跳到主要內容

臺灣博碩士論文加值系統

(35.153.100.128) 您好!臺灣時間:2022/01/19 04:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:紀祖豪
研究生(外文):Tzu-Hao Chi
論文名稱:三維非線性樑元素用於結構分析之研究
論文名稱(外文):A Study of 3D Nonlinear Beam Element in Structural Analysis
指導教授:朱聖浩
指導教授(外文):Shen-Haw Ju
學位類別:碩士
校院名稱:國立成功大學
系所名稱:土木工程學系碩博士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:86
中文關鍵詞:剛性樓板鋼筋混凝土剪力牆非彈性平面應力元素樑柱柔性樓板
外文關鍵詞:Beam-columnRigid-floorInelasticMembrane elementReinforced concreteShear wallFlexible-floor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:478
  • 評分評分:
  • 下載下載:86
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要是在修改NSP程式中三維樑元素的架構,並利用由平面應力元素所模擬的剪力牆和樓板來分析鋼筋混凝土結構物的非線性行為。此NSP程式是一套作結構靜力與動力分析的非線性有限元素軟體。在這個報告中,所有修改的部分均包含於nbeam.for這個副程式裡面。它簡化了三維樑元素的輸入,以及增加了剪力的降伏曲面和彈性加載與卸載的行為。
對於三維房屋結構分析,樓板常被假設為剛性的。雖然此種假設情形適用於無剪力牆的房屋,然而在分析含有剪力牆的房屋結構行為時卻造成了誤差。以上大部分所提到的結論是由線彈性分析所得出的。因此使用非線性結構分析來探討結構物的行為模式是必須的。所以在本研究中的最後將比較在非線性行為上,房屋在剛性和柔性樓板的假設下,結構分析結果之差別。
The main purpose of this study is to improve the 3D beam element formulations for the NSP program and design the membrane element to simulate shear walls and floor slabs for modeling the inelastic behavior of reinforced concrete (RC) structures. The NSP program is a general purpose nonlinear finite element software for static and dynamic analyses of structures. In this report, all improvements were included in a subroutine, nbeam.for. It simplifies the input data of the 3D beam and adds the shear force yielding surface and elastic loading-unloading behavior.
For three-dimensional (3D) building analyses, floor slabs are often assumed to be rigid in their planes. This assumption was demonstrated to be adequate for buildings without shear walls. However, it can cause errors for buildings with shear walls. Most of the above conclusion was obtained from the linear-elastic analysis. Thus, analyzing the behavior of buildings using inelastic structural analyses is necessary. Therefore, comparing the difference between inelastic rigid-floor and flexible-floor structural analysis was investigated in this study.
ABSTRACT I
誌謝 III
CONTENTS IV
LIST OF FIGURES VII
LIST OF TABLES IX

CHAPTER 1 INTRODUCTION 1
1.1 Background and purpose 1
1.2 Brief account of the research 2
1.3 Literature review 3
1.4 Illustration of the finite element program 5

CHAPTER 2 BASIC THEORY OF 3D BEAM ELEMENT 11
2.1 Introduction 11
2.2 The Stiffness Matrix of Axial Force and Torsion 12
2.3 The stiffness in the plane of axes 2-3 13
2.4 The stiffness in the plane of axes 1-3 16
2.5 The 12-degree-of-freedom global stiffness matrix 18

CHAPTER 3 ELASTIC-PLASTIC 3D MEMBRANE ELEMENTS 20
3.1 Introduction 20
3.2 Elastic-plastic constitutive equation 21
3.2.1 Flow theory 21
3.2.2 Yield criteria 22
3.2.3 Elastic-plastic stress-strain relationship 24
3.3 Membrane elements 29
3.3.1 Isoparametric formulation 29
3.3.2 Incompatible mode 32
3.3.3 Coordinate transformation 33
3.3.4 Master-slave node system 35

