義肢後的反應與調整 8
1.1.7截肢患者之復健 10
1.2義肢之製作 11
1.2.1理想義肢的要件 13
1.3新型義肢承筒製作自動化 15
1.3.1殘肢資料重複使用性 15
1.3.2雷射掃瞄系統 16
1.3.3承筒設計的基本原則 18
1.3.4殘肢CAD模型加工 22
1.3.5氣冷式義肢的模擬和製作 24
1.4步態分析簡介 29
1.4.1步態分析 30
1.4.2動作分析 30
1.4.3地面反作用力 35
1.4.4跨步分析 37
1.4.5以步態評估不同義足之效益 37
1.4.6步態參數的定義 39
1.5 步態的能量消耗 41
1.5.1行走速度 42
1.5.2能量消耗 43
1.6研究動機 47
1.7 研究目的 48
第二章 實驗方法 49
2.1 實驗對象 49
2.1.1實驗材料 50
2.2 實驗設備 53
2.3 步態分析─平地、斜坡和階梯 57
2.3.1運動學及動力學的流程 58
2.3.2 Helen Hayes標記貼法 60
2.3.3運動學分析 61
2.3.4 關節中心的計算 61
2.3.5 座標系定義 64
2.3.6 關節夾角-尤拉角的計算 66
2.3.7 角速度和角加速度 69
2.4 實驗室座標系和測力板座標系 71
2.5實驗系統及原理 76
2.5.1能量消耗分析 81
2.6 實驗步驟 82
2.6.1建立實驗室座標系 82
2.6.2.運動資料收集[A] 82
2.6.3運動資料收集[B] 84
2.7問卷調查 85
2.8資料分析 86
第三章 結果 87
3.1在行走平地方面的特徵 87
3.1.1時間距離參數及站立期和擺盪期百分比的特徵 87
3.1.2下肢關節(髖、膝和踝關節)活動度的特徵 88
3.1.3地面反作用力的特徵 89
3.2在上、下斜坡方面的特徵 90
3.2.1時間距離參數及站立期和擺盪期百分比的特徵 90
3.2.2下肢關節(髖、膝和踝關節)活動度的特徵 90
3.2.3地面反作用力的特徵 91
3.3在上、下階梯方面的特徵 92
3.3.1時間距離參數及站立期和擺盪期百分比的特徵 92
3.3.2下肢關節(髖、膝和踝關節)活動度的特徵 93
3.3.3地面反作用力的特徵 93
3.4能量消耗的特徵 94
3.5患者主觀的測試:問卷調查 94
第四章 討 論 137 4.1時間-距離參數 137
4.2不同義足之步態評估 137
4.3下肢關節(髖、膝和踝關節)活動度的特徵 138
4.3.1行走平地 138
4.3.2上、下斜坡 139
4.3.3上、下階梯 140
4.4地面反作用力的特徵 142
4.4.1行走平地 142
4.4.2上、下斜坡 142
4.4.3上、下階梯 143
4.5 能量消耗的特徵 144
4.6 新型義肢舒適性的評估 144
第五章 結論 145
參考文獻 147
表 目 錄
表1-1 製作義肢的步驟 11
表1-2 理想義肢的要件 14
表2-1 膝下截肢患者之年齡、截肢的時間、殘肢的長度和殘肢
占身高的比例之比較 50
表2-2 能量消耗測試 84
表3-1 新型義肢(AVS)和傳統義肢(PTB)平均穿三種不同義足在
之時間距離參數和步態週期(站立期和擺盪期百分比)的特徵 95
表3-2 新型義肢搭配三種不同義足健側腳(SND)和義肢側腳
(AMP)之踏步長比較 96
表3-3 新型義肢搭配三種不同義足行走平地之時間距離參數和步態
週期(站立期和擺盪期百分比)的特徵 97
表3-4 新型義肢搭配傳統義足之髖、膝和踝關節活動度分析 98
表3-5 新型義肢搭配單軸義足之髖、膝和踝關節活動度分析 99
表3-6 新型義肢搭配多軸義足之髖、膝和踝關節活動度分析 100
表3-7 新型義肢搭配三種不同義足上5度斜坡之時間距離參數
和步態週期(站立期和擺盪期百分比)的特徵 101
表3-8 新型義肢搭配三種不同義足上10度斜坡之時間距離參數
