跳到主要內容

臺灣博碩士論文加值系統

(54.225.48.56) 您好!臺灣時間:2022/01/19 21:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃崇仁
論文名稱:電脈衝穿孔術於分子傳遞的應用
論文名稱(外文):Electroporation for molecular delivery
指導教授:林錫璋林錫璋引用關係劉校生
學位類別:碩士
校院名稱:國立成功大學
系所名稱:分子醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:89
中文關鍵詞:電脈衝穿孔術分子傳遞應用
外文關鍵詞:electroporationmolecular delivery
相關次數:
  • 被引用被引用:0
  • 點閱點閱:538
  • 評分評分:
  • 下載下載:61
  • 收藏至我的研究室書目清單書目收藏:0
電脈衝穿孔術 (Electroporation)是一種被應用在傳送原核與真核生物細胞外物質,如DNA、RNA、蛋白質及藥物進入細胞的技術。在每公分電壓數千伏特,數微秒及毫秒的電殛時間,電流會讓細胞膜暫時性地失去半透性。最近,在非病毒載體的動物研究上,及核酸疫苗上,電脈衝穿孔術躍居成為最常被使用的技術。在本實驗中,為了要證實在細胞及活體中電脈衝穿孔術可以增進傳送DNA到達細胞的能力,我們使用了pCMV-luciferase來作為轉殖標定以測定轉殖效果。在功能基因的轉殖上,第五型腺病毒的E1A基因被用來做電脈衝基因治療實驗,因為E1A基因被證實有抑制腫瘤發生及抑制腫瘤血管新生的能力。此外,E1A也具有強力抑制Her2/neu及EGFR表現的能力,因此,E1A擁有促進腫瘤細胞對Gamma射線及抗癌藥物例如paclitaxel(太平洋紫杉醇)、doxorubicin、cisplatin敏感化的功能。在細胞實驗中,Huh7、ML1及MBT2癌症細胞株被以電脈衝穿孔術輸送帶有E1A基因的pSG5/E1A質體,或再加以paclitaxel處理,而實驗中以MTT法測定相對細胞數目,而轉殖效果以免疫細胞化學染色偵測E1A蛋白質表現來測定。在活體實驗上,以注射老鼠膀胱癌細胞株MBT2於C3H/HeNcrj老鼠背上,建立腫瘤動物模式以供實驗。此外,因為MBT2細胞過量表現Her2/neu蛋白質而對化學治療藥物有較高的抗藥性而在本實驗中被選用。在治療上,麻醉後的老鼠首先被注射pSG5/E1A質體於腫瘤中,再以八針電極加以施行電脈衝穿孔術,電脈衝穿孔術的參數為:每公分66伏特的電壓、50毫秒的放電時間、八次脈衝、一個赫茲的頻率。隔天,化學治療藥物paclitaxel以腹腔注射打入腫瘤老鼠體內,劑量為體重每公斤15毫克。每天以電子游標卡尺測量腫瘤體積,而細胞凋亡的情形以TUNEL染色方法觀察。在評估腫瘤血管新生能力上,內皮細胞表面抗原CD31以免疫組織化學染色的方法代表。實驗結果顯示,與單純pCMV-luciferase DNA轉殖做比較,在細胞實驗中,電脈衝穿孔術可以提高轉殖效率達到兩千多倍;而在活體實驗上,電脈衝穿孔術可以有效提高轉殖效率達到十七倍。而第五型腺病毒的全長E1A 基因被構建在pSG5載體中,並以西方點墨法確定有正常功能。在細胞實驗中,過量表現Her2/neu及EGFR的Huh7細胞株及Her2/neu過量表現的MBT2細胞株以電脈衝穿孔術輸送pSG5/E1A質體,發現可以刺激細胞對paclitaxel的敏感性,而在Her2/neu及EGFR都正常表現的ML1細胞中無此現象。在只以電脈衝穿孔術輸送5微克pSG5/E1A質體時,Huh7細胞存活率為32 ± 4%,而在加入濃度為每毫升0.5微克的paclitaxel時,細胞存活率降低到只剩17 ± 3%。在腫瘤動物實驗上,在給予電脈衝穿孔術輸送pSG5/E1A並結合paclitaxel治療後第七天的老鼠腫瘤大小為1145 ± 866 mm3,而對照組平均腫瘤體積是3833 ± 856 mm3。而在存活分析上,電脈衝穿孔術輸送pSG5/E1A質體並結合paclitaxel治療的老鼠存活天數比對照組老鼠還要延長了兩倍。平均來看,對照組的存活天數是12 ±4.5天,而結合E1A基因治療與化療的老鼠存活天數延長為32 ±12.2天(p<0.03)。並且在免疫組織化學染色上,以電脈衝穿孔術輸送pSG5/E1A質體可以發現在局部大量表現E1A蛋白質,並抑制Her2/neu表現,促進細胞死亡。藉由TUNEL染色,可以發現在以電脈衝穿孔術輸送pSG5/E1A及給予paclitaxel的腫瘤有許多細胞凋亡情形。在有給予電脈衝穿孔術輸送pSG5/E1A質體結合paclitaxel化學治療的腫瘤中,以CD31免疫組織化學染色法發現,血管內皮細胞的數目比對照組的要少很多,代表著腫瘤血管新生被抑制。所以,用電脈衝穿孔術局部來輸送E1A基因可以有效殺死癌細胞並且避免副作用,並且經由E1A的效果,可以促進腫瘤細胞凋亡,並抑制腫瘤血管新生。而在腫瘤細胞中表現的E1A蛋白質可以使腫瘤細胞對paclitaxel更敏感。我們結論以電脈衝穿孔術輸送E1A基因並結合太平洋紫杉醇(paclitaxel)提供了一個更有效治療腫瘤的方法。
Electroporation is a method used to introduce extracellular macromolecules, such as DNA, RNA, protein and small molecule drugs into living prokaryotic or eukaryotic cells. Electric pulses of intensity in kilovolts per centimeter and of duration in microseconds to milliseconds cause a temporary loss of the semipermeability of the cell membrane. Recently, in vivo electroporation has emerged as a leading technology for developing non-viral gene therapies and nucleic acid vaccines. In order to make sure the electroporation deliver more DNA into cell in vitro and in vivo, pCMV-luciferase