跳到主要內容

臺灣博碩士論文加值系統

(54.83.119.159) 您好!臺灣時間:2022/01/17 10:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡瑞和
研究生(外文):Jui-He Tsai
論文名稱:以微矩陣基因晶片探討細胞經紫外線照射後之基因表現
論文名稱(外文):Application of cDNA microarray on studies of UVC-induced cell’s gene expressions
指導教授:張憲彰黃溫雅黃溫雅引用關係
指導教授(外文):Hsien-Chang ChangWenya Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:醫學工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:93
中文關鍵詞:核酸切除修復微矩陣基因晶片
外文關鍵詞:NERmicroarrayGADD153GADD45A
相關次數:
  • 被引用被引用:1
  • 點閱點閱:656
  • 評分評分:
  • 下載下載:136
  • 收藏至我的研究室書目清單書目收藏:0
微矩陣基因晶片技術的發展使得科學家可以快速的檢測細胞內整體基因的表現。對於基因之間互相影響的關係可更正確快速的定義。本實驗之目的為了解一些核酸切除修復(NER)因子之功能與其影響之下游基因,故使用HeLa細胞(核酸切除修復正常)與著色性乾皮症病人細胞所作成的細胞株~XPC (XP4PA-SV)細胞(核酸切除修復缺失)進行比較。將細胞照射紫外線(254 nm)後再給予不同的培養時間 讓其進行修復,之後抽取細胞之mRNA進行微矩陣基因晶片檢測。再使用ScanAlyze 2程式(史丹佛大學Partick O. Brown研究室發展)將晶片上的訊號強度定量,最後用Principal component analysis (PCA)統計方法分析,此統計方法可將相同表現趨勢的基因歸納為群組(factor),每一群組中的基因再利用t-test分析而判知其基因表現趨勢。研究中每個實驗組皆使用3片晶片,如此可除去偽陽性訊號,且只有顯示機率(p)小於0.05的基因才是確實的結果。這些基因會再用反轉錄聚合酶連鎖反應(RT-PCR) 再次印證其基因表現。
經由PCA分析後,可得到4個基因表現趨勢不同的群組(factors),每個群組中包含2-4個基因。在這些基因中,發現growth arrest and DNA-damage-inducible 153 (GADD153)與growth arrest and DNA-damage-inducible 45, alpha (GADD45A)在與XP4PA-SV細胞HeLa細胞經紫外線照射後有不同的基因表現。再使用RT-PCR進一步的分析其它NER正常與缺失的細胞,結果發現GADD153在HeLa細胞與XPC細胞所表現出的差異,並不是因為DNA修復功能有差異而導致此現象。在GADD45A的基因表現方面,NER缺失的細胞照射完紫外線30分鐘後就有快速上升表現的現象,而在NER正常的細胞中則是較晚才有上升表現。推測可能是因為細胞中某些修復蛋白功能有問題,使得細胞內的GADD45A有代償作用而在早期上升表現,以使得細胞能夠盡其所能的去修復其損傷。
DNA microarray technology allows scientists to detect global gene expressions of cells. The goal of this research project is to understand the functions of nucleotide excision repair (NER) factors and the genes that they regulate. The HeLa cells (NER proficient) and XPC mutant cells (NER deficient) were subjected to studies of the responses to post-UVC irradiation by cDNA microarray. The cellular mRNAs from both cell lines were isolated and hybridized to the genes on the cDNA chip. The signals were quantitated by the software ScanAlyze 2 (developed by Brown, C. A.). For statistical analysis microarray data, each experimental condition was performed in triplicates. Principal component analysis (PCA) was then applied to identify genes whose expressional changes were associated. The gene expression changes were also confirmed by the t-test analysis as well as RT-PCR on each individual gene.
By PCA, four major expression patterns were identified, depending on the directionality of expression changes in each gene from the control to various lengths of post-UVC incubation. We found that the expressions of growth arrest and DNA-damage-inducible 153 (GADD153) and growth arrest and DNA-damage-inducible 45, alpha (GADD45A) different in the HeLa cells and XP4PA-SV cells. The GADD153 and GADD45A expressions in other NER proficient and deficient cells were also examined. We found that expression levels of the GADD153 gene did not show a strong correlation with in vivo NER activity. In the case of the GADD45A gene, it was up-regulated in the XPC cells 30 minutes after the UVC irradiation; however, it was induced much later in the NER proficient cells. Besides XPC cells, the NER deficient XPA cells also demonstrated the early induction of the GADD45A gene. It is concluded that the expression of GADD45A gene is immediately activated in these XP cells.