和步態週期(站立期和擺盪期百分比)的特徵 102
表3-9 新型義肢搭配三種不同義足上16度斜坡之時間距離參數
和步態週期(站立期和擺盪期百分比)的特徵 103
表3-10 新型義肢搭配三種不同義足下5度斜坡之時間距離參數
和步態週期(站立期和擺盪期百分比)的特徵 104
表3-11 新型義肢搭配三種不同義足下10度斜坡之時間距離參數
和步態週期(站立期和擺盪期百分比)的特徵 105
表3-12 新型義肢搭配三種不同義足下16度斜坡之時間距離參數
和步態週期(站立期和擺盪期百分比)的特徵 106
表3-13 新型義肢搭配三種不同義足上5度斜坡之髖、膝和踝關節
活動度分析 107
表3-14 新型義肢搭配三種不同義足上10度斜坡之髖、膝和踝關節
活動度分析 108
表3-15 新型義肢搭配三種不同義足上16度斜坡之髖、膝和踝關節
活動度分析 109
表3-16 新型義肢搭配三種不同義足下5度斜坡之髖、膝和踝關節
活動度分析 110
表3-17 新型義肢搭配三種不同義足下10度斜坡之髖、膝和踝關節
活動度分析 111
表3-18 新型義肢搭配三種不同義足下16度斜坡之髖、膝和踝關節
活動度分析 112
表3-19 新型義肢搭配三種不同義足上5度斜坡之下肢地面反
作用力分析 113
表3-20 新型義肢搭配三種不同義足上10度斜坡之下肢地面反
作用力分析 114
表3-21 新型義肢搭配三種不同義足上16度斜坡之下肢地面反
作用力分析 115
表3-22 新型義肢搭配三種不同義足下 5度斜坡之下肢地面反
作用力分析 116
表3-23 新型義肢搭配三種不同義足下10度斜坡之下肢地面反
作用力分析 117
表3-24 新型義肢搭配三種不同義足下16度斜坡之下肢地面反
作用力分析 118
表3-25 新型義肢(AVS)、傳統義肢(PTB)和對照組上階梯時時間
距離參數之比較 119
表3-26 新型義肢(AVS)、傳統義肢(PTB)和對照組下階梯時時間
距離參數之比較 120
表3-27 穿新型義肢搭配三種不同義足上階梯之髖、膝和踝關節
活動度分析 121
表3-28 穿新型義肢搭配三種不同義足下階梯之髖、膝和踝關節
活動度分析 122
表3-29 穿新型義肢搭配三種不同義足上階梯之地面反作用力分析 123
表3-30 穿新型義肢搭配三種不同義足下階梯之地面反作用力分析 124
表3-31 新型義肢搭配三種不同的義足平均以每小時2英哩的速度行
走在6度斜坡的能量消耗分析 125
表3-32 新型義肢搭配三種不同的義足平均以每小時1, 1.5和2英哩
的速度分別行走在0, 3和6度三種不同坡度的能量消耗分析 126
表3-33 新型義肢(AVS)和傳統義肢(PTB)平均穿三種不同的義足
之走路舒適性的比較 127
表3-34 新型義肢(AVS)和傳統義肢(PTB)平均穿三種不同義足之整
舒適程度的比較 128
表3-35 新型義肢搭配傳統、單軸和多軸義足之整體舒適性的比較 129
圖 目 錄
圖1-1 依截肢部份分布的截肢者數目之比較 3
圖1-2 依截肢原因與性別分布的截肢者數目之比較 4
圖1-3 膝下截肢部位圖 7
圖1.4 膝下義肢結構組成 8
圖1-5 義肢製造技術 12
圖1-6 三次元人體掃瞄系統簡圖 16
圖1-7 雷射掃瞄測頭示意圖 17
圖1-8 三角量測原理示意圖 18
圖1-9 左邊為前視圖,右邊為後視圖 18
圖1-10 左邊為前視圖,右邊為後視圖 19
圖1-11 殘肢CAD模型建立之示意圖 20
圖1-12 殘肢模型建構 21
圖1-13 殘肢石膏陽模加工示意圖(四軸加工機) 22
圖 1-14 殘肢CAM加工流程 23
圖 1-15 殘肢加工刀具路徑 23
圖1-16 電路元件 26
圖1-17 新型氣冷式義肢 27
圖1-18 動作分析之平面矢狀面、額切面及橫切面 31
圖1-19 二度空間動作分析之攝影機 32
