(3.215.180.226) 您好!臺灣時間:2021/03/06 15:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳忠鍇
研究生(外文):Chung-Kai Chen
論文名稱:設計無線資料與能量傳輸之神經環型電刺激系統
論文名稱(外文):Design of wireless data and power transmission for nerve cuff stimulation
指導教授:陳家進陳家進引用關係
指導教授(外文):Jia-Jin Jason Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:醫學工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:45
中文關鍵詞:植入式微電刺激器無線傳輸E類發射器
外文關鍵詞:Implantable microstimulatorwireless transmissionClass E transmitter
相關次數:
  • 被引用被引用:6
  • 點閱點閱:455
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:98
  • 收藏至我的研究室書目清單書目收藏:0
功能性神經肌肉電刺激系統目前已多元化發展應用在復原已失去的神經系統功能。由於近來微電子技術、微機電技術、生物材料與生物相容性封裝技術的突破,使得微電刺激系統將趨向於微小化、可植入式的發展型式。然而在目前國內神經肌肉電刺激研究領域,仍侷限在表面電刺激的形式。為了能提供更好的電刺激選擇性及消除複雜的拉線連接方式,因此我們發展一套具無線傳輸功能之微型化植入式電刺激系統。這項技術的發展在恢復神經系統功能的輔具上將成為新的轉變。
在以超大型積體電路實現系統之前,我們目前先以離散電子元件設計實現一雛型植入式神經肌肉電刺激系統。整體植入式系統包含了外部傳輸電路與植入式微電刺激器。外部單元以無線遙測方式傳送指令資料及電源至植入單元,以高效率E類放大器配合電感耦合方式來實現無線透膚式傳輸技術。植入式微電刺激器透過射頻調變載波訊號由體外單元加以控制,而無線射頻接收轉換電路提供植入單元穩定電源與解調之訊號,再由微電刺激器產生可控制的定電流刺激波形,實現以電刺激神經而產生功能性動作與神經訊號的阻斷。
目前我們已經成功的設計、實現與測試完成了植入式神經肌肉電刺激器所有系統的功能;其中90%高效率自我振盪E類發射器的設計,做為射頻無線資料與電源的傳送。而植入單元微電刺激器系統,利用離散電子元件實現在三公分直徑圓形雙面印刷電路板上,整體功率消耗在30mW。發射線圈與接收線圈的距離允許在3公分以內,微電刺激器可穩定的工作,並在發射線圈的外圍內允許側向偏移。此雛型植入式微電刺激器可產生兩通道多樣式的電刺激規格。目前將使用在急性的動物實驗並提供未來積體電路微型設計之基礎。
關鍵字:植入式微電刺激器、無線傳輸、E類發射器。

The functional neuromuscular stimulation system has been developed and applied to restore the lost neural function in a variety of applications. Due to the advances in microelectronics, micromachining, biomaterials, and biocompatible package technology, the microstimulator system can be fabricated in a miniaturized and implantable type. However, the domestic researches in neuromuscular stimulation are still limited in the utilization of surface stimulation. In order to provide better stimulation selectivity as well as eliminate the long wire connecting electrodes and controller, therefore, we developed a miniaturized and wireless total implantable microstimulator system. This new technology will become a new alternative for the rehabilitation of neurological disorders.
Before fully fabricated with VLSI, current study is to design an implanted neuromuscular stimulation system by using the discrete electronic components. This entire implantable system includes external transmission circuit and implanted microstimulator. The external unit transmits the commands and data as well as the power necessary for the internal unit via wireless telemetry. This wireless transcutaneous transmission is achieved by high efficiency class-E amplifier and inductive coupling technique. The implanted microstimulator is externally controlled and powered by a modulated radio frequency signal. The receiver circuitry of the implant provides the stably regulated voltage and demodulates the data from radio frequency signal. The microstimulator has controllable constant current stimulation channels for nerve stimulation and blocking purpose.
We have successful designed, implemented, and tested all the functional blocks of implantable neuromuscular stimulation system. A high efficiency class E power transmitter with self-oscillating was designed for providing RF power and data to implant, whose efficiency can be up to 90%. In the implanted device, the microstimulator is built on the double-layer of printed circuit board in 3 cm diameter by using electronics discrete components. The overall power consumption of implanted device was measured around 30 mW. Thus, this implantable microstimulator system can operate precisely when the distance between the transmitter coil and receiver coil is within 3 cm. Within this distance, lateral displacement of receiver coil is allowed as long as it is inside the area of transmitting coil. This prototype implantable microstimulator can generate two channels of wide range stimulation specifications. This prototype currently can be used for acute animal experiment and for a basis of ASIC design in the future.