中文摘要 ----------------------------------------------------------------- I
英文摘要 ----------------------------------------------------------------- II
誌謝 --------------------------------------------------------------------- III
目錄 --------------------------------------------------------------------- IV
表目錄 ------------------------------------------------------------------- VII
圖目錄 ------------------------------------------------------------------- VIII
公式&符號----------------------------------------------------------------- X
縮寫表 ------------------------------------------------------------------- X
第一章 緒論 -------------------------------------------------------------- 1
1.1 前言 ---------------------------------------------------------------- 1
1.2 基因修復機制 -------------------------------------------------------- 1
1.3 紫外線對DNA之傷害 --------------------------------------------------- 3
1.3.1 環丁烷嘧啶雙體(cyclobutane pyrimidine dimers) ------------------ 3
1.3.2 6-4嘧啶光產物(6-4 photoproducts) ------------------------------- 4
1.4 核酸切除修復(nucleotide excision repair) ---------------------------- 5
1.4.1 整體基因修復(GGR) ---------------------------------------------- 5
1.4.2 轉錄偶合修復(TCR) ---------------------------------------------- 6
1.5 著色性乾皮症(xeroderma pigmentosum syndrome) ------------------------ 7
1.6 微矩陣基因晶片(microarray)之原理與應用論文回顧 ---------------------- 10
1.7微矩陣基因晶片之檢測方法 --------------------------------------------- 12
1.8基因晶片的應用 ------------------------------------------------------- 13
1.8.1 基因定序 ------------------------------------------------------- 13
1.8.2 cDNA晶片之於偵測基因表現程序 ----------------------------------- 14
1.8.3 cDNA晶片之於細胞癌化的檢測 ------------------------------------- 15
1.8.4 cDNA晶片之於藥物篩選與毒物分析 --------------------------------- 15
1.9 論文回顧 ------------------------------------------------------------ 17
1.10 研究動機 ----------------------------------------------------------- 18
1.11 研究架構 ----------------------------------------------------------- 19
第二章 實驗方法與材料 ---------------------------------------------------- 20
2.1 實驗原理 ------------------------------------------------------------ 20
2.1.1 重組與純株化(recombinant DNA and cloning) ---------------------- 20
2.1.2 聚合酶連鎖反應(polymerase chain reaction) ---------------------- 21
2.1.3 微矩陣基因晶片酵素呈色原理 ------------------------------------- 22
2.2 實驗藥品 ------------------------------------------------------------ 24
2.3 cDNA微矩陣基因晶片實驗藥品配置 -------------------------------------- 25
2.4 實驗方法 ------------------------------------------------------------ 26
2.4.1 細胞培養 ----------------------------------------------------------- 26
2.4.2 細胞之紫外線照射 ----------------------------------------------- 27
2.4.3 細胞之信使核糖核酸(mRNA)抽取 ----------------------------------- 28
2.4.4 cDNA微矩陣基因晶片 --------------------------------------------- 29
2.4.5 資料處理 ------------------------------------------------------- 31
2.4.6 統計分析 ------------------------------------------------------- 32
2.4.7 反轉錄聚合酶連鎖反應(RT-PCR) ----------------------------------- 32
2.4.8 重組xpc基因 ---------------------------------------------------- 34
2.4.9 質體抽取 ------------------------------------------------------- 35
2.4.10 Lipofectamine transfection ------------------------------------ 35
2.4.11 MTT assay ----------------------------------------------------- 35
第三章 實驗結果與討論 ---------------------------------------------------- 37
3.1 細胞受紫外線照射後之存活率 ------------------------------------------ 37