圖1-20 三度空間動作分析之攝影機 32
圖1-21 步態週期(gait cycle)的分期 33
圖1-22 步態站立期下肢連續動作示意圖 34
圖1-23 步態擺盪期下肢連續動作示意圖 34
圖1-24 滾軸作用 35
圖1-25 完整地面反作用力示意圖 36
圖1-26 三方向之地面反作用力 36圖1-27 踏步分析資料 37
圖1-28 正常的健康人其能量消耗及步態效率與截肢者、全癱者
、截癱者、輪椅使用者的比較 42
圖1-29 健康人持續做直立動態運動的心肺反應 45
圖2-1 氣冷式義肢配件 51
圖2-2 傳統義足 51
圖2-3 單軸義肢 51
圖2-4 多軸義肢 52
圖2-5 步態分析系統-平地 54
圖2-6 步態分析-斜坡 55
圖2-7 步態分析-階梯 56
圖2-8 能量測量系統和跑步機 56
圖2-9 運動學計算流程 58
圖2-10 動力學計算流程圖 59
圖2-11 Helen Hayes標記貼法-側視圖及前視圖 60
圖2-12 各個肢段座標系示意圖 65
圖2-13 旋轉軸順序 67
圖2-14 校正架定義之實驗室座標系 71
圖2-15 力板座標系 72
圖2-16 Kistler測力板簡圖 73
圖 2-17 作用力F及力矩T相對力板幾何中心之座標系 74
圖2-18 標準導程間的關係 77
圖2-19 四肢導程間的關係 78
圖2-20 本實驗胸前誘導之位置圖 79
圖2-21 能量消耗分析實驗之流程 81
圖3-1 新型義肢平均義肢側與健腳之垂直地面反作用力之比較 130
圖3-2 新型義肢(AVS)和傳統義肢(PTB)搭配三種不同義足在上
階梯時之步態週期(站立期和擺盪期百分比)之比較 131
圖3-3 新型義肢(AVS)和傳統義肢(PTB)搭配三種不同義足在下
階梯時之步態週期(站立期和擺盪期百分比)之比較 132
圖3-4 新型義肢(AVS)和傳統義肢(PTB)搭配三種不同的義足在上
階梯時之單腳支撐期(SLS)和雙腳支撐期(DLS)之比較 133
圖3-5 新型義肢(AVS)和傳統義肢(PTB)搭配三種不同的義足在下
階梯時之單腳支撐期(SLS)和雙腳支撐期(DLS)之比較 134
圖3-6 上階梯時步態週期和單、雙腳支撐期之義肢側(AMP)/健側
(SND)比例之比較 135
圖3-7 下階梯時步態週期和單、雙腳支撐期之義肢側(AMP)/健側
(SND)比例之比較 136
1. National Health Survey. Use of Special Aids-1969. Rockville, Md: US Dept. of Health, Education, and E\Welfare publication, HSM 73-1504, 1969.
2. Chao EYS. Orthopaedic Biomechanics: The past present and future. International Orthopaedics Vol.20, pp. 239-243, 1996.
3. Shurr DG, Cook TM. Prosthetic and Orthotics. American Prosthetics Inc. 1990.
4. Burgess EM , Rappoport A. Physical Ftness: A guide for individuals with lower limb loss. Washington: Veterans health administration, Department of veterans affairs 1992.
5. 台北榮民總醫院傷殘重建中心。下肢義肢支架及輪椅使用講習會。September 1994;台北。
6. 連倚南。台灣地區截肢之流行性調查。台灣醫界。pp.33-37, 1987.