Keywords: Implantable microstimulator, wireless transmission, class E transmitter.

Chapter 1 Introduction ………………………………………………1
1.1 Background…………………………………………………1
1.2 Introduction to implantable microstimulator system…2
1.3 Motivation and the aims of this study…………………8
Chapter 2 Material and Methods.……………………………………9
2.1 The overall structure of implantable microstimulator system…………9
2.2 Design of wireless power and data transmission…………10
2.2.1 Design of class E transmitter……………………………11
2.2.2 Wireless data transmission………………………………15
2.3 Design of implanted device with multichannel microstimulator........................................18
2.3.1 Power recovery circuitry…………………………………19
2.3.2 ASK demodulation circuit………………………………21
2.3.3 Consideration of stimulus waveform for implanted nerve stimulation………22
2.3.4 Implanted microstimulator design………………………23
Chapter 3 Results……………………………………………………25
3.1 The overall implemented system……………………………25
3.2 External control unit………………………………………26
3.3 Result in class E transmitter……………………………28
3.4 Implanted microstimulator system…………………………33
3.4.1 ASK demodulator…………………………………34
3.4.2 Voltage regulator………………………………34
3.4.3 Overall efficiency…………………………………………36
3.4.4 Microstimulator………………………………………………37
Chapter 4 Discussion and Conclusion……………………………40
4.1 Discussion………………………………………………………40
4.2 Conclusion and future development………………………41
References……………………………………………………………42

[1] T. Akin, B. Ziaie, and K. Najafi, “RF telemetry powering and control of hermetically sealed integrated sensors and actuators”, IEEE 4th Int. Conf. Solid State Sensors and Actuators, pp. 145-148, 1990.
[2] K. Arabi, and M. A. Sawan, “Electronic design of a multichannel programmable implant for neuromuscular electrical stimulation”, IEEE Trans. Rehabilitation Engineering, vol. 7, pp. 204-214, 1999.
[3] S. Bourret, M. Sawan, and R. Plamondon, “Programmable high-amplitude balanced stimulus current-source for implantable microstimulators”, Proc. IEEE Int. Eng. Medicine and biology society, vol. 5, pp. 1938-1941, 1997.
[5] D. Bloem, R. Arzbaecher, ”Use of a microprocessor-based pacemaker to control an implantable drug delivery system,” Computers in Cardiology 1993, Proceedings, pp. 1-4, 1993.
[6] A. C. Dupont, S. D. Bagg, ”Clinical trials of BION injectable neuromuscular stimulators,” Proceedings, IFESS-01, Cleveland, OH, June 22-26, 2001.
[7] A. Djemouai, M. Sawan, and M. Slamani, ”An efficient RF power transfer and bidirectional data transmission to implantable electronic devices”, Proc. IEEE Int. Symposium, vol. 2, pp. 259-262, 1999.
[8] F. T. Hambrecht, M. Bak, C.V. Kufta, D.K. O‘Rourke, E.M. Schmidt, P. Vallabhanath, “Feasibility of a visual prosthesis for the blind utiliting intracortical microstimulaion”, 4th Vienna Int. workshop of functional electric stimulation, pp. 1-8, 1992.
[9] Y. Handa and N. Hoshimiya and Y. Iguchi and T. Oda,“Development of Percutaneous Intramuscular Electrode for Multichannel FES System”, IEEE Trans. Biomed. Eng., vol. 36, pp. 705-710, June, 1989.
[10] W. J. Heetderks, “RF powering of millimeter and submillimeter sized neural prosthetic implants,” IEEE Trans. Biomed. Eng., vol. 35, pp. 323-327, 1988.
[11] A. Jeffrey, V. Arx, and K. Najafi, “A wireless single-chip telemetry-powered neural stimulation system”, IEEE Int. Conf. Solid State, pp. 214-215, 1999.
[12] W. S. Levine and G. E. Loeb, “The Neural Control of Limb Movement”, IEEE Control Systems., pp. 38-47, Dec,1992.
[13] W. H. Ko, S. P. Liang, and C. D. F. Fung, “Design of a radio-frequency powered coils for implant instruments,” Med. & Biol. Eng., Comput, no. 15, pp. 634-640, 1977.