DNA was used as the reporter gene to calculate the efficiency of transfection. In functional gene delivery, E1A gene of adenovirus type 5 is selected for this electrogenetherapy experiment because E1A was revealed to hold abilities of down-regulating some proto-oncogene expression such as Her2/neu and EGFR (epidermal growth factor receptor). Thus, E1A has the potencies of anti-tumorgenesis and anti-angiogenesis. In addition, E1A possesses the activities of sensitizing tumor cell to gamma-radiation and anti-cancer drugs such as paclitaxel, doxorubicin and cisplatin. In vitro, Huh7 (EGFR and Her2/neu overexpression), ML1 (EGFR and Her2/neu normal), and MBT2 (Her2/neu overexpression) cancer cell lines were transfected with pSG5/E1A or combined with paclitaxel (Taxol), then the cell viability was evaluated by MTT (Methylthiazoletetrazolium) assay. The transfection rate of electroporation was demonstrated by anti-E1A immunocytochemical staining. In vivo study, injecting mouse bladder cancer cell line MBT2 into C3H/HeNcrj mouse subcutaneously developed tumor-bearing animal model. Moreover, MBT2 cells that overexpress Her2/neu were more resistant to chemotherapeutic agents and MBT2 is a excellent target for E1A gene therapy. Naked plasmid DNA pSG5/E1A was injected into the anesthesia mouse in tumor locally. Right after that, electroporation was put into practice by eight-needle-form electrodes with 66-volts/cm in amplitude, fifty milliseconds in duration and 8 pulses in 1 Hz frequency. The next day, therapeutic agent, paclitaxel (15 mg/kg), was delivered by intraperitoneal injection. The tumor volume was measured and the apoptosis was evaluated by TUNEL assay. The surface marker CD31 of endothelia was determined by immunohistochemistry for measuring the activity of angiogenesis. The DNA transfection efficiency was increased by electroporation up to more than two thousands folds than control in vitro and at least seventeen folds in vivo versus naked DNA injection group. Then, the full length of E1A gene was subcloned into pSG5 vector and analyzed by Western blot to ensure having normal E1A expression and Her2/neu and EGFR repressions. In vitro study, Huh7 cells and MBT2 transfected with pSG5/E1A by electroporation show more enhanced sensitivity to paclitaxel than ML1 cells. The survival rate of Huh7 electroporated with pSG5/E1A (5 µg) is 32 ± 4% (Mean ± SD, N=8). Combined with paclitaxel (0.5 µg/mL), the survival rate decreases to 17 ± 3% (Mean ± SD, N=8). In vivo, the average of tumor sizes was 1145 ± 866 mm3 in pSG5/E1A electroporated combined with paclitaxel group mice at day 7. In contrary, the average of tumor sizes of control group was 3833 ± 856 mm3 and paclitaxel group is 3561 ± 1051 mm3 (Mean ± SD, N=5). E1A electrogenetherapy combined with