7. Kay HW, Newman JD. Relative incidences of new amputations. Orthot Prosthet Vol.29, No.2, pp.3-16, 1975.
8. Stewart CPU, Jain AS. Cause of death of lower limb amputees. Prosthet Ortho Int Vol.16, pp. 192-232, 1992.
9. Furst L, Humphrey M. Coping with the loss of a leg. Prosthet Orthot Int Vol.7, pp. 152-156, 1983.
10. Sherman RA. Limb pain and stump blood circulation. Orthopaedics Vol.7, No.8, pp. 1319-1320, 1984.
11. Quigley M. Prosthetic methods and materials. In: Atlas of Limb Prosthetics. St. Louis, Mo;Moshy, 1981.
12. You HT. Reverse engineering of engine intake ports by digitization and surface approximation. Int. J. Mach. Tools Manufact., Vol.37, No.6, pp. 855-871, 1997
13. Sarkar B. Meng CH. Smooth-surface approximation and reverse engineering. Computer-Aided Design, Vol.23, No.9, pp. 623-628, 1991.
14. Idrahim Zeid. CAD/CAM theory and practice. McGRAW-HILL, 1991.
15. Lai JY, Ueng WD, Yao CY. Registration and data merging for multiple sets of scan data. Advanced Manufacturing Technology, No.15, pp. 54-63, 1999.
16. Milroy MJ, Bradley C, Vickers GW, Weir DJ. G1 continuty of B-spline suface pathes in reverse engineering. Computer-Aided Design, Vol.27, No.6, pp. 471-478, 1995.
17. Walsh NE, Lancaster JY, Faulkner VW. A computerized system to manufacture prostheses for amputees in developing countries. Journal of Prosthetics and Orthotics, Vol.1, No.3, pp. 165-181. 1996.
18. Opto-Electronics & Systems Laboratories. 3D laser digitizer-operation manual. Electro-optics system division, Industrial technology research institute, 1996.
19. Axelsson P. Processing of laser scanner data-algorithms and application. Photogrammetry & Remoto Sensing, Vol.54, pp. 138-147, 1995.
20. Hsu LH, Hsu FM, Chou YL, Hsu LY, Leong H , Huang GF. An algorithm to construction the CAD model of residual limb. Biomedical Engineering Application, Basis Communications, Vol.13, pp. 149-158, 2001.
21. Au HW, Hsu LH, Chou YL , Huang GF. Recognition for the boundary of pressure-tolerant and pressure-relief areas on the scanning points of residual limb. Biomedical Engineering Application, Basis Communications. Vol.13, No.4, pp. 211-223, 2001.
22. Daniel J, Thomas D, Bill R, Nicolas. Locating anatomical landmarks for prosthetics design using ensemble neural networks. Medicine and Biology Society, pp. 81-85, 1997.
23. Chen CW, Hsu LH, Chou YL, Yu SY, Leong H, Huang GF. Morphological segmentation for the scanned points of residual limbs. ES,NCKU, 2000.
24. Engstrom B. Catherine Van de Ven. Physiotherapy for amputees. Churchill Livingstone, 1985.
25. 薛明輝、蔡宗河編譯,FMS與綜合加工機應用,全華科技圖書,1989。
26. IGES/PDES Ortanization, The Initial Graphics Exchange Specification (IGES) Version 5.1, 1991.
27. Dragimatz D, Mann S. A classified bibliography of literature on NC milling path generation. Computer-Aided Design Vol.29, No.3, 1997.
28. Lee YS, Chang TC. CASCAM-an automated system for sculptured surface cavity machining. Computer in Industry Vol.16, pp. 321-342, 1991.
29. Elber G, Cohen E. Tool path generation for freeform surface models, Computer-aided design Vol.26. No.6, pp. 490-496, 1994.
30. Lambert BK. Milling Methods and Machines. Society of Manufacturing Engineers, Dearborn, Michigan, 1982.
31. Fanger PO. Thermal Comfort. Robert E. Krienger Publishing Company. Malabar, FL, 1982.
32. Fang CH, Huang MJ, Chou YL and Huang GF. The study of thermal comfort for below-knee prosthesis. Biomedical Engineering Application, Basis Communications. Vol.13, No.4, pp. 224-263, 2001.
33. Jang GJ, Huang MJ. The study of dehumidification and heat dissipation for human skin inside prosthesis. ES,NCKU,1999.
34. Berglund LG, Gonzalez RR. Application of acceptable temperature drifts to build environments as a mode of energy conservation. ASHRAE Transactions 84, Part I, pp. 110-121, 1978.
35. Nevins RG. Temperature-humidity chart for thermal comfort of seated persons. ASHRAE Transactions Vol.72, pp. 283, 1966.
