(3.232.129.123) 您好!臺灣時間:2021/02/26 20:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:莊承鑫
研究生(外文):Cheng-Hsin Chuang
論文名稱:具不均勻微觀構件之蜂巢材料力學性質
論文名稱(外文):Mechanical Properties of Honeycombs with Plateau Borders
指導教授:黃忠信黃忠信引用關係
指導教授(外文):Jong-Shin Huang
學位類別:博士
校院名稱:國立成功大學
系所名稱:土木工程學系碩博士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:128
中文關鍵詞:蜂巢材料不均勻斷面力學性質破壞包絡線挫曲強度
外文關鍵詞:honeycombPlateau bordermechanical propertyyield surfacebuckling strength
相關次數:
  • 被引用被引用:2
  • 點閱點閱:589
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:121
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對具不均勻微觀構件之蜂巢材料力學性質進行廣泛性之研究,首先建立一具不均勻斷面之理論模型,並利用巨觀參數相對密度 與微觀參數 定義其剖面形貌,並以樑之變形理論進行理論分析,包括楊氏模數、剪力模數、柏松比、彈性挫曲強度、塑性崩塌強度與雙軸載重之降伏包絡線,結果發現力學性質與其相對密度與微觀參數息息相關,且各力學性質隨著微觀參數變化之趨勢皆為類似,並表示存在最佳微觀結構之可能。因此,利用其數值結果建立各力學性質與相對密度之關係式,其關係式除了可以準確估計其力學性質之外,並提供最佳化微觀構件之設計圖表,以利工程實際運用所需。此研究之概念與方法將可運用於研究具不均勻微觀構件之泡沫材料力學性質。
An elastic model for honeycombs with Plateau borders is utilized to investigate its mechanical properties and the effects of solid distribution. The profile of cell edge can be defined by relative density and the volume fraction of solid contained in Plateau borders region, hence, the mechanical properties such as Young’s modulus, shear modulus, Poisson’s ratio, elastic buckling, plastic collapse strength and yield surface can be analytical examined by assuming the cell edge as a beam member. As the results, the mechanical properties of honeycombs with Plateau borders depend on both relative density and the volume fraction of solid contained in Plateau borders region. In addition, the effects of solid distribution on these mechanical properties have a similar trend which is an optimal microstructure might exist for honeycombs with Plateau borders. In order to predict these mechanical properties, the relationships between mechanical properties and relative density are proposed based on the numerical results. Furthermore, the design maps of stiffness and strength for regular honeycombs are provided to optimize the microstructure of honeycombs for engineering demand. The methods utilized in the present work still can be applied to analyze the mechanical properties of open-cell foam with non-uniform cell edges.
Table of Contents

Acknowledgements……………………………………………………III
Table of Contents…………………………………………………………IV
Figures List………………………………………………………………………VI
Tables List………………………………………………………………………XI
Chinese Abstract……………………………………………………………………XIII
English Abstract……………………………………………………………………XIV
Chapter 1 Introduction………………………………………………………………1
1.1 Literature Review……………………………………………………1
1.2 Cell Geometry………………………………………………………5
Chapter 2 Elastic Moduli and Plastic Collapse Strength……………………………17
2.1 Deflection of a Variable-Thickness Cell Edge……………………18
2.2 Elastic Moduli………………………………………………………20
2.3 Plastic Collapse Strength……………………………………………25
2.4 Results and Discussion………………………………………………28
2.5 Summary……………………………………………………………32
Chapter 3 Elastic Buckling Strength…………………………………………………45
3.1 Rotational Stiffness…………………………………………………46
3.2 Critical Buckling Load……………………………………………49
3.3 Numerical Examples and Discussions………………………………56
3.4 Summary……………………………………………………………60
Chapter 4 Yield Surface……………………………………………………………68
4.1 Yield Caused by Axial Force and Bending Moment…………………69
4.2 Yield Caused by Axial Force at The Mid-span of Each
Inclined Cell Edge…………………………………………………73
4.3 Yield Caused by Shear Force at The Mid-span of
Each Inclined Cell Edge……………………………………………76
4.4 Discussion…………………………………………………………78
4.5 Summary……………………………………………………………81
Chapter 5 Relationship between Mechanical Properties and Relative Density……92
5.1 Exponent Constant…………………………………………………94
5.2 Microstructural Coefficient…………………………………………96
5.3 Modified Theoretical Expressions…………………………………97
5.4 Optimal Value of ………………………………………………98
5.5 Design Maps for Stiffness and Strength……………………………99
5.6 Summary……………………………………………………………100
Chapter 6 Conclusions and Suggestions……………………………………118
6.1 Conclusions…………………………………………………………118
6.2 Suggestions…………………………………………………………121
Reference ………………………………………………………………………122
Appendix A ……………………………………………………………………125
Appendix B ……………………………………………………………………126
References

1.Gibson, L. J. and Ashby, M. F., Cellular Solids: Structure and Properties, 2nd ed., Cambridge University Press (1997).
2.Gibson, L. J., Ashby, M. F., Schajer, G. S. and Robertson, C. I., “The mechanics of two-dimensional cellular materials.” Proc. R. Soc. Lond., A382: 25-42, (1982).