[14] G. E. Loeb, C. J. Zamin, J. H. Schulman, and P. R. Troyk, “Injectable microstimulator for functional electrical stimulation,” Med. Biol. Eng., Comput., vol.29, pp. 13-19, Nov, 1991.
[15] G. E. Loeb, F. J. R. Richmond, D. Olney, T. Cameron, A. C. Dupont, K. Hood, R. A. Peck, P. R. Troyk, H. Schulman, “BION/sup TM/. Bionic neurons for functional and therapeutic electrical stimulation”, Proc. IEEE 20th Int. Conf. Eng. Medicine and Biology Society, vol. 5, pp. 2305-2309, 1998.
[16] G. E. Loeb, C. J. Zamin, J. H. Schulman, and P. R. Troyk, “Injectable microstimulator for functional electrical stimulation”, IEEE Trans. Biomed. Eng. & Comput., vol. 29, pp. NS13-NS19, 1991.
[17] G. E. Loeb, “Neural prosthetic interfaces with the nervous system,” TINS., vol. 12, pp. 195-201, 1989.
[18] P. C. Loizou, “Introduction to Cochlear Implants,” IEEE Eng. In Med. Biol., pp. 32-42, Jan. 1999.
[19] J. C. Mandojana, K. J. Herman, and R. E. Zulinski, “A Discrete/Continuous Time-Domain Analysis of a Generalized Class E Amplifier”, IEEE Trans. Circuits Syst., vol. 36, pp. 1057-160,Aug, 1990.
[20] P. H. Peckham, C. W. Poon, W. H. Ko, E. B. Marsolais, and J. J. Rosen, ”Multichannel implantable stimulator for control of paralyzed muscle,” IEEE Trans. Biomed. Eng., vol. 28, no. 7, pp. 112-116, July 1981.
[21] B. Smith, Z. Tang, M. W. Johnson, S. Pourmehdi, M. M. Gazdik, J. R. Buckett, and P. H. Peckham, “An externally powered, multichannel, implantable stimulator-telemeter for control of paralyzed muscle”, IEEE Trans. Biomed. Eng., vol. 45, pp. 463-475, 1998.
[22] N. O. Sokal, “Class-E switching-mode high-efficiency tuned RF/microwave power amplifier: improved design equations”, IEEE Int. Microwave Symposium Digest, vol. 2, pp. 778-782, 2000.
[23] Z. Tang, B. Smith, J. H. Schild, and P. H. Peckham,”Data transmission from an implantable biotelemeter by load-shift keying using circuit configuration modulator”, IEEE Trans. Biomed. Eng., vol. 42, pp. 524-528, 1995.
[24] P. R. Troyk and M. Edgington, “Inductive links and drivers for remotely-powered telemetry systems”, IEEE Int. Symposium Antennas and Propagation Society, vol. 1, pp. 60-62, 2000.
[25] P. R. Troyk and M. A. K.Schwan, “Closed-loop class E transcutaneous power and data link for MicroImplants”, IEEE Trans. Biomed. Eng., vol. 39, pp. 589-599, 1992.
[26] B. Ziaie, M. D. Nardin, A. R. Coghlan, and K. Najafi, “A Single-Channel Implantable Microstimulator for Functional Neuromuscular Stimulation”, IEEE Trans. Biomed. Eng., vol. 44, no. 10, 1997.
[27] B. Ziaie, S. C. Rose, M. D. Nardin, and K. Najafi, “A self-oscillating detuning-insensitive class-E transmitter for implantable microsystems”, IEEE Trans. Biomed. Eng., vol. 48, pp. 397-400, 2001.
[28] C. M. Zierhofer, E. S. Hochmair, “High-efficiency coupling-insensitive transcutaneous power and data transmission via an inductive link”, IEEE Trans. Biomed. Eng. Vol. 37, pp. 716-722, 1990.
[29] C. M. Zierhofer, “A class-E tuned power oscillator for inductive transmission of digital data and power”, Proc. IEEE 6th Conf. Electrotechnical, vol. 1, pp. 789-792, 1991.
[30] C. M. Zierhofer and E. S. Hochmair, “The Class-E concept for efficient wide-band coupling-insensitive transdermal power and data transfer”, IEEE Int. Conf. Eng. Medicine and Biology Society, vol. 14, pp. 382-383,1992.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