(3.237.97.64) 您好!臺灣時間:2021/03/04 11:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張國偉
研究生(外文):Kuo-Wei Chang
論文名稱:捷運系統高架橋行車振動分析
論文名稱(外文):Viaduct Vibration Analysis of Mass Rapid Transit System
指導教授:朱聖浩
指導教授(外文):Shen-Haw Ju
學位類別:碩士
校院名稱:國立成功大學
系所名稱:土木工程學系碩博士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:137
中文關鍵詞:三維網格高架橋振動共振捷運有限元素法AN程式房屋振動立體元素
外文關鍵詞:Building vibrationMRTResonanceSolid elementThree-dimensional meshAN programFEMViaduct vibration
相關次數:
  • 被引用被引用:5
  • 點閱點閱:1204
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:310
  • 收藏至我的研究室書目清單書目收藏:0
  大眾捷運系統為我們帶來更便捷的交通,但是其伴隨而來之振動問題卻是一個重要的課題。在早期的有限元素研究文獻中,多是著重在二維模型的探討。在此,使用三維模型來進行有限元素分析。使用solid元素來表示土壤及橋樑之上部結構(橋之大樑)。橋支柱及帽梁使用三維梁元素來模擬之。邊界條件為吸收邊界,可用來消除沿著有限元素邊界的反射波,並採用1/3倍頻法來計算振動。本研究分析之步驟和結果,可提供給研究捷運振動問題者一個分析步驟並給予捷運結構系統上舒適與安全性的建議。
  本文有三個主要的案例:1.台北捷運木柵線振動分析。2.台北捷運內湖線振動分析。3.使用全區域三維元素振動分析。在分析結果中,橋樑之振動在列車速度超過70km/hr時,會變的相當明顯,此時頻率為約1.6-1.7Hz。此為車橋共振所造成現象。降低車速至60km/hr以下或是增加橋柱直徑至2.4m可以減少此共振現象。箱型(BOX)結構之橋樑有較小之振動。房屋之大底版可以阻隔來自於基礎土壤之振動,此乃因為底版之水平勁度可以減少同平面的振動。若共振發生時,房屋結構之振動會顯著的增加,此狀況可在本文之有限元素分析中可看出。
  The mass rapid transit system provides us a swift communication, but the vibration problem is always an important issue. Most early finite element investigations were emphasizing of two-dimensional models.
  This investigation uses three-dimensional models to process the finite element analysis. The solid element is used to represent the soil and bridge superstructure (bridge girder). Pillars and pier caps are simulated using three-dimensional beam elements. The absorbing boundaries are used to remove the wave reflection along the finite element boundary. The 1/3 octave band method is adopted to compute the velocity vibration. The analysis procedures and results can provide an analytic process for others vibration investigation and advices about the safety and comfort of metropolitan mass rapid transit system.
  There are three major cases. 1: vibration analysis of Mucha line of Taipei Mass Rapid Transit (TMRT). 2: vibration analysis of Neihu line of TMRT. 3: use macrocosm 3D model to analyze vibration affection. From this investigation, the bridge vibration is obviously (at frequency is 1.6-1.7Hz) when the train velocity is higher than 70km/hr. This phenomenon caused by train-bridge resonance. Decrease the train velocity to 60km/hr or increase the pillar diameter to 2.4m can avoid the resonance phenomenon. The box section bridge has lower vibration. The building bottom slab can isolate the vibration transferred from the foundation soil because the slab horizontal stiffness reduces the in-plane vibration. If the resonance occurs, the building vibration can increase significantly, and this condition can be found in the finite element analysis of this thesis.
ABSTRACT I
摘要 II
誌謝 III
CONTENTS IV
LIST OF TABLES VII
LIST OF FIGURES VIII


CHAPTER 1. INTRODUCTION 1
1.1 Background and purpose 1
1.2 Literature review 1
1.3 Brief account of the research 4
1.4 Illustrate of the finite element program 5

CHAPTER 2. NUMERICL SCHEMES USED IN THESIS 10
2.1 Absorbing boundary 10
2.2 Wheel elements 11
2.3 1/3 octave band method 13
2.4 The least-squares method 16
2.4.1 Least-squares method for dynamic equations 16
2.4.2 Selecting an appropriate harmonic applied force 19
2.5 Newmark direct integration method 21

CHAPTER 3. MESH GENERATION PROGRAM OF THE VEHICLE-BRIDGE-SOIL MODEL 24
3.1 Mesh Generation Program MRTS 24
3.1.1 Element classification 25
3.1.2 Input data of program MRTS 29
3.1.3 Examples 32
3.1.4 Illustration of the mesh generation program MRTS 33
3.1.5 Execute program MRTS 37
3.2 Establish Ground Mesh by VASJAPAN 38
3.2.1 The required files 39
3.2.2 Execute program VASJAPAN 45
3.3 Calculate vibration velocity as program DB 45
3.3.1 Execute program DB 46