paclitaxel chemotherapy prolongs the tumor-bearing mouse survival time more than two folds than control mice. In average, the survival period of control group is 12 ± 4.5 days and that of combinational therapy group is 32 ± 12.2 days (p<0.03). According to the results of immunohistochemical staining, the E1A was expressed locally, repressed Her2/neu protein and induced cell death. By TUNEL assay, the apoptosis cells increasing in electroporation with pSG5/E1A group and paclitaxel treated groups. In the tumor we setup electroporation with pSG5/E1A and combined paclitaxel, the number of endothelia cell is lower than control group by CD31 immunohistochemistry, indicating the down-regulation of angiogenesis. Thus, electroporation can deliver E1A gene successfully kills cancer cells by inducing apoptosis and block angiogenesis. Furthermore, the E1A protein expressed in tumor cell could sensitize the cell to paclitaxel. We conclude that combination of E1A electrogenetherapy and chemotherapy may serve a more effective way to cure cancers.
中文摘要…………………………………………………………………………..i
Abstract…………………………………………………………………….……..iii
誌謝……………………………………………………………………….……….v
Contents…………………………………………………………………….……..vi
List of aberration……….…………………………………………………..…..…ix
A. Introduction
Ⅰ. Cancer causes the most people death…………………………………….1
Ⅱ. EGFR and Her2/neu correlate with carcinogenesis………………………2
Ⅲ. E1A has multiple tumor-suppressing functions…………………………..5
Ⅳ. Strategies of gene therapy……………………………………………...…9
Ⅴ. Electroporation is used to deliver molecules widely………………..…....11
Ⅵ. Strategy…………………………………………………..……………….……12
B. Methods and materials
Ⅰ. Mini-prep of plasmid DNA………………………………..…..….………14
Ⅱ. Restriction enzyme digestion……………………………………………..15
Ⅲ. Elution…………………………………………………………………….16
Ⅳ. Ligation…………….……………………………………………………..17
Ⅴ. Competent cell preparation………….……………………………………17
Ⅵ. Transformation……………………………………………………………19
Ⅶ. Qiagen large preparation…………………………………….….…….…..20
Ⅷ. Cell line culture………………………………………….………...……...21 Ⅸ. In vitro electroporation…………………………………….…….….……...22
Ⅹ. Protein extraction………………………………………….……………….24
ⅩⅠ. BSA protein concentration assay……………………….…….…………24
ⅩⅡ. Protein gel casting………………………………….……...….…….…...25
ⅩⅢ. SDS-PAGE…………………………………………..………………..…26
ⅩⅣ. Western blotting……………………………………………..….…...…..27
ⅩⅤ. Luciferase assay (In vitro)………………………………………....….…30
ⅩⅥ. MTT assay…………………………………………………..…...………30
ⅩⅦ. In vitro electroporation……………………………………..……...…….31
ⅩⅧ. Luciferase assay (In vivo)…………………………………...…....……...32
ⅩⅨ. Immunocytochemistry……………………………………...……..……..33
ⅩⅩ. Immunohistochemistry………………………………..…...…..…..…….34
ⅩⅩⅠ. TUNEL (In vitro)……………………….…………….….…………...35
ⅩⅩⅡ. TUNEL (In vivo)……………………………………….....…………..36
C. Results