3.2 核糖核酸(RNA)與信使核糖核酸(mRNA)之品質判定 ------------------------- 39
3.3 細胞受紫外線照射後之基因表現 ---------------------------------------- 40
3.4 微矩陣基因晶片雜交數據分析之原理 ------------------------------------ 41
3.5 微矩陣基因晶片雜交數據比較 ------------------------------------------ 44
3.6 微矩陣基因晶片之t-test數據 ------------------------------------------ 50
3.7反轉錄聚合酶連鎖反應(RT-PCR)驗證統計之結果 --------------------------- 57
3.8 基因功能的分析 ------------------------------------------------------ 66
3.8.1 GADD153 ------------------------------------------------------------ 67 3.8.2 GADD45A ------------------------------------------------------------ 68
第四章 結論 -------------------------------------------------------------- 82
參考文獻 ----------------------------------------------------------------- 84
自述 --------------------------------------------------------------------- 93
表目錄
表1-1 830個著色性乾皮症之臨床症狀觀察 ---------------------------------- 9
表1-2 核酸切除修復之因子 ----------------------------------------------- 10
表1-3 卵巢癌細胞相對於正常卵巢細胞表現上升之基因及倍數 ----------------- 16
表1-4 卵巢癌細胞相對於正常卵巢細胞表現下降之基因及倍數 ----------------- 16
表2-1 本實驗所使用之細胞株 --------------------------------------------- 27
表2-2 千禧DNA晶片之基因種類與數目 -------------------------------------- 29
表2-3反轉錄聚合酶連鎖反應之引子 ---------------------------------------- 33
表3-1 Housekeeping genes ----------------------------------------------- 44
表3-2 Stress response genes與其所佔之因數荷量(factor loading) ---------- 46
表3-3 Stress response genes經PCA分析後所得因數之因數值 ----------------- 47
表3-4 Factor 1基因進行t-test分析後的基因表現數值 ----------------------- 51
表3-5 Factor 3基因進行t-test分析後的基因表現數值 ----------------------- 52
表3-6 Factor 4基因進行t-test分析後的基因表現數值 ----------------------- 52
表3-7 Factor 1基因進行RT-PCR分析定量後的基因表現倍數 ------------------- 64
表3-8 Factor 3基因進行RT-PCR分析定量後的基因表現倍數 ------------------- 65
表3-9 Factor 4基因進行RT-PCR分析定量後的基因表現倍數 ------------------- 65
表3-10 β-actin基因進行RT-PCR分析定量後的基因表現倍數 ------------------- 65
表3-11
(a) 修復功能正常細胞之GADD153基因表現之RT-PCR量化結果------------------- 78
(b) XPC亞型細胞之GADD153基因表現之RT-PCR量化結果 ----------------------- 78
(c) XP細胞之GADD153基因表現之RT-PCR量化結果 ---------------------------- 79
(d) CS細胞之GADD153基因表現之RT-PCR量化結果 ---------------------------- 79
表3-12
(a) 修復功能正常細胞之GADD45A基因表現之RT-PCR量化結果------------------- 80
(b) XPC亞型細胞之GADD45A基因表現之RT-PCR量化結果 ----------------------- 80
(c) XP細胞之GADD45A基因表現之RT-PCR量化結果 ---------------------------- 81
(d) CS細胞之GADD45A基因表現之RT-PCR量化結果 ---------------------------- 81
圖目錄
圖1.1 (a)四種型式的含氮鹽基.(b)嘌呤與嘧啶間的氫鍵結合型式--------------- 2
圖1.2 紫外線光譜 ------------------------------------------------------- 3
圖1.3 環丁烷嘧啶雙體 --------------------------------------------------- 4
圖1.4 6-4嘧啶光產物 --------------------------------------------------- 4
圖1.5 整體核酸切除修復(NER)之步驟 -------------------------------------- 8
圖1.6基因晶片點製機台 -------------------------------------------------- 11
圖1.7 (a)非接觸式點針, (b)接觸式點針 ----------------------------------- 12
圖1.8 (a) Cyanine-3-dUTP, (b) Cyanine-5-dUTP之分子式 ------------------- 13
圖1.9 hHR23A & B之氨基酸順序與XPC結合部位 ------------------------------ 18
圖1.10 本文研究架構 ---------------------------------------------------- 19
圖2.1 PCR之反應過程 ---------------------------------------------------- 21
圖2.2 Biotin-16-dUTP之分子式 ------------------------------------------- 23
圖2.3 酵素呈色法之機制 ------------------------------------------------- 23
圖2.4 細胞照射紫外線之流程 --------------------------------------------- 28
圖2.5 ScanAlyze 2計算訊號強度方式 -------------------------------------- 31