CHAPTER 4. MUCHA LINE VIBRATION ANALYSIS 47
4.1 Bridge system of MuCha line 47
4.1.1 Establish bridge mesh of MuCha line 56
4.2 The train finite element model of MuCha line 58
4.3 The foundation model of MuCha line 59
4.4 Analysis results of MuCha line 63
4.5 Discussion 66

CHAPTER 5. NEIHU LINE VIBRATION ANALYSIS 67
5.1 Bridge system of NeiHu line 67
5.1.1 Establish the bridge finite element model of NeiHu line 71
5.2 The train finite element model of NeiHu line 74
5.3 The foundation finite element model of NeiHu 74
5.4 Example of generate foundation mesh 79
5.5 Compute the equivalent MCK (mass, damping and stiffness) matrices of NeiHu 85
5.6 Analysis of NeiHu line 86
5.6.1 Selecting a suitable bottom node 86
5.6.2 Analysis results 89
5.7 Discussion 108

CHAPTER 6. NEIHU LINE MACROCOSM 3D FINITE ELEMENT VIBRATION ANALYSIS 110
6.1 Building finite element model 110
6.1.1 Establish of building mesh 113
6.2 Bridge and foundation finite element models 114
6.2.1 Bridge mesh 114
6.2.2 Ground mesh 115
6.3 Macrocosm model 117
6.4 Analysis results 119
6.5 Discussion 130

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 132
7.1 Conclusions 132
7.2 Future works 133