CHAPTER 4 THE 3D NONLINEAR BEAM ELEMENT FOR STATIC AND DYNAMIC ANALYSES 39
4.1 Introduction 39
4.2 Building code requirement for structural concrete 39
4.2.1 Introduction 39
4.2.2 Design assumptions 39
4.2.3 General principles and requirements 41
4.2.4 Minimum reinforcement of flexural members 42
4.3 The input data format of the member 42
4.4 Input data of yielding surface 45
4.4.1 RC beam type at one node 45
4.4.2 RC beam type at two nodes 47
4.4.3 The beam-column type 48
4.5 Input data of properties and size 51
4.5.1 RC beam type at one node 51
4.5.2 RC beam type at two nodes 56
4.5.3 The beam-column type 57
4.5.4 The shear force yielding surface 61
4.6 Cyclic loading behavior 62
4.6.1 Elastic loading and unloading behavior 62
4.7 The illustration of the program 65
4.7.1 Subroutine MPS (pure beam type) 65
4.7.2 Subroutine RCC (the beam-column element type) 66

CHAPTER 5 EXAMPLES OF INELASTIC BUILDING ANALYSES 70
5.1 Illustration of numerical models 70
5.2 Evaluation of collapse seismic loading for buildings 73
5.3 Investigating the difference between rigid floor and flexible floor 74
5.3.1 Examples 1 74
5.3.2 Example 2 75

CHAPTER 6 CONCLUSIONS AND FUTURE WORKS 83
6.1 Conclusions 83
6.2 Future works 84

REFERENCES 85
1.ACI committee 318, “Building Code Requirements for Structural Concrete and Commentary,” American Concrete Institute, 2002.
2.Bresler, B., “Design criteria for reinforced columns under axial load and biaxial bending,” ACI Journal proceedings, Vol. 57,Nov., pp. 481-490, 1960.
3.Fadaee MJ, and Grierson DE, “Design optimization of 3D reinforced concrete structures having shear walls”, Engineering with Computers, 14(2), pp. 139-145, 1998.
4.Ju, S.H., "Investigating contact stresses on articular surfaces by 3-D rigid links", Journal of Engineering Mechanics, ASCE, 123(12), pp. 1253-1259, 1997.
5.Ju, S. H., “Creep-fatigue analysis of solder joints,” Ph.D. Thesis, University of Wisconsin-Madison, 1993.
6.Ju, S. H., NSP program, “Development a nonlinear finite element program with rigid link and contact element,” Report of NSC in R.O.C., NSC-86-2213-E-006-063, pp. 66-81, 1997.
7.Kuw C. T. “Architecture of 3D beam element in nonlinear finite element analysis,” Master thesis, National Cheng-Kung University, 2001.
8.Muller, L. S., ”Eccentrical loaded corner columns,” ACI Journal proceedings, Vol. 47, March, pp. 562-565, 1951.
9.Prakash, V., and G. H. Powell, “DRAIN-2DX, DRAIN-3Dx and DRAIN-BUILDING: Base Program Design Documentation,” Department of Civil Engineering, University of California, Berkeley, CA, December 1993.
10.Rafiq, M. Y.,and C. Southcombe, “Genetic algorithms in optimal design and detailing of reinforced concrete biaxial columns supported by a declarative approach for capacity checking,” University of Plymouth, School of Civil &Structural Engineering, U. K. Received 20 January 1997; accepted 25 April 1998.
11.Wilson, E.L., Taylor, R.L., Doherty, W.P. and Ghaboussi, J., "Incompatible Displacement Models", in Numerical and Computer Method in Structural Mechanics (Fenves, S.J., Perrone, N., Robinson, A.R. and Schnobrich, W.C. eds), Academic Press, New York, pp. 43-57, 1973.
12.中國土木水利工程學會, “混凝土工程設計規範與解說” 科技圖書股份有限公司, 2000.
13.朱聖浩, “剪力牆及斜撐房屋在剛性樓版假設下線性結構分析誤差之探討”,89防災重要建築物之耐震對策期末研究成果研討會論文集年期末報告.
14.廖慶隆,”A Optimum Design Method for Rectangular Reinforced Concrete Column,” 土木水利, August, 1976
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