Ⅰ. Functional assay of pSG5/E1A plasmid in ML1 cells in vitro by electroporation transfection………………………..…………..…………....38
Ⅱ. The lab-built electroporator has the normal function in small molecule delivery in murine tumor cells, ML1, in vitro………………….………....……39
Ⅲ. Electroporation delivers paclitaxel into human tumor cells…...…..………40
Ⅳ. Electroporation enhances the pCMV/Luc DNA transfection in vitro in a dosage-dependent manner…………..…………….……………………..…..41
Ⅴ. Electroporation delivers pSG5/E1A plasmid DNA into ML1 cells…….…42
Ⅵ. Electroporation deliver pSG5/E1A into ML1 tumor cells induces apoptosis………………………...………………………………………..…43
Ⅶ. Transfection of pSG5/E1A by electroporation kills tumor cells in vitro….43
Ⅷ. Electroporation E1A gene therapy doesn’t sensitize ML1 cells………..…45
Ⅸ. pSG5/E1A electroporation sensitizes the MBT2 cells to paclitaxel in vitro……………………………………………………………………….…45
Ⅹ. Electroporation with pSG5/E1A plasmid sensitizes the Huh7 cells to paclitaxel in vitro…………………………………………………………….46
ⅩⅠ. Electroporation transfers chemotherapeutic agent and functional gene into tumor cells together…….…….………………………………………....…..47
ⅩⅡ. In vivo electroporation enhances the pCMV/Luc transfection in MBT2 tumor model…………………………………………………………..……..47
ⅩⅢ. Transfection of pSG5/E1A plasmid by in vivo electroporation shows morphological changes in MBT2 tumor…………….………………..……..48
ⅩⅣ. Electroporation transfected pSG5/E1A into MBT2 cells was in a high efficiency………………………………..…………………………..…..…..49
ⅩⅤ. Electroporation of pSG5/E1A suppresses the Her2/neu expression in vivo……………………………………………………………………..……50
ⅩⅥ. The pSG5/E1A electroporation and paclitaxel induce MBT2 cells apoptosis………………………………………..……………………..…….51
ⅩⅦ. E1A electrogenetherapy combines with paclitaxel chemotherapy inhibited the angiogenesis in vivo……………………………………………………..51
ⅩⅧ. Electrogene therapy of E1A only or combined with paclitaxel inhibited MBT2 tumor growth in vivo………………………………..……………….52
ⅩⅨ. E1A electrogenetherapy combines with paclitaxel chemotherapy prolonged the tumor-bearing mice survival period…………..…………..…53
D. Discussions……………………………………..……………………………..54
E. References……………………………………………………..…………..…..63
F. Tables and figures……………………………………………………………...70
G. 自述…………………………………………………………...…………..…..89
Anderson, S. C., Johnson, D. E., Harris, M. P., Engler, H., Hancock, W., Huang,W. M., Wills, K. N., Gregory, R. J., Sutjipto, S., Wen, S. F., Lofgren, S., Shepard, H. M., and Maneval, D. C. p53 gene therapy in a rat model of hepatocellular carcinoma: intra-arterial delivery of a recombinant adenovirus. Clin. Cancer Res. 4: 1649-59, 1998.
Arany, Z., Huang, L. E., Eckner, R., Bhattacharya, S., Jiang, C., Goldberg, M. A., Bunn, H. F., and Livingston, D. M. An essential role for p300/CBP in the cellular response to hypoxia. Proc. Natl. Acad. Sci. USA, 93: 12969-73, 1996.