圖2.6 重組xpc基因至pcDNA3.1 B載體 -------------------------------------- 34 圖2.7 (a) MTT之分子式, (b) formazan之分子式 ---------------------------- 36
圖2.8 MTT與formazan之紫外線吸收光譜 ------------------------------------ 36
圖3.1 細胞受紫外線照射後之存活率曲線圖 --------------------------------- 38
圖3.2 核糖核酸之瓊膠電泳圖 --------------------------------------------- 39
圖3.3細胞之mRNA與微矩陣基因晶片雜交後呈色之結果 ------------------------ 40
圖3.4 基因表現趨勢圖 --------------------------------------------------- 48
圖3.5 Factor 1基因之t-test表現趨勢圖 ----------------------------------- 53
圖3.6 Factor 3基因之t-test表現趨勢圖 ----------------------------------- 55
圖3.7 Factor 4基因之t-test表現趨勢圖 ----------------------------------- 56
圖3.8用RT-PCR分析β-actin基因表現變化結果 ------------------------------- 57
圖3.9用RT-PCR分析factor 1中基因表現變化結果
(a) c-Fos基因表現變化結果 ---------------------------------------------- 58
(b) c-Myc基因表現變化結果 ---------------------------------------------- 59
(c) GADD153基因表現變化結果 -------------------------------------------- 60
(d) GADD45A基因表現變化結果 -------------------------------------------- 61
圖3.10 用RT-PCR 分析factor 3中Jun B基因表現變化結果 -------------------- 62
圖3.11 用RT-PCR 分析factor 4中EGR 1基因表現變化結果 -------------------- 63
圖3.12 用RT-PCR 分析之GADD153基因表現變化結果
(a) DNA修復功能正常細胞 ------------------------------------------------ 70
(b) XPC亞型細胞 -------------------------------------------------------- 71
(c) XP細胞 ------------------------------------------------------------- 72
(d) CS細胞 ------------------------------------------------------------- 73
圖3.13 用RT-PCR 分析之GADD45A基因表現變化結果
(a) DNA修復功能正常細胞 ------------------------------------------------ 74
(b) XPC亞型細胞 -------------------------------------------------------- 75
(c) XP細胞 ------------------------------------------------------------- 76
(d) CS細胞 ---------------------------------------------------------
1. B. Lewin, 2000. Genes VII. Oxford University Press, New York.
2. 梁凱莉, 高惠娟編譯, 1997. 普通生物化學. 合記圖書出版社發行, 台北.
3. S. B. Adayabalam and A. B. Vilhelm, 2000. Genomic heterogeneity of nucleotide excision repair. Gene, 250, 15-30.
4. E. C. Friedberg, G. C. Walker, and W. Siede, 1995. DNA repair and mutagenesis. American Society for Microbiology Press, Washington, D. C.
5. D. L. Mitchell, J. Jen and J. E. Cleaver, 1992. Sequence specificity of cyclobutane pyrimidine dimmers in DNA treated with solar (ultraviolet B) radiation. Nucleic Acids Research, 20, 225-229.
6. F. Bourre, G. Renault and A. Sarasin. Sequence effect on alkali- sensitive sites in UV-irradiated SV40 DNA, 1987. Nucleic Acids Research, 15, 8861-8875.
7. C. Petit and A. Sancar, 1999. Nucleotide excision repair: From E. coli to man. Biochimie, 81, 15-25.
8. A. K. Ganesan, J. Hunt and P. C. Hanawalt, 1999. Expression and nucleotide excision repair of a UV-irradiated reporter gene in unirradiated human cells. Mutation Research, 433, 117-126.
9. W. L. de Laat, N. G. J. Jaspers and J. H. J. Hoeijmakers, 1999. Molecular mechanism of nucleotide excision repair. Genes & Development, 13, 768-785.
10. T. Lindahl and R. D. Wood, 1999. Quality Control by DNA Repair. Science, 286, 1897-1905.
11. J. H. J. Hoeijmakers, 2001. Genome maintenance mechanisms for preventing cancer. Nature, 411, 366-374.
12. J. E. Cleaver, 1968. Defective repair replication in xeroderma pigmentosum. Nature, 218, 652-656.
13. J. H. Robbins, K. H. Kraemer, M. A. Lutzner, B. W. Festoff and H. G. Coon, 1974. Xeroderma pigmentosum. An inherited disease with sun sensitivity, multiple cutaneous neoplasms and abnormal DNA repair. Annals of Internal Medicine, 80, 221-248.
