|
1.Ahmad, S., Irons, B.M. and Zienkiewics, O.C., ’Analysis of thick and thin shell structures by curved finite elements’, Int. J. Numer. Methods. Eng., 2, 419-459, 1970. 2.Bathe, K. J., ‘Finite Element Procedures In Engineering Analysis’, Prentice-Hall International, M.I.T., Chap. 6, 1982. 3.Bathe, K. J., Dvorkin, E. N. and Ho, L.W., ’Our discrete-Kirchhoff and isoparameteric shell elements for nonlinear analysis- an assessment’, J. Comput. Struct., 16, 89-98, 1983. 4.Bathe, K. J., ‘Finite Element Procedures’, Prentice-Hall International, 1996. 5.Belytschko, T. and Leviathan, I., ‘Physical stabilization of the 4-node shell element with one point quadrature’, Comput. Methods. Appl. Mech. Engng., 113, 321-350, 1994. 6.Crisfield, M., ‘Finite Elements on Solution Procedures for structural Analysis, I, Linear Analysis’, Pineridge, U.K., 1986. 7.Choi, C. K. and Paik, J. G., ‘An efficient four node degenerated shell element based on the assumed covariant strain’, Struct. Engng. Mech., 2(1), 17-34, 1994. 8.Choi, C. K. and Paik, J. G., ‘An efficient four node degenerated shell element for geometrically nonlinear analysis’, Thin-wall Struct., 24, 261-283, 1996. 9.Cook, R. D., Malkus, D. S. and Plesha, M. E., ‘Concept And Applications of Finite Element Analysis’, JOHN WILEY & SONS, Madison, 1989. 10.Dvorkin, E.N. and Bathe, K.J., ‘A continuum mechanics based four-node shell element for general non-linear analysis’, Engng. Comput., 1, 77-88, 1984. 11.Huang, H. C., ‘A new nine node degenerated shell element with enhanced membrane and shear interpolation’, Int. J. Numer. Methods. Eng., 22, 73-92, 1986. 12.Hughes, TJR and Liu, W.K., ’Nonlinear finite element analysis of shells: Part I. Three-dimension shell’, Comput. Methods. Appl. Mech. Engng. , 26, 331 – 362, 1981. 13.Hughes, TJR and Liu, W.K., ’Nonlinear finite element analysis of shells: Part II. Two-dimension shell’, Comput. Methods. Appl. Mech. Engng. , 27, 167 – 181, 1981. 14.Hughes, TJR, ‘The Finite Element Method’, Prentice-Hall, Englewood Cliffs, N.J., 1987. 15.Jang, J. and Pinsky, P.M., ‘An assumed covariant based 9-node shell element’, Int. J. Num. Meth. Engng, 24, 2389-2411, 1987. 16.Ju, S. H., ‘Creep-fatigue analysis of solder joints’, Ph.D. Thesis, University of Wisconsin-Madison, 1993. 17.Ju, S. H., NSP program, ‘Development a nonlinear finite element program with rigid link and contact element’, Report of NSC in R.O.C., NSC-86-2213-E-006-063, 66-81, 1997. 18.Kim, J. H. and Lee, B. C., ‘A four-node degenerated shell element with drilling degrees of freedom’, Struct. Engng. Mech., 6(8), 921-937, 1998. 19.Park, K. C. and Stanley, G. M., ‘A curved C0 shell element based on assumed natural-coordinate strains’, J. Appl. Mech., ASME, 53, 278-290, 1986. 20.Parisch, H., ‘An investigation of a finite rotation four node assumed strain shell element’, Int. J. Numer. Methods. Eng., 31, 127-150, 1991. 21.Prasad, N. S. and Sridhar, S., ‘Elasto-plastic analysis using shell element considering geometric and material nonlinearities’, Struct. Engng. Mech., 6(2), 217 –227, 1998. 22.Raju, K. R. and Rao, M. N. K., ‘Elastoplastic Behaviour of Unstuffened And Stiffened Steel Tubular T-Joints’, Comput. Struct. , 55(5), 907- 914, 1995. 23.Swaddiwudhipong, S. and Liu, Z. S., ‘Response of laminated composite plate and shells’, Comput. Struct. , 37(1), 21- 32, 1997. 24.Timoshenko, S. P. and Goodier, J. N., ‘Thoery of Elasticity’, McGraw-Hill, New York, 1951 25.Yang, H. T. Y., Saigal, S., Masud, A. and Kapania, R. K., ‘A Survey of Recent Shell Finite Element’, Int. J. Num. Meth. Engng., 47, 101-127, 2000. 26.Yeh, M. K., Lin, M. C. and Wu, W. T., ‘Bending buckling of an elasto-plastic cylindrical shell with a cutout’, Engng. Struct., 21, 996 –1005, 1999. 27.Zienkiewicz, O.C., Taylor, R.L. and Too, J.M.,’Reduced integration technique in general analysis of plates and shells’, Int. J. Numer. Methods. Eng., 3, 275-290, 1971.
|