36. Jarret. A television/computer system for human locomotion analysis. Bioengineering Unit. University of Strathclyde, Glasgow. June 1976.
37. Chao YL. The study in biomechanics. 25th proc of annual meeting of the chinese institute of engineerings. pp. 61-70, Dec 1987.
38. Elfman H. Force and energy change in the leg during walking. American Journal of Physiology. Vol.125, pp. 339-356, 1939.
39. Kadaba MP, Ramakrishnan HK, Wootten ME. Measurement of lower extremity kinematics during level walking. J. Orthop. Res. Vol.8, No.3, pp. 383-392, 1990.
40. Vaughan CL, Davis BL, O’Connor JC. Dynamics of human gait. Illinois, Champaign: Human Kinetics Publishers, 1992.
41. Katoh Y, Chao EY, Laughman RK. Biomechanical analysis of foot function during gait and clinical applications. Clini Orthop Relat Res Vol.177, pp. 23-33, 1983.
42. Perry J. Gait analysis: Normal and pathological function. NJ: Slack Incorporated, 1992.
43. Sutherland DH, Olshen RA, Cooper L, Woo SLY. The development of mature walking. J Bone Joint Surg, Vol.62-A, No.3, pp. 336-353, 1980.
44. Huang GF, Chou YL and Su FC. Gait analysis and energy consumption of below-knee amputees wearing three different prosthetic feet. Gait and Posture . Vol.12, pp. 162-168, 2000.
45. Culham EG, Peat M, Newell E. Below-knee amputation : A comparison of the effect of the SACH foot and single axis foot on electromyographic patterns during locomotion. Prosthet Orthot Int Vol.10, pp. 15-22, 1986.
46. Wagner J, Sienko SE, Supan T, Barth D. Motion analysis of SACH versus Flex-Foot in moderately active below-knee amputees. Clin Prosthet Orthot, Vol.11, pp. 55-62, 1987.
47. Gitter A, Czerniecki JM, DeGroot DM, Biomechanical analysis of the influence of prosthetic feet on below-knee amputee walking. Am J Phys Med Recabil Vol.70, pp. 142-148, 1991.
48. Hannah RE, Morrison JB, Chapman AE. Prostheses alignment. Effect of gait of persons with below-knee amputations. Archives of Physical Medicine and Rehabilitation Vol.65, pp. 159-162, 1984.
49. Lehmann JF, Price R, Dralle A, Questad K. Comprehensive analysis of dynamic elastic response feet. Seattle Ankle-Lite foot versus SACH foot Arch Phys Med Rehabil Vol.74, pp. 853-861, 1993.
50. Waters Rl, Perry J, Antonelli D, Hislop H. Energy cost of walking of amputees : the influence of level of amputation. J Bone Joint Surg Vol.58A, pp. 42-46, 1976.
51. Robinson JL, Smidt GL, Arora JS. Accelerographic, temporal and distance gait factors in below-knee amputees. Phys Ther Vol.57, pp. 898-904, 1977.
52. Goh JCH, Solomonidis SE, Spence WD, Paul JP. Biomechanical evaluation of SACH and uniaxial feet. Prosthet Orthot Int Vol.8, pp. 147-154, 1984.
53. Michael J. Energy storing feet : A clinical comparison, Clin Prosthet Orthot, Vol.11, No.3, pp. 154-168, 1987.
54. Van Leeuwen JL, Lawn S, Ham D. Shock absorption of below-knee prostheses : A comparison between the SACH and the Multiflex foot. J Biomech Vol. 23, pp. 441-446, 1990.
55. Wine DC, Hittenberger DA. Energy-storing prosthetic feet. Arch Phys Med Rehabil Vol.70, pp. 330-334, 1989.
56. Huang GF, Chou YL, Su FC , Chou PH. Kinematics properties and energy cost of below-knee amputees. Biomedical Engineering Applications, Basis & Communications. Vol.13, pp. 99-107, 2001.
57. Winter DA,Sienko SE.Biomachanics of below-knee amputee gait. J Biomech Vol.21, No.5, pp. 361-367, 1988.
58. Skinner HB, Effeney DJ. Gait analysis in amputee - a special review. American Journal of Physical Medicine Vol.64, pp. 82-89, 1985.