14. H. Takebe, Y. Miki, T. Kozuka, J. I. Fujiwara, K. Tanaka, M. S. Sasaki and H. Akiba, 1977. DNA repair characteristics and skin cancers of xeroderma pigmentosum patients in Japan. Cancer Research, 367, 490-495.
15. K. H. Kraemer, M. M. Lee and J. Scotto, 1987. Xeroderma pigmentosum. Cutaneous, ocular, and neurologic abnormalities in 830 published cases. Archives of Dermatological Reasearch, 123, 241-250.
16. J. E. Cleaver, 2000. Common pathways for ultraviolet skin carcinogenesis in the repair and replication defective groups of xeroderma pigmentosum. Journal of Dermatological Science, 23, 1-11.
17. K. K. Bowman, C. A. Smith and P. C. Hanawalt, 1997. Excision-repair patch lengths are similar for transcription-coupled repair and global genome repair in UV-irradiated human cells. Mutation Research, 385, 95-105.
18. J. Venema, A. van. Hoffen, A. T. Natarajan, A. A. van. Zeeland and L. H. F. Mullenders, 1990. The residual repair capacity of xeroderma pigmentosum complementation group c fibroblasts is highly specific for transcriptionally active DNA. Nucleic Acids Research, 18, 443-448.
19. A. van Hoffen, J. Venema, R. Maschini, A. A. van. Zeeland and L. H. F. Mullenders, 1995. Transcription coupled repair removes both cyclobutane pyrimidine dimmers and 6-4 photoproducts with equal efficiency and in a sequential way from transcribed DNA in xeroderma pigmentosum group c fibroblasts. The EMBO Journal, 14, 360-367.
20. A. M. Cordonnier and R. P. P. Fuchs, 1999. Replication of damaged DNA: molecular defect in xeroderma pigmentosum variant cells. Mutation Research, 435, 111-119.
21. 鄭郅言, 白果能. 寡核酸晶片製造及其在基因檢測之應用,2001. 科儀新知第二十二卷第五期 8-19.
22. J. Khan, M. L. Bittner, Y. Chen, P. S. Meltzer and J. M. Trent, 1999. DNA microarray technology: the anticipated impact on the study of human disease. Biochemica et Biophysica Acta, 1423, M17-M28.
23. N. L.W. van Hal, O. Vorst, A. M. M. L. van Houwelingen, E. J. Kok, A. Peijnenburg, A. Aharoni, A. J. van Tunen and J. Keijer, 2000. The application of DNA microarrays in gene expression analysis. Journal of Biotechnology, 78, 271-280.
24. C. C. Xiang and Y. Chen, 2000. cDNA microarray technology and its applications. Biotechnology Advances, 18, 35-46.
25. J. Walker and K. Rigley, 2000. Gene expression profiling in human peripheral blood mononuclear cells using high-density filter-based cDNA microarrays. Journal of Immunological Methods, 239, 167-179.
26. C. C. Chen, B. Shief, Y. T. Jin, Y. E. Liau, C. H. Huang, J. T. Liou, L. W. Wu, W. Huang, K. C. Young, M. D. Lai, H. S. Liu and C. Li, 2001. Microarray profiling of gene expression patterns in bladder tumor cells treated with genistein. Journal of Biomedical Science, 8, 214-222.
27. D. A. Lashkari, J. L. Derisi, J. H. Mccusker, A. F. Namath, C. Gentile, S. Y. Hwang, P. O. Brown and R. W. Davis, 1997. Yeast microarrays for genome wide parallel genetic and gene expression analysis. Proceedings of the National Academy of Science of the United States of America, 94, 13057-13062.
28. H. Tao, C. Bausch, C. Richmond, F. R. Blattnerand T. Conway, 1999. Functional genomics: expression analysis of Escherichia coli growing on minimal and rich media. Journal of Bacteriology, 181, 6425-6440.
29. K. Wang, L. Gan, E. Jeffery, M. Gayle, A. M. Gown, M. Skelly, P. S. Nelson, W. V. Ng, M. Schummer, L. Hood and J. Muligan, 1999. Monitoring gene expression profile changes in ovarian carcinomas using cDNA microarray. Gene, 299, 101-108.