3.Gibson, L. J., Ashby, M. F., Zhang, J. and Triantafillou, T. C., “Failure surfaces for cellular materials under multiaxial loads- I. Modelling.” Int. Jnl. Mech. Sci., 31(9): 635-663, (1989).
4.Klintworth, J. W. and Stronge, W. J., “Elasto-plastic yield limit and deformation laws for transversely crushed honeycombs.” Int. Jnl. Mech. Sci., 30(3): 273-292, (1988).
5.Zhang, J. and Ashby, M. F., “Buckling of honeycomb under in-plane biaxial stresses.” Int. Jnl. Mech. Sci., 34 (6): 491-509, (1992).
6.Zhang, J. and Ashby, M. F., “The out-of-plane properties of honeycombs.” Int. Jnl. Mech. Sci., 34 (6): 475-489, (1992).
7.Papka, S. D. and Kyriakides, S., “In-plane compressive response and crushing of honeycomb.” Jnl. Mech. Phys. Solids, 42(10): 1499-1532, (1994).
8.Simone, A. E. and Gibson, L. J., “Aluminum foams produced by liquid-state processes. “ Acta Mater., 46(9): 3109-3123, (1998).
9.Plateau, JAF., Statique Experimentale et Teorique des Liquides Soumis aux Seules Forces Moleculaires. Gauthier-Villiard, Paris, (1873).
10.Simone, A. E. and Gibson, L. J., “The effects of cell face curvature and corrugations on the stiffness and strength of metallic foams.” Acta Mater., 46: 3929, (1998).
11.Grenestedt, J. L., “Influence of wavy imperfections in cell walls on elastic stiffness of cellular solids.” J. Mech. Phys. Solids, 46(1): 29-50, (1988).
12.Chen, C., Lu, T. J. and Fleck, N. A., “Effect of imperfections on the yielding of two-dimensional foams.” J. Mech. Phys. Solids, 47: 2235, (1999).
13.Silva, M. J., Hayes, W. C. and Gibson, L., “The effect of non-periodic microstructure on the elastic properties of two-dimensional cellular solids.” J. Int. J. Mech. Sci., 37(11): 1161-1177, (1995).
14.Silva, M. J. and Gibson, L. J., “The effects of non-periodic microstructure and defects on the compressive strength of two-dimensional cellular solids.” Int. J. Mech. Sci., 39(5): 549-563, (1997).
15.Chen, C., Lu, T. J. and Fleck, N. A., “Effect of inclusions and holes on the stiffness and strength of honeycombs.” Int. J. Mech. Sci., 43: 487, (2001).
16.Andrews, E. W., Huang, J. S. and Gibson, L. J., “Creep behavior of a closed-cell aluminum foam.” Acta Mater., 47:2927, (1999).
17.Huang, J. S., Gibson L. J., “Creep of open-cell Voronoi foams. Mater.” Sci. Engng. A, accepted, (2001).
18.Warren, W. E. and Kraynik, A. M., “Foam mechanics: the linear elastic response of two-dimensional spatially periodic cellular materials.” Mech. Mater., 6: 27-37, (1987).
19.Kraynik, A. M. and Warren, W. E., The elastic behavior of low-density cellular plastics. In: Hilyard NC, Cunningham A. Low density cellular plastics:physical basis of behavior, Chapman and Hall, London, 187-225, (1994).
20.Triantafyllidis, N. and Schraad, M. W., “Onset of failure in aluminum honeycombs under general in-plane loading.” J. Mech. Phys. Solids, 46: 1089-1124, (1998).
21.Kim, H. S. and Al-Hassani, S.T.S., “A morphological elastic model of general hexagonal columnar structures.” Int. J. Mech. Sci., 43: 1027-1060, (2001).
22.Simone, A. E. and Gibson, L. J., “Effects of solid distribution on the stiffness and strength of metallic foams.” Acta Mater., 46(6): 2139-2150, (1998).
23.Arbabi, F. and Li F., “Buckling of variable cross-section columns: integral-equation approach.” Jnl. Struc. Engng., 117(8): 2426-2441, (1991).
24.Hsieh, Y. Y. and Mau, S. T., Elementary Theory of Structures, 4th ed., Prentice Hall, (1995).
25.Horne, M. R., Plastic Theory of Structures, 2nd ed., Pergamon Press, (1979).
26.Timoshenko, S. P. and Gere, J. M., Theory of elastic stability. 2nd Ed., McGraw-Hill, New York, N. Y., (1961).
27.Segerlind, L. J., Applied finite element analysis, 2nd ed., John Wiley and Sons, New York, 4-10, (1984).
28.MATHEMATICA 3.0, Wolfram Research, Inc., (1996).
29.Zhu, H. X. and Mills, N. I., “The in-plane non-linear compression of regular honeycombs.” Int. J. Solids Struct., 37: 1931-1949, (2000).
30.Chung, J. and Waas, A. M., “In-plane biaxial crush response of polycarbonate honeycombs.” J. Eng. Mech., 127: 180-193, (2001).
31.Chung, J. and Waas, A. M., “The elastic properties of circular cell and elliptical cell honeycombs.” Acta Mech., 144: 29-42, (2000).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