Bernhard, E. J., Muschel, R. J., and Hughes, E. N. Mr 92,000 gelatinase release correlates with the metastatic phenotype in transformed rat embryo cells. Cancer Res., 50: 3872-3877, 1990.
Boyd, J. M., Subramanian, T., Schaeper, U., La Regina, M., Bayley, S., and Chinnnadurai, G. EMBO J., 12: 469-478, 1993.
Chen, M. J., Holskin, B., Strickler, J., Clark, M. A., Johnson, P. J., Mitcho, M., and Shalloway, D. Induction by E1A oncogene expression of cellular susceptibility to lysis by TNF. Nature, 330: 581-583, 1987.
Chinnadurai, G., Adenovirus E1A as a tumor-suppressor gene. Oncogene, 7:1255-1258 , 1992.
Debbas, M., and White, E. Wild-type p53 mediates apoptosis by E1A, which is inhibited by E1B. Genes Dev., 7: 546-554, 1993.
Deng, J., Xia, W. and Hung, M. C., Adenovirus 5 E1A-mediated tumor suppression associated with E1A-mediated apoptosis in vivo. Oncogene, 17: 2167-2175 , 1998.
Deshane, J., Grim, J., Loechel, S., Siegal, G. P., Alvarez, R. D., and Curiel, D. T. Intracellular antibody against erbB-2 mediates targeted tumor cell eradication by apoptosis. Cancer Gene Ther, 3: 89-98, 1996.
Eastham J. A., Grafton W., Martin C. M., and Williams B. J. Suppression of primary tumor growth and the progression to metastasis with p53 adenovirus in human prostate cancer. J. Urol., 164: 814-9, 2000.
Fazion, F., Kim, U-H., and Rhee, S.G. The rebB-2 mitogenic signaling pathway: Tyrosine phosphorylation of phospholipase Cγ and GTPase-activating protein does not correlate with erbB-2 mitogenic potency. Mol Cell Biol, 11: 2040-2048, 1991.
Frisch, S. M., Reich, R., Collier, I., Genrich, L., Martin, G., and Goldberg, G. Adenovirus E1A represses protease gene expression and inhibits metastasis of human tumor cells. Oncogene, 5: 75-83, 1990.
Frisch, S. M. Antioncogenic effect of adenovirus E1A in human tumor cells. Proc. Natl. Acad. Sci. USA, 88: 9077-9081, 1991.
Frisch, S. M. and Dolter, K. E. Adenovirus E1a-mediated tumor suppression by a c-erbB-2/neu-independent mechanism. Cancer Res., 55: 5551-5555, 1995.
Frisch, S. M. and Francis, H. Disruption of epithelial cell-matrix interactions induces apoptosis. J. Cell Biol., 124: 619-626, 1994.
Frisch, S. M. E1A induces the expression of epithelial characteristics. J. Cell Biol., 127: 1085-1096, 1994.
Garbisa, S., Pozzatti, R., Muschel, R. J., Saffiotti, U., Ballin, M., Goldfarb, R. H., Khoury, g., and Liotta, L. A. Secretion of type IV collagenolytic protease and metastatic phenotype: induction by transfection with c-Ha-ras but not c-Ha-ras plus Ad2-E1a. Cancer Res., 47: 1523-1528, 1987.
Harrington, K. J., Spitzweg, C., Bateman, A. R. Morris, J. C., and Vile, R.G. Gene therapy for prostate cancer: current status and future prospects. J. Urol. 166: 1220-33, 2001.
Hofmann, M., Rudy, W., Gunthert, U., Zimmer, S. G., Zawadzki, V., Zoller, M., Lichtner, R. B., Herrlich, P., and Ponta, H. A link between ras and metastatic behavior of tumor cells: ras induces CD44 promoter activity and leads to low-level expression of metastasis-specific variants of CD44 in CREF cells. Cancer Res., 53: 1516-1521, 1993.
Huston, J. S., McCartney, J., Tai, M. S., Mottola-Hartshorn, C., Jin, D., Warren, F., Keck, P., and Oppermann, H. Medical applications of single-chain antibodies. Int Rev Immunol, 10: 195-217, 1993.