30. M. Wolf , W. El-Rifai, M. Tarkkanen, J. Kononen, M. Serra, E. F. Eriksen, I. Elomaa, A. Kallioniemi, O. P. Kallioniemi and S. Knuutila, 2000. Novel findings in gene expression detected in human osteosarcoma by cDNA microarray. Cancer Genetics and Cytogenetics, 123, 128-132.
31. S. N. Guzder, P. Sung, L. Prakash and S. Prakash, 1998. Affinity of yeast nucleotide excision repair factor 2, consisting of the Rad4 and Rad23 proteins, for ultraviolet damaged DNA. The Journal of Biological Chemistry, 273, 31541-31546.
32. L. E. T. Jansen, R. A. Verhage and J. Brouwer, 1998. Preferential binding of yeast Rad4-Rad23 complex to damaged DNA. The Journal of Biological Chemistry, 273, 33111-33114.
33. R. Legerski and C. Peterson, 1992. Expression cloning of a human DNA repair gene involved in xeroderma pigmentosum group c. Nature, 359, 70-73.
34. L. Li, C. Peterson and R. Legerski, 1996. Sequence of the mouse xpc cDNA and genomic structure of the human xpc gene. Nucleic Acids Reasearch, 24, 1026-1028.
35. L. E. T. Jansen, R. A. Verhage and J. Brouwer, 1998. Preferential binding of yeast Rad4-Rad23 complex to damage DNA. The Journal of Biologigal Chemistry, 273, 33111-33114.
36. S. Prakash and L. Prakash, 2000. Nucleotide excision repair in yeast. Mutation Research, 451, 13—24.
37. C. Masutani, K. Sugasawa, J. Yanagisawa, T. Sonoyama, M. Ui, T. Enomoto, K. Takio, K. Tanaka, P. J. van der Spek and D. Bootsma, 1994. Purification and cloning of a nucleotide excision repair complex involving the xeroderma pigmentosum group c protein and a human homologue of yeast RAD23. The EMBO Journal, 13, 1831-1843.
38. P. J. van der Spek, E. M. E. Smit, J. H. J. Hoeijmakers and A. Hagemeijer, 1994. Chromosomal localization of three repair genes: the xeroderma pigmentosum group c gene and two human homologs of yeast Rad23. Genomics, 23, 651-658.
39. K. Sugasawa, C. Masutani, A. Uchida, T. Maekawa, P. J. van der Spek, D. Bootsma, J. H. J. Hoeijmakers and F. Hanaoka, 1996. hHR23B, a human Rad23 homolog, stimulates XPC protein in nucleotide excision repair in vitro. Molecular and Cellular Biology, 16, 4852-4861.
40. K. Sugasawa, J. Ng, C. Masutani, T. Maekawa, A. Uchida, P. J. van der Spek, A. P. M. Eker, S. Rademakers, C. Visser, A. Aboussekhra, R. D. Eood, F. Hanaoka, D. Bootsma and J. H. J. Hojimakers, 1997. Two human homologs of Rad23 are functionally interchangeable in complex formation and stimulation of XPC repair acitivity. Molecular and Cellular Biology, 17, 6924-6931.
41. C. Masutani,M. Araki, K. Sugasawa, P. J. van der Spek, A.Yamada, A. Uchida, T. Maekawa, D. Bootsma, J. H. J. Hojimakers and F. Hanaoka, 1997. Identification and characterization of XPC-binding domain of hHR23B. Molecular and Cellular Biology, 17, 6915-6923.
42. L. Li, X. Lu, C. Peterson and R. Legerski, 1997. XPC interacts with both hHR23B and hHR23A in vivo. Mutation Research, 383, 197-203.
43. J. Venema, A. van Hoffen, V. Karcagi, A. T. Natarajan, A. A. van Zeeland and L. H. F. Mullenders, 1991. Xeroderma pigmentosum complementation group c cells remove pyrimidine dimers selectively from the transcribrd strand of active genes. Molecular and Cellular Biology, 11, 4128-4134.
44. S. Emmert, N. Kobayashi, S. G. Khan and K. H. Kraemer, 2000. The xeroderma pigmentosum group c gene leads to selective repair of cyclobutane pryimidine dimmers rather than 6-4 photoproducts. Proceedings of the National Academy of Science,USA, 97, 2151-2156.