59. Culham EG, Peat M, Newell E. Below-knee amputation: a comparison of the effect of the SACH foot and single axis foot on electromyographic patterns during locomotion. Prosthe Orthot Int Vol.10, pp. 15-22, 1986.
60. Mizuno N, Aoyama T, Nakajima A. Functional evaluation by gait analysis of various ankle-foot assemblies used by below-knee amputees. Prosthet Orthot Int Vol.16, pp. 174-182, 1992.
61. Boonstra AM, Fidler V, Spits GM. Comparison of gait using Multiflex versus a Quantum foot in knee disarticulation amputees. Prosthe Orthot Int Vol.17, pp. 90-94, 1993.
62. Snyder RD, Powers CM, Fontaine C. The effect of five prosthetic feet on the gait and loading of the sound limb in dyvascular below-knee amputees. J Rehab Res Develop Vol.32, pp. 309-315, 1995.
63. Huang GF, Chou YL, Su FC , Chou PH. Gait analysis and energy expenditure of walking among patients with unilateral transtibial amputation. Journal of Rehabilitation Medicine Association Republic of China. Vol.29, No.3, pp. 123-132, 2001.
64. Barth DG, Shumacher L, Thomas SS. Gait analysis and energy cost of below-knee amputees wearing six different prosthetic feet. J prosthet Orthot V1ol.4, No.2, pp. 63-75, 1995.
65. Colborne GR, Naumann S, Longmuir PE, Berbrayer D. Analysis of mechanical and metabolic factors in the gait of congenital below-knee amputees. Am J phys Med Rehabil Vol.71, pp. 272-278, 1992.
66. Hannah RE,Morrison JB. Kinematic symmetry of the lower limbs. Arch Med Rehab Vol.65, pp. 155-168, 1984.
67. Skineer HB, Effeney DJ. Gait analysis in amputees-a special review. American Journal of Physical Medicine Vol.64, No.2, pp. 82-89, 1985.
68. Custon E. Early Management of Elderly Dysvascular Below-knee Amputees. Journal of Prosthetics and Orthotics Vol.6, No.3, pp.62-66, 1994.
69. William D. Mcardle BE. Exercise Physiology. LEA and Febiger, Philadelphia/London, pp. 254-451, 1991.
70. Martin BJ, and Stager JM. Ventilatory endurance in athletes and non-athletes, Med. Sei. Sports Exerc, Vol.3, pp. 21-29, 1981.
71. Strauss RH. Sport Medicine. W.B. Saunder Company Philadelphia/ London/Toronto, pp. 13-75, 1984.
72. James F. Response of normal children and young adults to controlled bicycle exercise. Circulation, Vol.61, pp. 902-910, 1980.
73. Woltring HJ. A FORTRAN package for generalized, cross-validatory spline smoothing and differentation. Adv. Eng. Software, Vol.8, pp. 104-113, 1986.
74. Gage JR, Hicks R. Gait analysis in prosthetics. Clinical Prosthetics and Orthotics Vol.9, No.3, pp. 17-23, 1985.
75. You JY, Chou YL, Lin CJ, Su FC. Effect of slip on movement of body center of mass relative to base of support. Clin. Biomech Vol.16, pp. 167-173, 2001
76. Londeree BR, Moeschberger ML. Effect of age and other factors on maximal heart rate, Res. Q. Exerc. Sport, Vol.53, pp. 297-305, 1982.
77. Andriacchi TP, Ogle JA, Galante LE. Walking speed as a basis for normal and abnormal gait measurements. J Biomech Vol.10, pp. 261-268, 1977.
78. Torburn L, Schweiger GP, Rerry J, Powers CM. Below-knee amputee gait in stair ambulation. Clinical Orthopaedics and Related Research. No.303, pp. 185-192, 1994.
79. Rowe PJ, Myles CM, Walker C, Nutton R. Knee joint kinematics in gait and other functional activities measured using flexible electrogoniometry:How much knee motion is sufficient for normal daily life? Gait and Posture Vol.12, pp. 143-55, 2000.
80. Torburn L, Perry J, Ayyappa E, Shanfield Sl. Energy expenditure during ambulation in dysvascular and traumatic below-knee amputee. A comparison of five prosthetic feet. J Rehabil Res Develop, Vol.32, pp. 111-119, 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top