Kuball, J., Wen, S. F., Leissner, J., Atkins, D., Meinhardt, P., Quijano, E., Engler, H., Hutchins, B., Maneval, D. C., Grace, M. J., Fritz M. A., Storkel, S. Thuroff, J. W., Huber, C., and Schuler, M. Successful adenovirus-mediated wild-type p53 gene transfer in patients with bladder cancer by intravesical vector instillation. J. Clin. Oncol., 20: 957-65, 2002.
Lebedeva, S., Bagdasarova, S., Tyler, T., Mu, X., Wilson, D. R., and Gjerset, R. A. Tumor suppression and therapy sensitization of localized and metastatic breast cancer by adenovirus p53. Hum. Gene Ther., 12: 763-72, 2001.
Lee, J. S., See, R. H., Deng, T., and Shi, Y. Adenovirus E1A downregulates cJun- and JunB-mediated transcription by targeting their coactivator p300. Mol. Cell.Biol., 16: 4312-4326, 1996.
Lee, J. S., Zhang, X., and Shi, Y. Differential interactions of the CREB/ATF family of transcription factors with p300 and adenovirus E1A. J. Biol. Chem., 271: 17666-74, 1996.
Mymryk, J. S. Tumor suppressive properties of the adenovirus 5 E1A oncogene. Oncogene, 13: 1581-1589, 1996.
Mulligan, R. C. The basis science of gene therapy. Science, 260: 926-932, 1993.
Nevins, J. R. Adenovirus E1A-dependent trans-activation of transcription. Semin. Cancer Biol. 1: 59-68, 1990.
Offringa, R., Smits, A. M. M., Houweling, A., Bos, J. L., and van der Eb, A. J. Nucleic Acid Res., 16: 10973-10984, 1988.
Offringa, R., Gebel, S.,van Dam, H., Timmers, M., Smits, A., Zwarts, R., Stein, B., Bos, J. L., van der Eb, A., and Herrlich, P. Cell, 62: 527-538, 1990.
Ohashi, M., Kanai, F., Ueno, H., Tanaka, T., Tateishi, K., Kawakami, T., Koike, Y., Ikenoue, T., Shiratori, Y., Hamada, H., and Omata, M. Adenovirus mediated p53 tumour suppressor gene therapy for human gastric cancer cells in vitro and in vivo. Gut, 44: 366-71, 1999.
Peles, E., and Ben-Levy, R. Or E. Oncogenic forms of the neu/HER2 tyrosine kinase are permanently coupled to phospholipase Cγ. EMBO J, 10: 2077-2086, 1991.
Pozzatti, R., McCormick, M., Thompson, M. A., and Khoury, G. The E1A gene of adenovirus type 2 reduces the metastatic potential of ras-transformed rat embryo cells. Mol. Cell. Biol., 8: 2984-2988, 1988.
Ruley, H. E. Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture. Nature 304: 602-6, 1983.
Roth, A. J., and Cristiano, R. J. Gene therapy for cancer: what have we done and where are we going? J. Nat. Can. Ins., 89: 21-37, 1997.
Sanchez Prieto, R., Vargas, J. A., Carnero, A., Marchetti, E., Romero, J., Durantez, A., Lacal, J. C., and Ramon, C. Int. J. Cancer, 60: 235-243, 1995b.
Segatto, O., Leonardo, F., and Wexler, D. The juxtamembranc region of the epidermal growth factor and gp185erbB-2 determine the specificity of signal transduction. Mol Cell Biol, 11: 3191-3202, 1991.
Seigne, J. D. Gene therapy of bladder control. Cancer Control, 3, 1996. http://www.moffitt.usf.edu/pubs/ccj/v3n5/article5.html
Shenk, T. and Flint, J. Transcriptional and transforming activities of the adenovirus E1A proteins. Adv. Cancer Res., 57: 48-85, 1991.