45. M. Yokoi, C. Masutani, T. Maekawa, K. Sugasawa, Y. Ohkuma and F. Hanaoka, 2000. The xeroderma pigmentosum group c protein complex XPC-hHR23B plays an important role in the recruitment of transcription factor IIH to damaged DNA. The Journal of Biological Chemistry, 275, 9870-9875.
46. K. B Mullis, F. Ferre, R. A. Gibbs and J. D. Watson, 1994. The polymerase chain reaction. Birkhauser, Boston.
47. M. I. Pividori, A. Merkoci and S. Alegret, 2000. Electrochemical genosensor design: immobilization of oligonucleotide onto transducer surfaces and detection methods. Biosensors & Bioelectronics, 15, 291-303.
48. J. Sambrook and D. W. Russel, 2001 . Molecular cloning: a laboratory manual, 3, A9.38-42. 3rded. Cold Spring Harbor Laboratory Press, New York.
49. J. D. Luethy and N. J. Holbrook, 1992. Activation of the gadd153 promoter by genotoxic agents: a rapid and specific response to DNA damage. Cancer Research, 52, 5-10.
50. M. K. K. Shivji, A. P. M. Eker and R. D. Wood, 1994. DNA repair defect in xeroderma pigmentosum group c and complementing factor HeLa cells. The Journal of Biological Chemistry, 269, 22749-22757.
51. H. Slor, S. Batko, S. G. Khan, T. Sobe, S. Emmert, A. Khadavi, A. Frumkin, D. B. Busch, R. B. Albert and K. H. Kraemer, 2000. Clinical, cellular, and molecular features of an Israeli xeroderma pigmentosum family with a frameshift mutation in the xpc gene: sun protection prolongs life. The Journal of Investigative Dermatology, 115, 974-980.
52. K. Tatsumi, M. Toyoda, T. Hashimoto, J. Furuyama, T. Kurihara, M. Inoue and H. Takebe, 1987. Differential hypersensitivity of xeroderma pigmentosum lymphoblastoid cell lines to ultraviolet light mutagenesis. Carcinogenesis, 8, 53-57.
53. D. J. J. Halley, W. Keijzer, N. G. J. Jaspers, M. F. Niermeijer, W. J. Kleuer, J. Boue, A. Boue and D. Bootsma, 1979. Prental diagnosis of xeroderma pigmentosum (group c) using assays of unscheduled DNA synthesis and posterplication repair. Clinical Genetics, 16, 137-146.
54. S. Emmert, N. Kobayashi, S. G. Khan and K. H. Kraemer, 2000. The xeroderma pigmentosum group c gene leads to selective repair of cyclobutane pyrimidine dimers rather than 6-4 photoproducts. Proceedings of the National Academy of Science of the United States of America, 97, 2151-2156.
55. D. C. Harrison, A. D. Medhurst, B. C. Bond, C. A. Campbel, R. P. Davis and K. L. Philpott, 2000. The use of quantitative RT-PCR to measure mRNA expression in a rat model of focal ischemia --caspase-3 as a case study. Molecular Brain Research, 75, 143-149.
56. T. D. Schmittgen and B. A. Zakrajsek, 2000. Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. Journal of Biochemical and Biophysical Methods, 46, 69-81.
57. O. Thellin, W. Zorzi , B. Lakaye, B. De Borman, B. Coumans,G. Hennen, T. Grisar, A. Igout and E. Heinen, 1999. Housekeeping genes as internal standards: use and limits. Journal of Biotechnology, 75, 291-295.
58. A. J. Cole, D. W. Saffen, J. M. Barabanand and P. F. Worley, 1989. Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature, 340, 474-476.
59. M. Schmitt-Ney and J. F. Habener, 2000. CHOP/gadd153 gene expression response to cellular stresses inhibited by prior exposure to ultraviolet light wavelength band C (UVC). The Journal of Biologigal Chemistry, 275, 40839-40845.
60. J. D. Luethy, J. Fargnoli, J. S. Park, A. J. Fornace Jr and N. J. Holbrook, 1990. Isolation and characterization of the hamster gadd153 gene. The Journal of Biological Chemistry, 265, 16521-16526.
61. X. Z. Wang and D. Ron, 1996. Stress-induced phosphorylation and activation of the transcription factor CHOP (GADD153) by p38 MAP kinase. Science, 272, 1347-1348.