REFERENCE 134
REFERENCE

1. B. Alabi, “A model for the problem of ground vibration induced by the wheels of a moving train”, Applied Mathematical Modelling 13, 710-715, 1989.
2. B. Alabi, “A parameter study on some aspects of groundborne vibration due to rail traffic”, Journal of Sound and Vibration 153, 77-87, 1992.
3. F. C. P. De Barros and J. E. Luco, “Response of a layered viscoelastic half-space to a moving point load”, Wave Motion 19, 189-210, 1994.
4. Y. K. Cheung, F. T. K. Au, D. Y. Zheng and Y. S. Cheng, “Vibration of multi-span non-uniform bridges under moving vehicles and trains by using modified beam vibration functions”, Journal of Sound and Vibration 22893, 611-628, 1999.
5. H. A. Dieterman and A. Metrikine, “Critical velocities of a harmonic load moving uniformly along an elastic laver”, Journal of Applied Mechanics, Transaction of the ASME 64, 596-699, 1997.
6. E. Esmailzadeh and M. Ghorashi, “Vibration analysis of beams traversed by uniform partially distributed moving masses”, Journal of Sound and Vibration 184(1), 9-17, 1995.
7. L. Fryba, “Vibration of Solid and Structures Under Moving Loads” Groningen, The Nethrlands: Noordhoff International Publishing, 1972.
8. F. V. Filho, “Finite element analysis of structures under loads”, Shock and Vibration Digest 10, 27-35, 1978.
9. Gordon CG, Generic criteria for vibration sensitive equipment. SPIE 1619, 71-75, 1991.
10. N. Haskell, “The dispersion of surface waves on multilayered media” Bulletin of the Seismological Society of America 73, 17-43, 1953.
11. S. Haran and R. D. Finch, “Ring model of railway wheel vibrations” Journal of the Acoustical Society of America 74, 1433-1439, 1983.
12. P. Heiss, “Investigation into the vibration and behaviour of a passenger coach wheel (in German)”, Doctoral Thesis, Technical University of Berlin, 1986.
13. Higdon RL, “Absorbing boundary conditions for acoustic and elastic waves in stratified media”, Journal of Computational Physics, 101, 386-418, 1992.
14. H. Irretier, “The natural and vibration of a wheel disc”, Journal of Sound and Vibration 87, 161-177, 1983.
15. J. Hino, T. Yoshimura, K. Konishi and N. Ananthanarayana, “A finite element method prediction of vibration of a bridge subjected to a moving vehicle load”, Journal of Sound and Vibration 96, 45-53, 1984.
16. S.H. Ju, 剛性聯結及介面元素應用於關結應力分折之研究, 國科會報告, (NSC-84-2213-E-006-119), 1995.
17. S.H. Ju and K.S. Kung, “Mass types, element orders and solving schemes for the Richards equation”, Computers & Geosciences, 23:175-187, 1997.
18. D. V. Jones, D. Le Houedec, A. T. Peplow and M. Petyt, “Ground vibration in the vicinity of a moving harmonic rectangular load on a half space”, European Journal of Mechanics A/Solid 17, 153-166. 1998.
19. S.H. Ju, “Finite element analysis of wave propagations due to high-speed train across bridges”, 國科會報告, 2000.
20. S.H. Ju, Y.M. Wang, “Time-dependent absorbing boundary conditions for elastic wave propagation”, International Journal for Numerical Method in Engineering, 50, 2159-2174, 2001.
21. S.H. Ju, “Modeling flexible pile foundations using finite elements”, Proceedings of the 3rd Japan-Korean-Taiwan Joint Seminar on Earthquake Engineering for Building Structures, Taipei, Nov, 2001, 127-134, 2001
22. S.H. Ju, “Finite element analyses of wave propagations due to high-speed train across bridges” Accepted by International Journal for Numerical Methods in Engineering, 2001.
23. S.H. Ju, “Evaluating foundation mass, damping and stiffness by least-squares method”, Revised in Earthquake Engineering and structural Dynamics.
24. S.H. Ju, “3D finite element analyses of wave barriers for reduction of train-induced vibrations”, Accepted by Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2002.
25. Klein R, Antes H, LeHouedec D, “Efficient 3D modeling of vibration isolation by open trenches”, Computers & Structures, 64:809-817, 1997.
26. Kattis SE, Polyzos D, Beskos DE, “Vibration isolation by a row of piles using a 3-d freqency domain BEM”, International Journal for Numerical Methods in Engineering, 46:713-728, 1999.
27. Kattis SE, Polyzos D, Beskos DE, “Modelling of piles wave barriers by effective trendches and their screening effectiveness”, Soil Dynamics and Earthquake Engineering,18:1-10, 1999.
28. C. Madshus and A. Kaynia, “High speed railway lines on soft ground: dynamic behaviour at critical train speed”, Proceeding of the Sixth International Workshop on Railway Noise, Ile des Embiez, France, 108-119, 1998.
29. P. J. Remington,“Wheel/rail noise, part I: characterization of the wheel/rail dynamic system”, Journal of the Acoustical Society of America 46, 359-380, 1976.
30. P. J. Remington, “Wheel/rail rolling noise, part I: theoretical analysis”, Journal of the Acoustical Society of America 81, 1805-1823, 1987.
31. G. G. Stokes, “Discussion of a differential equation relating to the breaking of railway bridges”, Transactions of the Cambridge Philosophical Society 85, 707-735, 1849.
32. M. M. Stanisic and J. C. Hardin, “On response of beams to an arbitrary number if moving masses”, Journal of The Franklin Institute 287, 115-123, 1969.
33. S. Timoshenko, “Vibration of bridges”, Transaction of the American Society of Mechanical Engineers 53-61, 1927.
34. W. T. Thomson, “Transmission of elastic waves through a stratified soil medium”, Journal of Applied Physics 21, 81-93, 1950.
35. S. Timoshenko, D. H. Young and W. Waver, Vibration Problems in Engineering, John Wiley, New York, fourth edition, 1974.
36. R.Willis, Report of the Commissioners Appointed to Inquire into the Appication of Iron to railway Structures, Appendix. London: William Clowes and Sons, 1849.
37. J. G. Walker, N. S. Ferguson and M. G. Smith, “An investigation of noise from trains on bridges”, Journal of Sound and Vibration 193(1), 307-314, 1996.
38. T. X. Wu and D. J. Thompson, “A double timoshenko beam model for vertical vibration analysis of railway track at high frequencies”, Journal of Sound and Vibration 224(2), 329-348, 1999.
39. J. S. Wu and P. Y. Shih, “Dynamic responses of railway and carriage under the high-speed moving loads”, Journal of Sound and Vibration 236(1), 61-87, 2000.
40. D. M. Yoshida and W. Weaver, “Finite element analysis of bemas and plates with moving loads”, Publication of International Association for Bridge and Structural Engineering 31, 179-195, 1971.
41. H. Xia, Y. L. Xu and T. H. T. Chan, “Dynamic interaction of long suspension bridges with running trains”, Journal of Sound and Vibration 237(2), 263-280, 2000.
42. E.L. Wilson, R.L. Taylor, W.P. Doherty, and J. Ghaboussi, “Incompatible Displacement Models”, in Numerical and Computer Method in Structural Mechanics (Fenves, S.J., Perrone, N., Robinson, A.R. and Schnobrich, W.C. eds), Academic Press, New York, 43-57, 1973.
43. S.H. Ju, “Development a nonlinear finite element program with rigid link and contact element”, Report of NSC in R.O.C., NSC-86-2213-E-006-063, 66-81. This report and source codes in an executable compressed file nfemnew.exe of MS-DOS can be obtained from the FTP server 140.116.36.4
44. Kattis, S. E., Polyzos, D. and Beskos,D.E. “Modeling of pile wave barriers by effective trenches and their screening effectiveness.” Soil Dynamics and Earthquake Engineering 18, 1-10, 1999.
45. Sheng-Huoo Ni, Chih-Wei Yang, Yi-Jiun Shen, and Pin-Jen Yan, “The characteristics of vibration induced by Mcts-Mucha line rapid transit system”, Tapiei, 2002.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