Shisler, J., Duerksen-Hughes, P., Hermiston, T. M., Wold, W. S., Gooding, L. R. Induction of susceptibility to tumor necrosis factor by E1A is dependent on binding to either p300 or p105-Rb and induction of DNA synthesis. J. Virol., 70: 68-77, 1996.
Steeg, P. S., Bevilacqua, G., Pozzatti, R., Liotta, L. A., and Sobel, M. E. Altered expression of NM23, a gene associated with low tumor metastatic potential, during adenovirus 2 Ela inhibition of experimental metastasis. Cancer Res., 48: 6550-6554, 1988b.
Tsai, C. M., Chang, K. T., and Perng, R. P .Correlation of intrinsic chemoresistance of non-small-cell lung cancer cell lines with HER-2/neu gene expression but not with ras gene mutations. J Natl Cancer Inst, 85: 897-901, 1993.
Tsai, C. M., Yu, D., Liu, B., and Chang, K. T. Enhanced chemoresistance by elevation of p185neu levels in HER-2/neu-transfected human lung cancer cells. J Natl Cancer Inst, 87: 682-684, 1995.
Ueno, N. T., Yu, D., and Hung, M. C. Chemosensitization of HER-2/neu-overexpressing human breast cancer cells to paclitaxel (Taxol) by adenovirus type 5 E1A. Oncogene, 15: 953-960, 1997.
Wada, Y., Gotoh, A., Shirakawa, T., Hamada, K., and Kamidono, S. Gene therapy for bladder cancer using adenoviral vector. Mol. Urol., 5: 47-52, 2001.
Yu, D., and Hung, M. C. Expression of activated rat neu oncogene is sufficient to induce experimental metastasis in 3T3 cells. Oncogene, 6: 1991-1996, 1991.
Yu, D., and Hung, M. C. Her-2/neu gene in human cancers. In: Freireich E, Stass SA, eds. Molecular Basis of Oncology. Vol 5. Cambridge: Blackwell Scientific Publications Inc., 131-162, 1995.
Yu, D., Lin, B., Sun, D., Price, J. E., Singletary, S. E., Ibrahim, N., Hortobagyi, G. N., and Hung, M.C. Overexpression of both p185c-erbB2 and p170mdr-1 renders breast cancer cells highly resistant to Taxol. Oncogene, 16: 2087-2094, 1998.
Yu, D., Lin, B., and Tan, M. Overexpression of c-erbB-2/neu in breast cancer cells confers increased resistance to Taxol via mdr-1-independent mechanisms. Oncogene, 13: 1359-1365, 1996.
Yu, D., Wolf, J. K., Scanlon, M., Price, J. E., and Hung, M. C. Enhanced c-erbB2/neu expression in human ovarian cancer cells correlates with more sever malignancy that can be suppressed by E1A. Cancer Res., 53 : 891-898, 1993.
Yu, D., Hamada, J. I., Zhang, H., Nicolson, G. L., and Hung, M. C. Mechanisms of neu oncogene induced metastasis and abrogation of metastatic properties by adenovirus 5E1A gene products. Oncogene, 7: 2263-2270, 1992.
Yu, D., Scorsone, K., and Hung, M. C. Adenovirus type 5 E1A gene products act as transformation suppressors of the neu oncogene. Mol. Cell. Biol., 11: 1745-1750, 1991.
Yuan, W., Condorelli, G., Caeuso, M., Felsani, A., and Giordano, A. Human p300 protein is a coactivator for the transcription factor MyoD. J. Biol. Chem., 271: 9009-9013, 1996.
Zhang, L., Chang, C. J., Bacus, S. S., and Hung, M. C. Suppressed transformation and induced differentiation of HER-2/neu-overexpressing breast cancer cell by emodin. Cancer Res., 55: 3890-3896, 1995
Zhang, L., Lau, Y. K., Xia, W., Hortobagyi, G. N., and Hung, M. C. Tyrosine kinase inibitor emodin suppresses growth of HER-2/neu-overexpressing breast cancer in athymic mice and sensitizes these cells to the inhibitory effect of paclitaxel. Clin Cancer Res., 5: 343-353, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top