62. X. Z. Wang, B. Lawson, J. W. Brewer, H. Zinszner, A. Sanjay, L. J. Mi, R. Boorstein, G. Kreibich, L. M. Hendershot and D. Ron, 1996. Signals from the stressed endoplasmic reticulum induce C/EBP-homologous protein (CHOP/GADD153). Molecular and Cellular Biology, 16, 4273-4280.
63. F. Carrier, Q. Zhan, I. Alamo, F. Hanaoka and A. J. Fornace Jr, 1998. Evidence for distinct kinase-mediated pathyways in GADD gene responses. Biochemical Pharmacology, 55, 853-861.
64. A. Johnsson, C. Strand and G. Los, 1999. Expression of GADD153 in tumor cells and stromal cells from xenografted tumors in nude mice treated with cisplatin: correlations with cisplatin-DNA adducts. Cancer Chemotherapy and Pharmacology, 43, 348-52.
65. M. Matsumoto, M. Minami, K. Takeda, Y. Sakao and S. Akira, 1996 . Ectopic expression of CHOP (GADD153) induces apoptosis in M1 myeloblastic leukemia cells. Federation of European Biochemical Societies letters, 359, 143-147.
66. T. C. Murphy, N. R. Woods and A. J. Ickson, 2001 . Expression of the transcription factor GADD153 is an indicator of apoptosis for recombinant Chinese hamster ovary (CHO) cells. Biotechnology and Bioengineering, 75, 621-629.
67. M. B. Kastan, Q. Zhan, W. S. el-Deiry, F. Carrier, T. Jacks, W. V.
Walsh, B. S. Plunkett, B. Vogelstein and A. J. Fornace Jr, 1992. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell, 71, 587-597.
68. F. Carries, M. L. Smith, I. Bae, K. E. Kilpatrick, T. J. Lansing, C. Y. Chen, M. Engelstein, S. H. Friend, W. D. Henner, T. M. Gilmert, M. B. Kastan and A. J. Fornace Jr, 1994. Characterization of human GADD45, a p53-regulated protein. The Journal of Biological Chemistry, 269, 32672-32677.
69. M. L. Smith, J. M. Ford, M. C. Hollander, R. A. Bortnick, S. A. Amundson, Y. R. Seo, C. X. Deng, P. C. Hanawalt and A. J. Fornace Jr, 2000. P53-mediated DNA repair responses to UV radiation: studies of mouse cells lacking p53, p21, and/or gadd45 genes. Molecular and Cellular Biology, 20, 3705—3714.
70. L. Li, E.S. Bales, C.A. Peterson and R.J. Legerski, 1993. Characterization of molecular defects in xeroderma pigmentosum group c. Nature Genetics, 5, 413-417.
71. F. Carrier, P. T. Georgel, P. Pourquier, M. Blake, H. U. Kontny, M. J. Antinore, M. Gariboldi, T. G. Myers, J. N. Weinstein, Y. Pommier and A. J. Fornace Jr, 1999. GADD45, a p53-responsive stress protein, modifies DNA accessibility on damaged chromatin. Molecular and Cellular Biology, 19, 1673—1685.
72. H. Tran, A. Brunet, J. M. Grenier, S. R. Datta, A. J. Fornace Jr., P. S. DiStefano, L. W. Chiang and M. E. Greenberg, 2002. DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the GADD45 Protein. Science, 296, 530-534.
73. M. A. Santucci, A. Ripalti, M. C. Paola, A. M. Mianulli, E. Iacurti, F. Campanini, B. Gamberi and S. Tura, 1999. Procedure for the quantitation of GADD45 expression levels in clonal hematopoietic progenitor cells by competitive polymerase chain reaction. Clinical Biochemistry, 32, 1-8.
74. M. Vairapand, N. Azam, A. G. Balliet, B. Hoffman and D. A. Liebermann, 2000. Characterization of MyD118, GADD45, and proliferating cell nuclear antiage (PCNA) interacting Domains. The Journal of Biological Chemistry, 275, 16810-16819.
75. M. L. Smith, I. T. Chen, Q. Zhan, I. Bae, C. Y. Chen, T. M. Gilmer, M. B. Kastan, P. M. O’Connor, A. J. Jr Fornace, 1994. Interaction of the p53-regulated protein gadd45 with proliferating cell nuclear antigen. Science, 266, 1376-1380.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top